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Chapter

DNA Damage Repair Genes and 
Noncoding RNA in High-Grade 
Gliomas and Its Clinical Relevance
Tanvi R. Parashar, Febina Ravindran and Bibha Choudhary

Abstract

Gliomas are the most common malignant tumors originating from the glial cells 
in the central nervous system. Grades III and IV, considered high-grade gliomas 
occur at a lower incidence (1.5%) but have higher mortality. Several genomic altera-
tions like IDH mutation, MGMT mutation, 1p19q Codeletion, and p53 mutations 
have been attributed to its pathogenicity. Recently, several noncoding RNAs have 
also been identified to alter the expression of crucial genes. Current chemothera-
peutic drugs include temozolomide targeting hypermethylated MGMT, a DNA 
repair protein; or bevacizumab, which targets VEGF. This book chapter delves 
deeper into the DNA damage repair pathway including its correlation with survival 
and the regulation of these genes by noncoding RNAs. Novel therapeutic drugs 
being developed are also highlighted.

Keywords: DDR in glioblastoma, noncoding RNA in gliomas, targeted therapy

1. Introduction and epidemiology

Gliomas are the brain’s solid tumors that arise from the glial cells, which are 
the non-neuronal cells of the central nervous system (CNS). Neurons function in 
synaptic interactions, whereas glial cells provide protective and structural support 
to the neurons. According to the 2020 GLOBOCAN, cancer of the brain and central 
nervous system rank at 19th and 12th, respectively [1]. The age-standardized 
incidence of these tumors is 3.9 per 100,000 in males and 3.0 in females globally. In 
comparison, the mortality is 3.5 per 100,000 in males vs. 2.8 in females worldwide. 
These cancers are prevalent in countries with a high human development index 
[1]. In 2020 alone, 308102 worldwide brain and central nervous system cases were 
reported. More than half were reported from Asia (54.2%) [1]. The number of 
deaths reported in the same year was 251329 worldwide, pushing the mortality rate 
to 81.57% [1]. The survival rate of gliomas vary based on their grade; the median 
survival time for high-grade glioma is 14 to 16 months. It ranges from 3–15 years for 
low-grade gliomas [2].

One of the only risk factors identified for the development of high-grade gliomas 
is exposure to high-dose of ionizing radiation [3]. However, environmental factors, 
toxins, infections, cell phone usage, or head trauma have not been correlated to 
the development of gliomas. Only 5% of cases of brain tumors have been linked to 
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hereditary genetic syndromes [4]. Some of which are Li-Fraumeni cancer syndrome 
(associated with a germline mutation in the TP53 gene), neurofibromatosis, Turcot 
syndrome, and Lynch syndrome (constitutional mismatch repair deficiency), 
tuberous sclerosis, melanoma-neural system tumor syndrome, Ollier disease and 
Rubinstein-Taybi syndrome [4–7].

Gliomas are diagnosed when the patients become symptomatic, exhibiting 
recurrent headaches, the onset of seizures, personality changes, weakness in 
limbs, or language disturbances [8]. Elevated intracranial pressure is also a com-
mon feature in gliomas [9]. Infantile spasms and seizures have also been noted in 
infants [9]. Gliomas are generally diagnosed by computed tomography (CT), and 
Magnetic Resonance Imaging (MRI) scans [10]. The current treatment regimen is 
based on the tumor grade and includes either or combinations of surgical resection, 
radiation, and chemotherapy [11]. The chemotherapeutic drugs used for glioma 
treatment fall under the category of alkylating agents that induce double-stranded 
breaks in the DNA, thereby inhibiting tumor proliferation [12]. The standard 
chemotherapeutic drug used for high-grade glioma is temozolomide (TMZ), and 
for low-grade gliomas are carmustine, procarbazine, and lomustine [13]. Metastasis 
of malignant gliomas is rare, primarily due to the low survival of the patients and 
also due to the blood–brain barriers [14]. However, in certain rare cases of high-
grade gliomas, metastasis to the lung, pleura, lymph nodes, bone, and liver have 
been reported [15]. Recurrence post-treatment is reported in most gliomas and can 
be attributed mainly to surgical brain injury (SBI) and TMZ chemoresistance [16].

The following sections describe the glioma subtypes, their molecular character-
ization, and their deregulated signaling pathways. This chapter’s primary focus is 
on the DNA damage response (DDR) pathway, and noncoding RNAs in high-grade 
glioma called glioblastoma multiforme (GBM). The role of noncoding RNAs affect-
ing chemosensitivity and other novel therapeutic drugs being developed for gliomas 
are also highlighted.

2. Glioma classification

The Glial cells are classified as astrocytes, oligodendrocytes, and ependymal 
cells [17]. The astrocytes function in providing mechanical support to the neurons; 
oligodendrocytes are involved in myelin production, a component of the myelin 
sheath and ependymal cells play essential roles in the transport of CSF and brain 
homeostasis [18]. Based on the cellular origins, gliomas are classified as astrocytoma 
(derived from astrocytes), oligodendrogliomas (derived from oligodendrocytes), 
and ependymoma [2].

Until 2016, the World Health Organization (WHO) had categorized gliomas 
entirely based on histological features and graded them according to their malig-
nancy profile [19]. Table 1 represents this WHO grading of gliomas where grades I 
and II are considered low-grade gliomas (LGGs) that are slow-growing with a better 
prognosis. The Grade I tumors are mainly diagnosed in children and curable with 
just surgical resection. On the contrary, the most aggressive tumors are referred to 
as high-grade gliomas (grade III and IV). Grade III tumors are termed ‘anaplastic’ as 
they have lost their characteristic cellular features to become malignant. The grade 
IV in this category, which accounts for 90% of gliomas, is GBM, the most aggressive 
and deadly tumor of all gliomas, with an abysmal survival rate. About 90% of GBM 
cases are de novo and develop in older patients [20]. On the contrary, secondary 
GBM, which arises from LGG, manifests mostly in younger patients and has a better 
prognosis [20].
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2.1 Molecular classification of gliomas

A more recent WHO classification in 2016 includes genetic screening to 
histopathological analysis, which integrates the tumor’s morphological and 
genetic considerations [21]. The status of the following molecular alterations has 
been incorporated in this classification and are critical to diagnosis and further 
treatment.

IDH mutation: The most prevalent genetic mutation is the Isocitrate dehydro-
genase (IDH) mutation accounting for a single point mutation in around 80% of 
glioma cases [22]. It is identified to be one of the earliest mutations for gliomagen-
esis and has been implemented primarily to classify gliomas as either IDH mutant 
or IDH wildtype. IDH mutation is considered to be a favorable prognostic marker 
with increased survival [23]. It is a metabolic enzyme that catalyzes the oxidative 
decarboxylation of isocitrate to α-ketoglutarate (α-KG) and produces NADPH from 
NADP without the Kreb cycle’s involvement. This mutated IDH produces high levels 
of 2-hydroxyglutarate (2-HG) instead of the α-KG which is implicated in glioma 
invasion as well in epigenetic alterations leading to a glioma CpG island methylator 
(G-CIMP) phenotype (G-CIMP) [24].

Codeletion 1p19q: Post IDH mutation status, the gliomas are further classified 
based on this chromosomal co-deletion of 1p19q where the short arm chromosome 1 
(1p) and the long arm of chromosome 19 (19q) are lost. It is observed in more than 
70% oligodendrogliomas and 50% mixed oligoastrocytomas [25]. Clinically, IDH 
mutants with co-deletion 1p19q are linked to better prognosis and chemotherapy 
response [26].

TERT promoter mutations: Telomerase reverse transcriptase (TERT) promoter 
mutations are reported in several cancers leading to enhanced activity of TERT 
resulting in tumor cell survival and its progression [27]. It is present in 55% GBM 
and its prevalence is inversely correlated with IDH mutation [27, 28]. This TERT 
mutation serves as a prognostic biomarker and is associated with poor survival [29].

MGMT promoter methylation: MGMT (O[6]-methylguanine-DNA methyl-
transferase) is a DNA damage repair protein that removes alkyl groups added to 
nucleotides preventing mutation. Chemotherapeutic drugs like TMZ blocks cell 
growth by alkylating DNA. Hypermethylation of MGMT promoter regions renders 
this enzyme inactive and is reported in 40% GBM cases [30]. IDH mutant-MGMT 
promoter methylation cases are associated with increased PFS (Progression-free 

WHO grade Astrocytoma Oligodendroglioma Oligoastrocytoma Prognosis Incidence

Low 

grade

I Pilocytic 

astrocytoma, 

subependymal 

giant

cell astrocytoma

Good Predominant 

in children 

<1 year

II Low-grade 

astrocytoma

Low-grade 

oligoastrocytoma

Low-grade 

oligodendroglioma

Favorable Median age 

of 35

High 

grade

III Anaplastic 

astrocytoma

Anaplastic 

oligoastrocytoma

Anaplastic 

oligodendroglioma

Poor Predominant 

in adults

IV Glioblastoma Very poor Predominant 

in adults

Table 1. 
Glioma classification based on histology and malignancy scale.
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survival) whereas MGMT promoter methylation with TP53 mutation has favorable 
outcome irrespective of IDH status [31].

ATRX mutation: The alpha thalassemia/mental retardation syndrome X-linked 
(ATRX) is a chromatin remodeling enzyme involved in incorporating histone H3.3 
at telomeres and pericentromeric heterochromatin. Loss of function mutations 
of ATRX is reported in gliomas which correspond to alternative lengthening of 
telomeres (ALT) phenotype [32]. ATRX and TERT mutations occur in 90% dif-
fuse IDH mutant gliomas with both being mutually exclusive which confer better 
progression-free and overall survival [33].

H3K27M mutations: H3K27M (methionine substitution of lysine at residue 27 of 
histone H3) are mutations that occur in Histone 3 of H3F3A or HIST1H3B/C gene. 
These mutations are predominantly present in pediatric cases with IDH-wildtype 
and lack 1p/19q co-deletion and are associated with poor prognosis [34]. The 
H3K27M mutant protein has a dominant-negative effect on EZH2 protein, a histone 
methyltransferase impacting the epigenetic landscape of tumor genes [35].

Besides the above, other somatic and germline mutations are also reported in 
gliomas. More than 25 gene loci are linked to an increased risk of development of gli-
omas. Somatic mutations of cyclin-dependent kinase inhibitor 2A and B (CDKN2A, 
CDKN2B), epidermal growth factor receptor (EGFR), pleckstrin homology-like 
domain family B member 1 (PHLDB1), and regulator of telomere elongation helicase 
1 (RTEL1) are reported in gliomas [36]. In case of GBM, the frequent genetic altera-
tions in the decreasing order are LOH 10q (69%), EGFR amplification (34%), TP53 
mutations (31%), p16INK4a deletions (31%) and PTEN mutations (24%) [37].

3. Deregulated pathways in glioblastomas

GBMs are the most fatal of all glial cancers. Secondary GBMs arising from LGG 
constitute 10% whereas the remaining 90% GBMs arise de novo. The genomic 
alterations of oncogenes and tumor suppressors are the fundamental cause of can-
cer development. These alterations further lead to deregulation of several signaling 
pathways aiding in tumor progression manifesting in metastasis and chemoresistant 
cancers. GBMs were one of the first tumors to be studied by the TCGA [38] and 
some of the key signaling pathways reported to be deregulated are as follows:

RTK/RAS/PI3K pathway: This pathway is majorly involved in growth and pro-
liferation and is dysregulated in 88% of GBM cases. This dysregulation occurs by 
amplification and mutational activation of receptor tyrosine kinase (RTK) genes – 
EGFR, ERBB2, PDGFRA, MET. A variant of the protein – EGFRvIII that occurs due to 
intragenic deletions is also a common feature. Activation of the phosphatidylinositol 
3-kinase (PI3K) pathway are achieved by PTEN deletion, activating mutations in 
PIK3CA or PIK3R, AKT3 amplification, NF1 mutation, RAS mutation, FOXO mutation.

p53 pathway: Inactivation of the p53 pathway occurs in about 87% of the GBM 
cases. TP53, termed as “the guardian of the genome”, is a tumor suppressor gene and 
is frequently mutated or deleted in most cancers [39, 40]. The pathway is involved 
in several processes like cell cycle arrest, DNA repair, apoptosis, autophagy, dif-
ferentiation, senescence, and self-renewal [41]. Mutations in the TP53 gene lead to 
nonfunctional proteins. Several missense mutations, particularly in IDH-wildtype 
GBM (primary GBM), have been reported, resulting in accumulating the protein in 
the nucleus [42]. Additionally, deletions in ARF (ADP-ribosylation factor) at 55%, 
amplification of MDM2 (Mouse double minute 2 homolog)at 11%, and amplifica-
tion of MDM4 (Double minute 4 protein) at 4% contribute to the inactivation of 
the P53 pathway [38]. TP53 is the most frequent and the earliest detectable alteration 
in the transition from low grade to high-grade [43].
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Rb pathway: This retinoblastoma (Rb) pathway is dysregulated in 78% of GBM 
cases and is a vital regulator of the cell cycle and controls progression through the 
G1 to S phase of the cell cycle at the G1 checkpoint [44]. The Rb gene promoter 
is methylated frequently in secondary than primary GBMs and is associated with 
its low gene expression. There are two significant genetic alterations seen in the 
pathway– deletion of the CDKN2A/CDKN2B locus on chromosome 9p21 and the 
amplification of the CDK4 locus [38]. Such a loss of CDKN2A, RB or CDK4 ampli-
fication disrupts the p16INK4A-CDK4-RB tumor suppressor pathway. It has been 
shown to correlate with decreased expression and survival.

4. Significance of DDR pathway in glioblastoma

Recent studies have implicated the DNA damage response (DDR) pathway in 
modulating GBM chemoresistance. GBMs being the most aggressive gliomas with 
the least survival rate with treatment options being only radiation and chemother-
apy using TMZ. These tumors ultimately gain resistance, leading to cancer relapse. 
This chemoresistant phenotype is attributed to enhanced DDR with alterations 
in DNA-repair and cell-cycle genes [12]. DNA repair mechanisms have evolved 
to counteract this damage based on the type of damage the DNA experiences 
(Figure 1). Some of the commonly observed damage and repair mechanisms are:

1. Methylated O6 or N7 Guanine is repaired directly by MGMT (O-6-Methylgua-
nine-DNA Methyltransferase)

2. Oxidized/Deaminated bases by Base excision repair

3. Bulky DNA lesions or DNA-protein adducts by Nucleotide excision repair

4. Mismatched bases by Mismatch repair

5. Double-strand breaks by Homologous recombination or Nonhomologous end-
joining or Alternate End Joining or Single-strand annealing

6. Inter-strand crosslinks by Fanconi Anemia pathway

Figure 1. 
Genes involved in the various types of DDR.
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4.1 Frequently mutated genes of DDR pathway in glioblastoma

Besides mutations in IDH, TP53, and TERT promoter in GBMs, the mutation in 
genes that function in various DDR pathways have been reported:

MGMT-mediated DNA repair: As previously explained, MGMT is a DNA repair 
enzyme involved in DNA damage repair induced by alkylating drugs like TMZ. 
It is involved in the repair of DNA lesions. MGMT enzyme reverses O-alkylated 
DNA lesions of the alkylated bases [45]. MGMT is mostly hypermethylated in 
GBM; ~1.6% of the patient’s mutation is observed (The results are in whole or part 
based upon data generated by the TCGA Research Network: https://www.cancer.
gov/tcga).

Base excision repair: BER corrects base damage that does not cause significant 
distortions to the DNA helix. The enzymes involved in repair are DNA glycosylase, 
AP endonuclease, POL β, DNA ligase 1, or a complex of DNA ligase 3 and XRCC1 
[46]. Unlike direct repair by MGMT, there are very few BER machinery components 
that showed a mutation in GBM.

Nucleotide excision repair: NER is the pathway chosen to remove bulky lesions. 
The damage is sensed by XPC complexed with RAD23B and CETN2. The other 
pathway proteins are the UV–DDB complex consisting of DDB1, DDB2, and TFIIH 
complex. Endonuclease XPF–ERCC1 and XPG, the replicative proteins PCNA, RFC, 
POL δ, POL ε or POL κ, and LIG1, XRCC1–LIG3 [47]. Of these genes, 5.6% of the 
cases had a mutation in POLE [48].

Mismatch repair (MMR): The mismatches incorporated during replication 
are recognized by MutSα heterodimer (MSH2/MSH6) or MutSβ heterodimer 
(MSH2/MSH3). The other proteins involved are POL δ, RFC, HMGB1, and LIG1 
[49]. Of these, 3.8% of patients had a mutation in MSH6 and 1.6% in the MSH2 
gene [48].

Double-strand breaks repair: The Double-Stranded Breaks (DSBs) are majorly 
repaired by nonhomologous end-joining (NHEJ) [50] and homologous recombi-
nation (HR) [51]. The alternate less-characterized pathway is microhomology-
mediated end joining (MMEJ) or alternative end-joining (AEJ) [52]. While HR 
is restricted to the cell-cycle S and G2 phases, NHEJ and MMEJ are free to get 
employed in any cell cycle phase [53]. In response to DSBs, three proteins of the 
phosphoinositide 3-kinase-related kinase (PIKK) family are activated – ATM, 
ATR, and DNA-PK, downstream they phosphorylate other substrates, activating 
them [12]. The additional factors that are subsequently recruited include XRCC4, 
XLF, DNA ligase IV (LIG4), ARTEMIS, and PAXX which plays a key role in sta-
bilizing the complex chromatin [54]. Other proteins that facilitate the pathway 
are DNA polymerases like POLM and POLL. Multiple proteins in this pathway 
are mutated in GBM. The ATR gene is mutated in 4.5% patients followed by 2.9% 
in PRKDC (DNA-PK), 2.5% in ATM, 1.9% ARTEMIS, 1.94% in XRCC5 (Ku80) 
and POLL [48].

The HR preferentially repairs the DSBs, which occur at the replication fork [55]. 
The pre-requisite for the homologous recombination repair pathway is the end-pro-
cessing of DSBs by helicases and nucleases to produce single-stranded DNA. ATM, 
CtIP, MRN complex(MRE11-RAD50-NBS1) is involved in generating ssDNA [56]. 
This ssDNA binds with the RecA/RAD51 complex, stimulated by RPA, promotes 
DNA pairing and strand exchange in an ATP-dependent fashion [57]. Additionally, 
the tumor suppressor proteins – BRCA1, BRCA2, and PALB2 are involved in HR 
[58]. In GBM patients, 3.55% BRCA1, 1.86% MRE11A and RAD50, 1.4% NBN, 
and ~ 1% RPA1 mutations have been reported [48].

The MMEJ pathway is promoted by PARP-1, Ligase III, CtIP, and Mre11. It uses 
the same machinery as the HR pathway to form a 3′ single-stranded overhang at the 
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region of DSB [52, 59]. Mutations in Ligase III (3.49%) PARP1 (3.33%) and CtIP 
(2.5%) have been reported in GBM patients [48].

Single strand annealing (SSBR): The single-strand breaks are detected by 
PARP1, followed by end-processing by PE1, PNKP, and APTX. FEN1 acts as an 
endonuclease to create a gap. POL β, in combination with POL δ/ε, fills the gap and 
is ligated by LIG1 [60]. Mutations, although at a much lower frequency, have been 
reported in all the components of SSBR, APTX (1.17%), FEN1 and PNKP (0.78%), 
and POLB (0.39%) [48].

Inter-strand crosslink repair (ICL): ICLs are resolved by complex FANCM and 
FAAP24. MFH stimulates the remodeling of the replication fork. The RPA protein 
binds to ssDNA and activates ATR, CHK1, FANCE, FANCD2, FANCI, and MRN 
consecutively. Further, excision is carried out by PF-ERCC1, MUS8-EME1, SLX4-
SLX1, FAN1, SNM1A/SNM1B. The polymerase which acts to repair includes POL ι, 
POL κ, POL ν, and REV1 [61]. 4.42% mutations in FANCD2, 2.26% in FANCI, 
1.61% in FANCE, 2.7% and 1.91% in SNM1A and SNM1B, respectively have been 
reported in GBM patients [48].

Depending on the type of damage a cell encounters, any of these pathways can 
be activated to restore the damage sites. One of the most deleterious repairs found 
in cancer cells is MMEJ which results in large deletions and translocations, desta-
bilizing the genome. In GBM, HR and c-NHEJ have higher mutation rates than in 
MMEJ, making MMEJ the preferred pathway for DNA repair. Figure 2 represents 
the frequently mutated genes of the various DDR pathways along with their impact 

Figure 2. 
Frequently mutated genes of DDR pathway in glioblastomas obtained from GEPIA database.
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on overall survival obtained from NCI - GDC Database [62]. As can be observed, 
the mutations in these genes reduce patients’ survival in GBM (14–16 months).

4.2 Altered gene expressions of DDR pathway genes in glioblastoma

The various genomic mutations like the overexpression of oncogenes and under 
expression of tumor suppressor genes lead to altered genomic and epigenomic 
changes favoring cancer growth. In GBM several genes that encode proteins in 
the DNA repair pathway have altered expression. Figure 3 represents some of 
the altered gene expressions in the different DDR pathways in GBMs. This data is 
obtained from GEPIA database which compares normal patient samples with GBM 
tumor samples [63].

Figure 3. 
Altered gene expressions in the various DDR pathway in glioblastoma.
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The DDR genes are significantly upregulated and include HR factors - RAD51 
recombinase, the chromatin remodelers RAD54B and RAD54L, enzymes in the 
HOLLIDAY JUNCTION resolution (EME1/MUS81 complex), NER (ERCC3 
(XPB), ERCC4 (XPF). Also, expression of genes encoding DNA glycosylase 
NEIL3, Fanconi Anemia factors (FANCD2, UBE2T), the ubiquitin-protein 
ligase UBE3B, and two specialized DNA polymerases POLM and POLQ in the 
NHEJ pathway are increased significantly [64]. Coincident with the least muta-
tion, MMEJ transcripts show relatively higher expression than other pathways. 
Closer observation shows elevated MMR transcripts, but a higher mutation rate 
has been observed of some of the genes like MSH2 and MSH6 in GBM. Among 
HR gene expression, PDS5B is highly expressed, which is required for proper 
segregation.

Additionally, these signatures also suggest the sensitivity of the tumor to 
therapeutic drugs. Upregulation of the TOP2A gene, which encodes topoisomerase 
II, might be more sensitive to topoisomerase II inhibitors like etoposide. Similarly, 
the decreased expression of NER genes like ERCC3/XPB and ERCC4/XPF can be 
more sensitive to cisplatin. Cisplatin acts by causing inter-strand crosslinking, and 
its repair requires NER [64]. Targeting RAD51 is also a potential therapeutic option 
that can either target the HR pathway or sensitize the cancer cells to irradiation and 
chemotherapeutic agents that cause DSBs [65].

4.3 Drugs targeting DDR kinases

In tumors treated with DNA damaging agents, efficient DNA repair systems 
become the primary cause for treatment failure. GBM’s ability to resist DNA 
insults is directly attributable to its upregulation of DNA repair pathways.  
Hence, along with the standard care regimen, DDR kinase inhibitors are being 
investigated to overcome chemo- and radio-resistance. Table 2 represents  
inhibitors that are being developed to target kinases in the DNA damage  
response pathway.

Kinase Inhibitor Phase Reference

ATM KU60019 Preclinical [54]

CP466722 Pre-clinical +temozolomide [66]

AZ32 Preclinical + IR [67]

AZD1390 Phase-I + IR [68]

ATR VE-821 Preclinical +cisplatin [55]

AZ20 Preclinical [56, 57]

DNA-PK CC-115 Phase-I + neratinib +temozolomide [58]

Chk2 PV1019 Pre-clinical - + IR + topotecan [59]

CCT241533 Pre-clinical - bleomycin +olaparib +IR [61]

Wee1 MK-1775 Phase-I monotherapy +IR + temozolomide [60]

PARP Niraparib Phase II monotherapy +temozolomide +bevacizumab 

+carboplatin

[69]

Veliparib Phase III + IR + temozolomide [70]

Olaparib Phase II monotherapy +bevacizumab +IR + temozolomide [71]

Table 2. 
List of drugs developed targeting DDR kinases in gliomas.
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4.4 miRNAs involved in DDR

MicroRNAs are a group of noncoding RNAs ~18–22 nucleotides in length. 
miRNA regulates gene expression at both transcriptional and post-transcriptional 
levels. It modulates transcription by binding to the 5’ UTR of the gene. The bind-
ing of miRNA at 3’ UTR regions (untranslated regions) reduces mRNA stability 
or inhibits translation [72, 73]. Dysregulated miRNA expression is one of the 
hallmarks of cancer. They have been shown to affect several crucial processes like 
proliferation, invasion, and metastasis [74]. Hence, they are potential biomarkers 
and targets for therapeutic intervention. The aberrant expression of miRNAs in 
GBM is well documented. 256 upregulated miRNAs and 95 downregulated miRNAs 
are reported in GBM compared to normal brain tissue [72]. Here, we focus on 
the deregulated miRNAs involved in DDR pathways leading to chemoresistant or 
chemosensitive phenotype (Table 3).

miRNA Target Activity Reference

MiR-338-5p Ndfip1, Rheb, ppp2R5a Radio sensitivity [75]

MiR-10b p-AKT Decreases sensitivity to 

radiation

[76]

miR-26a, miR-100 ATM Radio sensitivity [77]

miR-30b-3p HIF1α, STAT3 Chemo resistance [78]

miR-1193 FEN1 Chemo sensitivity [79]

miR-96 PDCD4 Radio resistance [80]

miR-17 ATG7 Chemo and radio sensitivity [81]

miR-21 PDCD4, TPM1, PTEN Chemoresistance [82]

miR-143 N-RAS Chemo sensitivity [83]

miR200a, miR-603, 

miR-181d, miRNA-370-3p, 

miR-198, miR-142-3p

MGMT Chemo sensitivity [84]

miR195 SIAH1,WEE1 RANBP3 Chemoresistance [85]

miR-455-3p LTBR, EI24, SMAD2 Chemoresistance

miR-10a EPHX1 and BRD7 Chemoresistance

miR-222 GAS5, MGMT Increase the DNA damage 

effect induced by TMZ

[86]

miR-29c Sp1, MGMT Chemo sensitivity [87]

miR-99 SNF2H/SMARCA5 Radio sensitivity [88]

miR210-3p HIF1α/HIF2α Chemo resistance [89]

miR-136 AEG-1 Chemo sensitivity [90]

miR-155 p38 Chemo sensitivity [91]

miR-181b MEK1 Chemo sensitivity [92]

miR-29b STAT3 Chemo sensitivity [93]

miR-101 DNA-PKcs, ATM Radio sensitivity [94]

miR-137 CAR, MDR1 Chemo sensitivity [95]

miR-204 FAP-α Reverses chemo resistance [96]

MiR-181a Bcl-2 Radio sensitivity [97]

miR-132 TUSC3 Chemo resistance [98]
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4.5 lncRNAs in gliomas

The noncoding RNAs are a diverse group of transcribed RNAs, with long-non 
coding RNA or lncRNA being the largest sub-type in this category [106]. Long 
noncoding RNA can regulate gene expression by binding to the gene’s promoter 
and recruiting activators or repressors, or chromatin modifiers and activating or 
repressing transcription, respectively [106, 107]. Alternatively, they can work as 
antisense and bind to the transcripts, thereby inhibiting translation or destabilizing 
the transcript. They can also act as miRNA sponges, altering gene expression post-
transcriptionally [108]. LncRNA deregulation is involved in cancer development, 
progression, and metastasis. It is a potential target for therapeutic interventions. 
Their expression pattern in response to chemotherapeutic treatment has prognostic 
value and serves as predictive biomarkers [106, 107].

lncRNAs are abundantly expressed in the brain as compared to other parts of 
the body [109]. Glioma subclassification has also been done based on the lncRNA 
profile into three groups: (i) astrocytic tumor with high EGFR amplification (ii) 
neuronal-type tumor (iii) oligodendrocytic tumor enriched with an IDH-1 muta-
tion and 1p19q co-deletion. Such a classification has been shown to correspond to 
patient survival where lncRNAs like PART1, MGC21881, MIAT, GAS5, and PAR5 
were correlated with prolonged survival. At the same time, KIAA0495 was associ-
ated with poor survival [109]. Table 4 represents the lncRNAs studied in gliomas 
that are involved in chemoresistance or chemosensitivity.

4.6 Circular RNAs in gliomas

Circular RNA is yet another group of noncoding RNA produced from pre-mRNA 
back-splicing [137]. They inhibit miRNA and upregulate the expression of genes at 
the transcriptional and post-transcriptional levels [138, 139]. CircRNAs have also 
been shown to bind to different proteins to form circRNA-protein complexes (cir-
cRNPs) that regulate the action of associated proteins, the subcellular localization 
of proteins, and the transcription of parental or related genes [140]. circRNAs play 
significant roles in tumor growth, metastasis, EMT transformation, and therapy 
resistance [141]. circRNAs are the most abundant in the brain and play a crucial role 
in the brain’s functioning [142]. In glioma, they are expressed aberrantly and play 
a key role in tumor initiation and progression [143]. In GBM, several studies have 
identified the upregulated and the down-regulated circRNAs. Identifying these 
circRNAs is valuable for further understanding the molecular mechanism of glioma 
and developing novel targeted treatments [144]. Table 5 represents the circRNAs 
studied in gliomas with their targets.

miRNA Target Activity Reference

miR-138 BIM Chemo resistance [99]

miR-221, miR-222 DNA-PKcs Radio resistance [100]

miR-1238 CAV1 Chemo resistance [101]

miR-26a Bax, Bad, HIF-1α Chemo resistance [102]

miR-9 PTCH1 Chemo resistance [103]

miR-124, miR-128, miR-137 EZH2, BMI1, LSD1 Chemo resistance [104]

miR-151a XRCC4 Chemo sensitivity [105]

Table 3. 
Deregulated miRNAs involved in DNA damage response in GBM.
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circRNA Target Activity Reference

NFIX miR-132 Chemo resistance [145]

circ_0005198 miR-198 TRIM14 Chemo resistance [146]

CEP128 miR-145-5p Chemo resistance [147]

VCAN miR-1183 Radio resistance [148]

circPITX1 MiR-329-3p NEK2 Radio resistance [149]

CircATP8B4 miR-766-5p Radio resistance [150]

CDR1as miR-7, p53 Protects from DNA damage [151]

Table 5. 
circRNAs involved in chemoresistance/chemosensitivity in gliomas.

lncRNA Target Activity Reference

ADAMTS9-AS2 FUS Chemo-resistance [110]

AHIF HIF1a, p53 Radio-resistance [111]

CASC-2 miR 181a, PTEN Chemo-resistance [112]

CCAT2 miR-424, CHK1 Chemo-resistance [113]

H19 MDR, MRP, and ABCG2 Chemo-resistance, 

Stemness in GSCs

[114]

HMMR-AS1 HMMR mRNA stabilization, ATM, 

RAD51, BMI1

Radio-resistance [115]

HOTAIR miR-519a-3p, RRM1 Chemo resistance [116]

LINC00174 miR-138-5, SOX9 Chemo resistance [117]

LINC01057 IKKα Radio resistance [118]

MALAT1 miR-203, miR-101, Thymidylate 

synthase (TS)

Reduction of cell 

proliferation

[119, 120]

MIR155HG PTBP1 Chemo-resistance [121]

NCK1-AS1 miR-137, TRIM24 Chemo-resistance [122]

PCAT1 miR-129-5p, HMGB1 Radio-resistance [123]

PSMB8-AS1 MiRNA-22-3p, DDIT4 Radio resistance [124]

RA1 H2B Radio resistance [125]

SBF2-AS1 miR-151a-3p, XRCC4 Chemo-resistance [126]

SNHG18 Sema5A Radio resistance [127]

SOX2OT ALKBH5, SOX2, Wnt5a/β-catenin Chemo-resistance [128]

TALC miR-20b-3p, Stat3/p300 complex, 

MGMT

Chemo-resistance [129]

TALNEC2 G1/S transition, mesenchymal 

transformation

Radio-resistance [130]

TP53TG1 miR-524-5p, RAB5A Radio-resistance [131]

TP73-AS1 Metabolism related genes, ALDH1A1 Chemo-resistance [132]

TPTEP1 miR-106a-5p, MAPK14 Radio-resistance [133]

TUSC7 miR-10a MDR1 Chemo resistance [134]

UCA1 Wnt/β-catenin Chemo-resistance [135]

Xist miR-29c, SP1, MGMT Chemo-resistance [136]

Table 4. 
lncRNAs in glioma involved in chemoresistance or chemosensitivity.
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5. Novel therapeutic drugs being developed for gliomas

The standard chemotherapeutic drugs used for gliomas are alkylating agents 
(TMZ, procarbazine, vincristine, carmustine). More recently, GLIADEL wafer 
containing carmustine is approved for GBM as an adjunct to surgery and radiation 
[152]. Humanized monoclonal IgG1 antibody Bevacizumab targeting VEGF is 
used for recurrent GBM [153]. Surpassing the blood–brain barrier makes treating 
gliomas difficult [154]. Several inhibitors targeting enzymes like topoisomerase II, 
[155], immunotherapeutic agents like α-type-1 dendritic cell vaccine [156], autolo-
gous cytokine-induced killer cell immunotherapy [157], autologous dendritic cell 
vaccine [158], and immunomodulatory drugs [159] are in clinical trials phases I and 
II. Additionally, many of these drugs in combination with the standard chemother-
apeutic drug are also in trials, including Giladel wafers with dendritic cell vaccine 
[160], Lomustine-temozolomide [160, 161], Bevacizumab + radiation therapy + 
temozolomide [162], Irinotecan + bevacizumab + temozolomide [163]. The Table 6 
lists some of the drugs which are in phase 3 trial for glioma treatment.

6. Conclusion

Gliomas are the most common malignant brain cancers constituting 80% of 
all brain & central nervous system cancers. Even though gliomas represent a small 
percentage of all cancers, they account for disproportionally high morbidity and 
mortality. Despite the emphasis on new therapeutic interventions, the standard 
care regimen has not changed drastically. However, there has been more emphasis 
on understanding molecular pathogenesis and its clinical relevance. Emerging 
preclinical and clinical data points to a shift towards more personalized therapies, 
and targeting the DDR pathway and its related noncoding genes is on the horizon. 
Figure 4 summarizes the interplay of noncoding in DDR and drug resistance in 
gliomas.

Drug Status Activity Reference

Cilengitide Did not improve outcomes αvβ3 and αvβ5 integrin 

inhibitor

[164]

Rindopepimut Did not improve outcomes Targets EGFRvIII [165]

DCVax®-L Feasible and safe, May extend 

survival

Autologous tumor lysate-

pulsed dendritic cell vaccine

[166]

Nivolumab Did not improve overall 

survival

PD-1 inhibitor [167]

Lomustine (CCNU) 

-temozolomide

Might improve survival Nitrosourea Alkylating agent [161]

Tumor treating fields Significantly improved OS 

and PFS (with TMZ)

Alternating electric fields 

targeting microtubules and 

septin fibers

[168]

Sitimagene 

ceradenovec

Can increase time to death or 

re-intervention but did not 

improve overall survival

Adenovirus-mediated gene 

therapy

[169]

CIK cell 

immunotherapy

Along with TMZ improves 

PFS, but not OS

Autologous cytokine-induced 

killer cell immunotherapy

[157]

Table 6. 
Novel drugs in clinical trials for glioma treatment.
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