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Chapter

Beyond Mapping Functions and
Gradients
Jean-Pierre Barriot and Peng Feng

Abstract

Mapping functions and gradients in GNSS and VLBI applications were
introduced in the sixties and seventies to model the microwave propagation delays
in the troposphere, and they were proven to be the perfect tools for these applica-
tions. In this work, we revisit the physical and mathematical basis of these tools in
the context of meteorology and climate applications and propose an alternative
approach for the wet delay part. This alternative approach is based on perturbation
theory, where the base case is an exponential decay of the wet refractivity with
altitude. The perturbation is modeled as a set of orthogonal functions in space and
time, with the ability to separate eddy-scale variations of the wet refractivity.

Keywords: GNSS meteorology, positioning, VLBI, deep space tracking,
neutral delays, mapping functions, gradients

1. Introduction

The effect of the Earth atmosphere on the propagation of light was noticed just
after the invention of the telescope by Galileo Galilei, and tables of atmospheric
refraction (bending of ray lights) were already available in the XVII century. After
the advent of VLBI observations in the fifties and the launch of the first Earth
satellite in the sixties, the modeling of the time delays caused by the neutral atmo-
sphere became a necessity.

The current mathematical structure of the modeling of the propagation time
delays, used in almost all GNSS software is given by [1].

δL e0ð Þ ¼ mh e0ð Þ Lh
z þ cotg e0ð ÞðGh

N cos ∅ð Þ þ Gh
E sin ∅ð Þ

� �

þmw e0ð Þ Lw
z þ cotg e0ð Þ Gw

N cos ∅ð Þ þ Gw
E sin ∅ð Þ

� ��

(1)

where δL is the slant (extra) delay with respect to propagation in vacuum along

the bended ray, Lh
z and, L

w
z are the hydrostatic and wet zenith delays, e0 and ∅ are

the satellite elevation and azimuth angles as seen from the station, respectively; Gh
N

and Gw
N, G

h
E and Gw

E are the north and east components of the hydrostatic and wet
delays gradients; mh and mw are the hydrostatic and wet mapping functions. Eq. (1)
is used in precise GNSS processing software through the modeling of the phase
signal [2–4].

The mapping functions “map” the so-called slant neutral atmosphere (extra)
delay δL (i.e. the delay along the bended ray from the observer to the emitter) to
two “zenithal delays”, named hydrostatic delay (very often improperly called “dry”
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delay) Lh
z and wet delay Lw

z , essentially caused by the water vapor. The mapping
functions are usually written [5] in the form of continuous fractions, that were
introduced by Marini [6, 7] and normalized by Herring [8] in the form

m e0ð Þ ¼
1þ a

1þ b
1þc

sin e0ð Þ þ a
sin e0ð Þþ b

sin e0ð Þþc

(2)

Other (simplified) forms of the mapping functions can be found in the literature
[9], but the mainstream form is always Eq. (2). The gradients themselves, noted by
the upper case letter G in Eq. (1) were introduced to compensate azimuthal aniso-
tropic effects [10–12].

For the last thirty years, the improvements on these formulas mainly focused on
better and better determinations of the coefficients a, b, c, by comparisons of these
formulas with ray tracing. The literature acknowledges as “best” models the VMF1
and VMF3 families, with some seasonally adjusted coefficients constrained from
ray-tracing results with respect to Numerical Weather Models (NWM) [13, 14].

The role of the water vapor in the neutral delay is important, as it can be up to
20% (about 45 cm of the zenithal delay Lw

z ), with respect to the total zenithal delay

Lh
z þ Lw

z (about 2.3 m). The other gases, including carbon dioxide, have a negligible
role in the neutral delay [9, 15], thus cannot be detected through GNSS processing.

Water is present in its three phases on Earth atmosphere, hydrosphere and
continents: solid, liquid and water vapor, with important latent heats between
phases. Water vapor in the atmosphere has large sources (evaporation, evapotrans-
piration) and sinks (rain, snow). Water vapor is also the most important green-
house gas (beyond carbon dioxide) and the driver of cloud coverage. To describe
the water cycle [16] is therefore of the uttermost importance, as evidenced by the
so-called Energy Balance models [17, 18] that can be written

C1S0 1� αð Þ ¼ C2
dT

dt
þ C3T

4 1� βð Þ (3)

Where S0 is the solar constant (1360 W/m2),T is the mean temperature on the
Earth surface in Kelvin, t is the time. C1, C2 and C3 are constants.

The coefficients α and β are albedos, respectively in the visible and infrared
wavelengths, both mainly driven by the water vapor contents of the Earth atmo-
sphere [19]. The coefficients α reflects the cloud coverage, typically today at the
30% level, and the coefficient β is an infrared albedo, keeping our planet warm at
around 15 °C. Without the greenhouse gases, our planet will be at a freezing mean
temperature of �18 °C. They have antagonist effects, an increase of α means a
cooling of Earth surface, and an increase of β means a warming, with a lot of
intricacies between the positive and negative feedbacks related to the water vapor
cycle of the climate models [20]. The ultimate goal of global long-term climate
models [21] is to predict which effect will prevail (this is the dT/dt term in the right
side of Eq. (3)).

The study [22] highlights the difficulty of measuring atmospheric water vapor
with sufficient spatial and temporal resolution, and with sufficient accuracy, to
provide observational constraints. GNSS processing is not the only source of water
vapor data in the atmosphere. Remote sensing by satellites is the main provider
[23], but the resolution of their data sets is limited by the distance between the
satellites and the Earth and their orbital cycles. Besides, satellites are expensive.
GNSS receivers, even precise ones, are a lot cheaper, and can provide long-term
time series with high temporal resolution. Other ground-based instruments are
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mainly lidars [24], photometers [25], and water vapor radiometers [26]. The only
source providing in situ meteorological data are the radiosondes [27], launched
twice per day in a limited amount of worldwide sites. Many studies have been
devoted to the causal relationship between water vapor and rain [28, 29], including
extreme events [30].

It is therefore important to separate the water vapor modeling coefficients Lw
z ,

Gw
N and Gh

E from the hydrostatic coefficients Lh
z , G

h
N and Gh

E in Eq. (1). But this is
easier said than done, as the functions mh e0ð Þ and mw e0ð Þ in Eq. (1) have almost the
same dependence on the elevation angle e0 (see Figure 1).

2. Basic assumptions at the core of the definition of mapping functions
and gradients

Mapping functions, as they were introduced by Marini [6, 32] are based on the
assumption of a totally layered atmosphere. This means that the refractivity n is
only a function of height (the exact meaning of the word height is related to the
definition of geoid). The ray equation of radio waves (including light) obeys, in the
spherical approximation and again for a totally layered atmosphere (dependence on
geocentric radius r of the refractivity n), the prime integral relation

n rð Þ r cos eð Þ ¼ n r0ð Þr0 cos e0ð Þ (4)

where r is the geocentric radius, r0 is the geocentric radius at the receiver
location, n rð Þ is the refractivity at geocentric radius r, e is the angle between the
tangent to the bended ray and the local horizon (the plane perpendicular to the
direction of r at height r). e0 is the elevation angle of the tangent of the bended ray
at the receiver location.

The details of the computation of the ray path can be found in [6, 33, 34]. The
refractivity of the atmosphere is a function of pressure, temperature and water
vapor contents. A formula widely used is the Smith and Weintraub formula [35],
derived for laboratory conditions (air perfectly mixed), as

Figure 1.
The mapping functions mh (blue) and mw (red) plotted against each other for a typical GNSS station in Beijing
(latitude: 39.6086° N, longitude: 115.8922° E), winter time on January 16th, 2012, with the VMF1 model
[13], parameterized by inputting data from the ECMWF numerical weather model EAR-40 [31].
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n� 1ð Þ ¼ K1
Pd

T
þ K2

e

T
þ K3

e

T2
(5)

where Pd is the partial pressure of dry air in millibars,T is the temperature in
Kelvin, e is the partial pressure of water vapor. K1,K2 and K3 are constants. The Pd

term corresponds to the “dry” part of the refractivity, the e terms correspond to the
“wet” part of the refractivity. Many authors have improved the coefficients K1,K2

and K3 year after year [15, 36, 37].
This formula can be easily rewritten as

n� 1ð Þ ¼ K 0
1

P

T
þ K0

2

e

T
þ K3

e

T2
(6)

Where P ¼ Pd þ e. This rewriting, was the first term is denominated as the
hydrostatic component of the refractivity, was proposed by Davis et al. [7] and then
has been widely accepted, but lead to a track of confusion in the literature between
the meaning of “hydrostatic” and “dry”. The word “hydrostatic” has specifically no
meaning in Eq. (6), other than indicating that the total pressure is used instead of
the partial pressure of the non-wet (dry) air, as in Eq. (5). The word “hydrostatic”
has a precise meaning in numerical weather models [38], where it indicates that the
equilibrium of an air column is a balance between the vertical pressure gradient and
the buoyancy forces, neglecting convective processes [39] as a simplification of the
Navier–Stokes primitive Equations [40]. This is also the assumption made in the
Saastamoinen model of the atmosphere propagation delays [41], with the total
pressure P at ground level taken as a parameter (and with also the assumption of an
atmosphere “at rest”).

To a good degree of approximation, the refractivity of air obeys a twofold
exponential formula [42].

n rð Þ ¼ 1: þ δnh þ δnw ¼ 1: þNh exp
r� r0
Hh

� �

þNw exp
r� r0
Hw

� �

(7)

The terms Nh, Hh and Nw, Hw have, respectively, a value of 250 � 10�6, 8.7 km,
128 � 10�6 and 2.7 km for the location of our geodesy observatory in Tahiti (from the
fit of radiosounding data over a typical year). The scale height Hw varies from
1.5 km to up to 8 km from place to place and according to a seasonal cycle [43]. For
all practical GNSS purposes, one can consider that the water vapor is concentrated
in the troposphere (from 8 km over the poles to 18 km at the Equator [44, 45], and
that the atmosphere extends up to 100 km [46, 47]. The International Union of
Telecommunications [48] recommends the use, for radio-link purposes, on a
worldwide basis and for altitudes taken from sea level, of the formula (7), with
Nh = 315 � 10�6, Hh = 7.35 km, the wet part being omitted (it is in fact included as a
worldwide average in Nh and Hh).

The prime integral (4) allows two things: 1/the computation of the path, 2/the
computation of the time delay along the path as

L ¼

ð

path
n ds (8)

The extra delay (in equivalent length) caused by the atmosphere is

δL ¼

ð

path
n� 1ð Þ ds (9)
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By inserting Eq. (6) into Eq. (9) we get the separation of δL into additive
“hydrostatic” δLh and “wet” δLw delays. The ratios of δLh and δLw with respect to
the corresponding values taken along a vertical path are by definition (as in Eq. (1))
the hydrostatic (mh) and wet (mw) mapping functions that only depend on the
elevation angle e0 of the tangent of the bended ray at the receiver location.

Davis et al. [10] pushed the physical analysis of Eq. (9) a little bit further by
introducing the notion of gradients. This notion is also based on the basic assump-
tion of a main dependence of the refractivity with respect to height, with the
refractivity in the neighborhood of the receiver written as

n ¼ nV rð Þ þ small lateral terms (10)

where r is taken along the local vertical of the receiver, and nV is the variation of n
along the vertical of the observation site (the value of n at the receiver station is
n r0ð Þ ¼ nV r0ð Þ). One can note that this writing violates, on a pure mathematical
ground the dependence of n on only the geocentric radius, that was assumed for the
computation of the path in Eq. (4) (i.e. no small lateral terms should be present). If
we define a local frame with units vector x̂, ŷð Þ in the tangent plane perpendicular to
the vertical direction of the station (usually defined by the North and East directions
as in Eq. (1), we get, with also the assumption of a “flat Earth”, the approximation

n r; x, yð Þ≃ nV rð Þ þ
∂n

∂x

� �

rð Þ

xþ
∂n

∂y

� �

rð Þ

y (11)

This is nothing else than a Taylor series, meaning that x and y are assumed to be
small, and the subscript rð Þ emphasizes that the partial derivatives of n are varying
with the height r (i.e. they are not taken at r ¼ r0). For low elevation angles of the
path, x and y are by no means “small”, and can reach up to several hundreds of
kilometers. We can define Eq. (11) as a “cylindrical” expansion of the refractivity.

If we insert this in Eq. (9), we get

δL e0ð Þ ¼

ð

path
nV � 1ð Þ dsþ

ð

path

∂n

∂x

� �

rð Þ

x dsþ

ð

path

∂n

∂y

� �

rð Þ

y ds (12)

If we now divide the first right term of Eq. (12) by

δL e0ð Þ ¼

ð

vertical
nV � 1ð Þ ds (13)

We get

δL e0ð Þ ¼ m e0ð Þ

ð

vertical
nV � 1ð Þ dsþ

ð

path

∂n

∂x

� �

rð Þ

x dsþ

ð

path

∂n

∂y

� �

rð Þ

y ds (14)

where m e0ð Þ≈ 1
sin e0

is by definition the mapping function. The value 1
sin e0

is

obtained by setting all the coefficients a, b, c… to 0 in Eq. (2).

By writing R2 ¼ x2 þ y2, x ¼ R cosϕ, y ¼ R sinϕ, and taking advantage of the
fact that the path is nearly a straight line, as n is close to 1 at a 10�3 level, we can

write, for the two integrals involving the derivatives of n, R ¼ rcotg e0ð Þ and ds ¼
dr

sin e0ð Þ. This is permissible, because physically these derivatives, as well as x and y are

assumed to be small quantities. We obtain for the integral relative to the partial
derivative ∂n

∂x

� �
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ð

path

∂n

∂x

� �

rð Þ

x ds ¼ m e0ð Þ cot e0 cosϕ

ðrtop

r¼r0

∂n

∂x

� �

rð Þ

r dr (15)

where rtop is the top of the atmosphere with respect to the geocentric radius

(around 100 km), and a similar expression in sinϕ for the partial derivative ∂n
∂y

� 	

.

The precise details of the mathematical machinery linking Eq. (11) to Eq. (1) can
be found in Davis et al. [10]. The important fact, from a physical point-of-view is
that, if we split the refractivity into a “hydrostatic” and a “wet” part, we get the
“hydrostatic” and “wet” gradients of Eq. (1) as

Gh
N ¼

ðrtop

r¼r0

∂nh
∂x

� �

rð Þ

r dr,Gh
E ¼

ðrtop

r¼r0

∂nh
∂y

� �

rð Þ

r dr (16)

Gw
N ¼

ðrtop

r¼r0

∂nw
∂x

� �

rð Þ

r dr,Gw
E ¼

ðrtop

r¼r0

∂nw
∂y

� �

rð Þ

r dr (17)

The significations of the gradients are therefore the integration, along the alti-
tude, weighted by the altitude, of the North and East directional derivatives of the
“hydrostatic” and “wet” parts of the refractivity, evaluated along the vertical of the
receiver location. It is in fact an integration along the geometrical line-of-sight.

3. Physical meaning of zenithal delays and gradients

The modeling of the extra-delays caused by the atmosphere by the combination
of mapping functions and gradients of Eq. (1) has proved very effective since Davis
introduced his formula 30 years ago [49–51]. But what is the real meaning of
effective?

We have to remember that this model was primarily introduced to model atmo-
spheric delays in VLBI, then to improve positioning estimates from GNSS data, and
it is now battle-proven for these two applications. But another application, being
known today as GNSS meteorology, emerged during the nineties, first with the
modeling of the integrated water vapor contents along the vertical of the GNSS
receiver (i.e. no gradients), known as “precipitable water” (or PW), that used the
Lw
z zenithal delay converted to PW through a multiplicative constant, known as the

Π constant introduced by Bevis et al. [52]. Because the wet and dry mapping
functions cannot be separated, for any practical purposes, in Eq. (1), the separation

between the sum Ld
z þ Lw

z and Lw
z must be done by introducing an “external

hydrostatic estimate” Lh
z , the model of choice being the so-called Saastamoinen

model [41]. By its own inception, a PW time series is relative to a particular GNSS
station, and does not provide any information about the lateral gradients of the
water vapor contents of the atmosphere for this site. But a dense network of GNSS
receivers do. An even more powerful way to grasp the 3D and even 4D (with
the inclusion of time) variations of the water vapor contents of the atmosphere is
the tomography, first promoted by [1, 53, 54]. In the approach of tomography,
Eq. (1) is just seen as an intermediate tool, the data inputted in the tomography
software being the reconstructed δLw (the “wet” part of Eq. (1)). The tomography
approach needs a dense network of GNSS receivers over a limited area, and take
advantage of a multiple crossing paths between the receivers and the satellites of
the GNSS constellations to invert the intrinsically ill-posed correspondence between
the δLw and the 3D atmospheric water vapor refractivity field over the area.
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All the tomography software treat, to obtain a tractable problem, the rays as straight
lines. This means that low-elevation slant delays cannot be considered.

Some authors [51, 55, 56] tried to assess the physical meaning of tropospheric
gradients, but their effort were limited to qualitative assessments and correlations
studies. Up to our knowledge [57], nobody is using gradients as data to constraint
operational NWMs, albeit efforts having made to extract gradients from NWM
numerical simulations [14] or make comparisons with NWMs outputs [58], or even
to propose the use of slant delays for such a use [59]. The only GNSS data products
that are currently inputted (assimilated) in NWMs are total zenithal delays (i.e. the

sum Ld
z þ Lw

z ), as for example in the latest Météo-France AROME model [60].
This is clearly sending the message that the meteorology community does not

yet consider gradients as a usable data set. We think that the main reason for this is
the underlying assumption of the cylindrical Taylor’s expansion [Eq. (11)], at the
basis of the notion of gradients, where a strict separation between vertical variations
and lateral variations is assumed, and supposed valid over all the troposphere (at
least as seen from the receiver location). This assumption is closely related to the
hydrostatic assumption, itself closely linked to the highly non-linear Navier–Stokes
equations, which admit as solutions a combination of laminar and turbulent/con-
vective flows. At scales larger than a few tens of kilometers, the atmospheric flows
are mostly horizontal [61]. This corresponds to the highest resolution available for
typical MNW models, built around the hydrostatic assumption [62]. The atmo-
spheric turbulence [63] itself is organized as “vortices”, or eddies, with scales
varying over several orders of magnitude, from a few meters to several hundreds of
kilometers [64, 65]. A combination of laminar and turbulence is also possible, and it
is known as “frozen flow”, where “frozen turbulence” is carried by laminar flow
[66]. This is illustrated for the layman by clouds driven by the wind. Atmospheric
turbulence/convection is modeled through statistical tools, the structure functions
[67], that obeys an exponential decay with altitude (i.e. turbulence is “higher” in the
boundary layer) [68]. The definition of gradients by Davis et al. [10] is simply too
crude from a “meteorological” point-of-view.

4. Beyond zenithal delays and gradients

Therefore, what can be the future of the modeling of neutral delays in GNSS
meteorology? Applications in GNSS positioning and VLBI clearly show that Eq. (1)
is sufficient for these applications, because what is of interest to these users are the
integrated delays, not directly the variations of refractivity in the atmosphere.
Eq. (1) is sufficient by itself to model these slant (extra) delays, as evidenced by
tomography applications and the statistical analysis of these delays [69]. The
zenithal total delays have proven to have a physical meaning, as they are related to
the modeling of PW through an a priori model of the “dry” atmosphere and a
proportional correspondence to zenithal wet delays. They are also feeding the
current medium resolution NWM models. The gradients themselves are more
questionable. They are merely ad’hoc, empirical corrections introduced for posi-
tioning and VLBI applications.

Can the definition of gradients be improved? From a physical point-of-view, we
do not think so. The main assumption to derive the delay gradients in Davis et al.
formula (Eqs. (16) and (17)) is an integration, along the line-of-sight receiver-
satellite, of the gradients of the refractivity. Even with a better “geometrical defini-
tion” of the gradients, taking into account the curvature of Earth, the bending of the
rays, etc.… , the main problem is that a line-of-sight station-satellite usually cross –
and average– many eddies. According to [70], the shape and size of the eddies

7

Beyond Mapping Functions and Gradients
DOI: http://dx.doi.org/10.5772/intechopen.96982



depend on the altitude. Close to the ground (0–2 km of altitude), the eddies are
assumed to be small and not far from isotropic, while the irregularities at higher
altitudes are highly anisotropic, i.e., the eddies become more flattened laterally.
Along the vertical, the refractivity variation is mainly dominated by an exponential
decay [71], but this is not the case along the horizontal direction. Besides, the
repartition of the lines-of-sight in the sky can be scarce or uneven. For example, the
GPS constellation, the most used one because of the high quality of its orbit model-
ing, offer quasi-repeating repeating tracks where only a few satellites (4 to 12) are
visible from a particular location (Figure 2). This means that only a few lines-of-
sight can be used at any time, and that there is, from a practitioner point of view,
not enough data to constraint a better representation of the slant delays than the
six-parameters Eq. (1).

Hopefully, Augmented Constellations and Low-Earth-Orbits constellations
(LEO) will become soon a reality [72–74], thanks to the ever-decreasing size and
costs of satellites, as well as the availability of miniaturized atomic clocks [75]. LEO
constellations are particularly interesting for GNSS meteorology, as their satellites
will cross the sky in a few minutes instead of hours, with a boost by one order of
magnitude, or even two, of the available line-of-sight geometries. Our proposal to
keep the separation of the refractivity into a “hydrostatic” and “wet” part, with the
“hydrostatic” slant part evaluated separately from proven models like the
Saastamoinen [41] model and subtracted from the total slant delay, then to
represent the wet refractivity field based on a mean exponential decay of the wet
refractivity as

δnw rð Þ ¼ Nw exp
r� r0
Hw

� �

1: þ εw x, y, z, tð Þð Þ (18)

where the ϵw terms represent the departure of the wet refractivity field from the
exponential local decay law and x, y, z, t are local coordinates with respect to a frame
linked with the local GNSS receiver and t is time. As the wet scale height can vary by
a factor of four, it must be provided from external sources (for example from the
ECMWF-ERA series of climate models, see [76]). An estimate of Hw can also be
determined from the slant wet delays themselves, but only if a reliable estimate of
the wet refractivity is available, as the integral over the geometrical path between
the GNSS satellite and the receiver is proportional to NwHw for a pure exponential
decay of the wet refractivity. Empirical relations also exist between the ground
value of the refractivity and scale height for example [77], but they are probably
out-of-date. Hw is by itself a very important parameter, as [71] demonstrated that

Figure 2.
The sky-tracks (in elevation and azimuth) of the GPS satellites (one color per satellite) visible from the THTI
station (latitude: 17.5769° S, longitude: 149.6063° W), in the wet season on January 10th, 2018.
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this scale height is related to the rate at which the PW decorrelates with horizontal
separation.

On the contrary of Davis et al. [10], we fully represent the term εw x, y, z, tð Þ as a
3D (or 4D if the time is present) series expansion

εn x, y, z, tð Þ ¼
X

n

λnΦn x, y, z, tð Þ (19)

where the Φn x, y, z, tð Þ are a set of suitably chosen orthogonal functions in the
atmospheric lens comprised between the local horizon of the station and the local
tropopause. The λn are the coefficients of the expansion. If the shape of the tropo-
pause boundary is known [78], the Φn functions can be defined as empirical
orthogonal functions (EOF) [79] or as a pre-defined set of orthogonal functions
renormalized according to the Gram-Schmidt scheme [80].

A preliminary attempt with a small data set was made by [81] with the assump-
tion of a constant altitude tropopause (see Figure 3), where the Φn orthogonal
functions are a subset of Zernike functions [82]. The line-of-sight are assumed to be
straight-lines to obtain tractable equations, as it is the case for tomography [83, 84]
and the statistical analysis of the slant delays [85, 86]. This implies that
low-elevation rays cannot be taken into account.

The integral relation to be solved with respect to ϵw is therefore

δLw e0ð Þ ¼ Nw

ð

geometrical

path

exp
r� r0
Hw

� �

1: þ εw x, y, z, tð Þð Þ ds (20)

This integral relationship is averaging the wet refractivity field along the lines-
of-sight (fan-beam tomography [87, 88]), and the inversion in terms of λn coeffi-
cients must be regularized. By construction, the εw correction must be small, so we
can use a truncated Singular Value decomposition (the EOF approach) or a
Tikhonov approach [89] to enforce this smallness with respect to 1. The use of a
priori refractivity values along the vertical for sites collocated with radiosoundings
can also be envisaged [90] (in preparation). The Tikhonov approach, and its ability
to model local variations of the refractivity field has been investigated in the
framework of radar tomography [87, 91, 92].

Figure 3.
The geometry of the inversion of the wet delays, with the representation of eddies in the troposphere, flattened
with altitude and pushed by the wind [62, 63].
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The only case where the hypothesis of a small ϵw can be violated occurs during
inversion episodes, where atmospheric temperature increases when altitude
increases. The warm inversion layer then acts as a cap and stops atmospheric mixing
[93] causing a large deviation of the refractivity with respect to the exponential
decay.

The end-product for the meteorology community of the inversion of Eq. (19)
cannot only be the set of Hw and λn coefficients, that are too difficult to handle. We
propose, in addition, to give the results in the form of records over a grid the
resolution of which is in agreement with the maximum degree of the expansion in
Eq. (19), with respect to a suitable ellipsoid (like WGS84), and with these fields:

Observation Time, Latitude, Longitude, Geometrical height, total refractivity, wet
refractivity.

The refractivity fields can then be converted, if needed, to water vapor levels
according to Eq. (6) with suitable temperature profiles over the troposphere and/or
feed high resolution NWM taking natively into account turbulent/convective pro-
cesses [94]. Xia et al. [95] tried to derive the refractivity field from slant delays by
substituting Eq. (6) into Eq. (9), but the underlying hypothesis is an atmosphere at
rest, in a similar fashion of the neutral delay model of Saastamoinen [41, 96].

Is the approach developed in this article directly implementable in GNSS soft-
ware, as a replacement of the usual approach of Eq. (1)? The response is a careful
yes [69]. Strictly speaking, a mapping function defines, from the point of view of
differential geometry, a time-evolving coordinate chart that is a non-orthogonal
system of coordinates made of the refracted elevation at ground level, the length
along the bended ray, and the azimuth. We think that such an implementation in
GNSS software implies at least the use of a constant (i.e., not evolving with time)
system of coordinates (i.e., a constant mapping function), that therefore must be
computed with respect to some standard model of the atmosphere, carefully
designed and normalized [97]. For this purpose, it should be noted that the varia-
tion of the propagation delay caused by the bending is of second order with respect
to the integration of the refractivity along the path [98].

Finally, the modeling of the wet refractivity field through an expansion series in
time and space (Eq. (19)) can be also used to model tropospheric delays, in a
correlated way, between uplink and downlink signals to planetary space crafts,
where the uplink and downlink separation in time can reach tens of minutes or even
hours [99].

5. Conclusion

We discussed in this brief paper the pros and cons of the standard approach
mapping functions + gradients to model the neutral delays of the atmosphere, and
more specifically the wet delays caused by the presence of water vapor in the
troposphere. If this standard approach is almost perfect for people doing position-
ing, deformation and VLBI studies, as they see the neutral delays as “noise”, it is not
so well adapted to people looking at these delays as signals to study atmospheric
processes. In particular, the standard definition of gradients is too crude, and does
not permit to have access to the horizontal turbulence/convection scales, that are
key parameters to model these processes in high resolution NWM models. We
therefore propose an alternative way to model the wet tropospheric delays, through
a representation of the wet refractivity field as a perturbation over an exponential
decay with altitude with a locally adjusted scale height and a time/space series
expansion over a suitable basis of orthogonal functions. Our approach is computa-
tionally expensive, and maybe not suited for real-time applications, but its
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end-product are records of the total and wet refractivity values with high-resolution
in time (minute-scale) and distance (sub km-scale), in accordance with the
needs of future numerical weather models [38], the emerging field of the modeling
of atmospheric rivers [100, 101] and besides does not require the additional step
of water vapor tomography, with lower cost, better mobility and simpler
operation [102].
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