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Abstract

Lately, artificial neural network (ANN) and adaptive neuro-fuzzy inference
system (ANFIS) models have been recognized as potential and good tools for
mathematical modeling of complex and nonlinear behavior of specific wear rate
(SWR) of composite materials. In this study, modeling and prediction of specific
wear rate of polytetraflouroethylene (PTFE) composites using FFNN and ANFIS
models were examined. The performances of the models were compared with
conventional multilinear regression (MLR) model. To establish the proper choice of
input variables, a sensitivity analysis was performed to determine the most influ-
ential parameter on the SWR. The modeling and prediction performance results
showed that FFNN and ANFIS models outperformed that of the MLR model by
45.36% and 45.80%, respectively. The sensitivity analysis findings revealed that the
volume fraction of reinforcement and density of the composites and sliding distance
were the most and more influential parameters, respectively. The goodness of fit of
the ANN and ANFIS models was further checked using t-test at 5% level of signif-
icance and the results proved that ANN and ANFIS models are powerful and
efficient tools in dealing with complex and nonlinear behavior of SWR of the PTFE
composites.

Keywords: artificial neural network, adaptive neuro fuzzy inference system, multi
linear regression, specific wear rate, PTFE reinforced composites

1. Introduction

In the study of tribology, highly nonlinear and very complex relationship exists.
Specific wear rate of materials especially polymer matrix composites emanates from
scores of intricate associations on both microscopic and macroscopic levels between
surfaces which are in contact [1]. These associations depend upon tribological,
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geometrical as well as material behaviors of the contacting surfaces and the sliding
conditions for example, temperature, type of contact, lubricating conditions,
applied load, etc. [2]. Simulation of tribological properties usually deals with build-
ing of mathematical models extracted from practical data. The numbers of these
models were obtained to simulate specific wear rate of materials under restricted
conditions. Yet, no distinctive model was universalized to reveal the specific wear
rate of polymer matrix composites.

Of recent soft computing techniques such as artificial neural networks (ANNs)
and adaptive neuro fuzzy inference system (ANFIS) have emerged as potential and
effective tools to model wear property of poly-based composites, owing to their
abilities to learn from experimental data and generalize [3]. The pioneering studies
of exploring the potentials of these soft computing methods especially ANN in the
prediction of wear properties were carried out by Hutching et al. and Jones, Jensen
and Fusaro [4, 5], respectively. Thereafter, many researchers applied the methods
to analyze and predict the wear property polymer matrix composites under differ-
ent test conditions and material compositions. In the physical experimentation of
wear simulation, known material compositions and properties, experimental
parameters are fed into the ANN and ANFIS models as inputs and the anticipated
specific wear rate responses of the virtual scenario are computed. The fundamental
advantage of ANN and ANFIS modeling in comparison to other modeling tech-
niques are in their capabilities to provide accurate approximations or predictions
when complexity and nonlinearity are involved at the same time. Complexity and
nonlinearity cannot be handled by traditional curve fits [1]. More so, ANN and
ANFIS models can effectively deal with these.

Velten, Reinicke and Friedrich [6] explored the potential of ANN when they
predicted wear volume of short fiber reinforced polymeric composites. They found
that with increase in the number of inputs the prediction quality of the ANN model
was improved. Zhang, Friedrich and Velten [7] used multilayered feed forward
neural network to predict the coefficient of friction and specific wear rate of short
fiber reinforced polyamide. The results indicated a good agreement with experi-
mental results. Jiang, Zhang and Friedrich [8] applied ANN model to predict both
the wear and mechanical properties of polymer matrix composites. They established
a 3D plots to investigate the properties of the materials based on the material
constitutions and the experimental conditions. They reported that a well-trained
ANN could model the wear and that the results of the model were in good agree-
ment with the computed results. Aleksendric and Duboka [9] used ANN method to
predict the automotive friction material features at room temperature. Five differ-
ent types of friction materials were fabricated and experimented for the prediction
purpose and the ANN was trained with five different learning algorithms. They
found that each learning algorithm performed differently from one another but
concluded that Bayesian regularization algorithm produced the best result with a
single layer. Aleksendric and Duboka [10] applied the ANN to look into the possi-
bilities of prediction wear property of friction composites at elevated temperature.
They reported that ANN was effective in prediction the wear behavior of the
materials as its results were in good agreement with the experimental ones. Jiang
et al. [11] predicted wear and mechanical properties of polyamide composites,
Varade and Kharde [12] predicted the wear behavior of PTFE glass-fiber reinforced
composite using ANN and Taguchi technique. They found that ANN performed
better than that of conventional Taguchi method.

Mesbahi, Semnani and Khorasani [13] employed adaptive neuro fuzzy inference
system (ANFIS) to investigate the specific wear loss of PTFE, graphite short carbon
fiber and nano-TiO2. They reported that ANFIS model performed better than ANN
model. Jarrah, Al-Assaf and El Kadi [14] used ANFIS to model the fatigue property
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of unidirectional glass/fiber epoxy composite subjected to tension-tension and
tension-compression conditions. They reported that the results of the ANFIS model
were better when compared to those of ANN technique. Vassilopoulos and Bedi [15]
applied ANFIS to model and predict the fatigue behavior of multidirectional lami-
nate composite. They reported that about 50% of the data was adequate to model
and predict the fatigue behavior of the composite and the results were in agreement
with the actual data.

From above, it can be established that ANN and ANFIS models, hold great
potentials and are promising tools in the modeling of complex and nonlinear wear
behavior of polymer-based composites. The aim of this study is to model and
predict the specific wear rate (SWR) of polytetraflouroethylene (PTFE) reinforced
with glass, carbon and bronze fibers. The results of the ANN and ANFIS models
were then compared with multilinear regression (MLR) model to affirm their
superiority to traditional curve fit.

2. Methodology

ANN and ANFIS models have exhibited great power in describing complex,
noisy and nonlinear phenomenon like specific wear rate. In this study, specific wear
rate of PTFE composites was modeled and predicted using ANN, ANFIS and MLR
models with density, volume fraction, sliding distance, sliding speed and load as
inputs while specific wear rate as output. PTFE is a synthetic flouropolymer of
tetrafluoroethylene that possesses superior characteristics due to its molecular
structure consisting of fluorine and carbon. PTFE is hydrophobic and exhibits low
wear resistance because of its soft nature making its suitable for use as a single
material for practical application [16]. Glass fiber (GF) is a material consisting of
several fine fibers of glass. GF is less brittle, less strong and cheaper than carbon. GF
is compatible with most of the synthetic resin, does not rot and remain unaffected
by the action of rodents and insects. Carbon fiber (CF) is composed of thin, strong
crystalline filament of carbon and has a diameter of about 5–10 μm in diameter. It is
very strong, stiff, and light; its strength is five times that of steel and twice as stiff.
When CF is added to polymer, it improves the tribological property of the polymer
[17]. Bronze fiber (BF) is a metal fiber that consists of 88% of copper and 12% of tin.
It is hard and brittle. Its properties depend on the composition of the alloying tin.

A total of 63 specific wear rate experimental dataset was collected from the
works conducted by [18, 19]. Some mechanical and physical properties of the
materials are as shown in Table 1.

2.1 Artificial neural network (ANN)

ANN is a computational technique based on mimicking the function of the
biological neurons [20]. Three properties are employed in differentiating various
ANN models which are learning algorithms, transfer function as well as network

PTFE +Filler Color TS (MPa) FS (%) ρ (gcm3)

Bronze fiber Brown 18.0 165 3.90

Glass fiber White 19.5 235 2.10

Carbon fiber Black 13.5 87 2.25

Table 1.
Some physical and mechanical properties of the PTFE reinforced composites.
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architecture [21]. The principal parts of ANN are the nodes or neuron which process
the data and the interconnections that show the interconnection power connected
to numeric weights [21, 22]. Figure 1 shows the input, hidden and output layers of
ANN architecture [23]. The fundamental structure of the neuron is as indicated in
Figure 2. Each neuron receives input data, assigns weight wito the input data that
indicates the connection power for that input data for each connection. Thereafter,
a bias bi value is added to the total addition of the input data and corresponding
weights uð Þ in accordance with (Eq. (1)).:

ui ¼
X

N

j¼1

wixj þ bi (1)

where xi is the input data, j is the jth data, wi represents the weight, bi shows the
bias and N stands for the total number of the data points.

The summation is transformed into output with the aid of a transfer (an activa-
tion) function F uið Þ, generating a value referred to as the unit’s “activation”, as
provided in the (Eq. (2)).

Figure 1.
A classical ANN image.

Figure 2.
The fundamental configuration of an artificial neuron.
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O ¼ f uið Þ (2)

where O is the output.
One of the common types of ANN is the feed-forward neural network (FFNN).

In FFNN technique, the processing layer is completely interrelated by weights to
the rest of the processing layers (neurons). The learning stage in FFNN is actualized
by back-propagation (BP) algorithm. The idea of using the BP algorithm is to
compute the optimum weights that lead to the production of the target data in
accordance with a chosen accuracy. In this paper, FFNN was applied due to its
unique superiority of generating exclusive solutions without any prior knowledge of
the mathematical computations in the parameters. Figure 3 shows the architecture
of a FFNN used in this study. The ability of ANN to learn by example makes it
suitable for solving complex and nonlinear behavior such as specific wear rate that
cannot be addressed by conventional mathematical or physical models [24].

2.2 Adaptive neuro fuzzy inference system (ANFIS)

ANFIS is an important neurological network technique to obtain result of func-
tion approximation questions integrating the adaptive neural network and fuzzy
inference system. As a global estimator, ANFIS was designed to surmount the
limitations of FIZ and ANN. ANFIS integrates the experience capability of neuro-
logical network and the merits of the rule-based fuzzy structure, which can assim-
ilate previous information into categorization mechanism. A structure is
constructed by fuzzy logic descriptions as well as the neurological network is uti-
lized to harmonize the structure variables naturally thus removing the demand for
manual perfection of the fuzzy structure variables not like the neurological network
where the structure is constructed by training. Adaptive ability and flexibleness of
ANFIS makes it effective in handling the unpredictability of processes. The ANFIS
architecture is made up of five different layers arranged like any multiple layer
FFNN; coded in accordance with their operational functions. Sugeno firs-order
fuzzy model had been applied in this paper. Different from ANN whereby weights
are attuned, determination of the fuzzy language rules is needed as training the
ANFIS model. The training of the membership function variables of the ANFIS is
actualized through back propagation and/or least square and variables of the Takagi

Figure 3.
ANFIS and first-order Sugeno FIS model configuration.
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Sugeno fuzzy model are trained by the conventional square technique. The overall
output of the ANFIS structure is described as a linear combination of the conse-
quent variables. The common representation of an ANFIS model is demonstrated in
Figure 4 using two input variables.

Supposing fuzzy inference system with two inputs and one output as x, y and f,
a Sugeno fuzzy first order, the rules are thus:

Rule 1ð Þ : If μ xð Þ A1 and μ y
� �

is B1; then f1 ¼ p1xþ q1yþ r1 (3)

Rule 2ð Þ : If μ xð Þ A2 and μ y
� �

is B2; then f2 ¼ p2xþ q2yþ r2 (4)

Membership functions parameters for x and y inputs are A1,B1, A2, B2 outlet
functions’ parameters of f are p1, q1, r1, p2, q2, r2, a five-layer neurological network
arrangement possess the expression and configuration of ANFIS as:

First layer: Every node I is an adaptive node in this layer that contain the nodal
function as:

ψ1
i ¼ μAi xð Þ for i ¼ 1, 2 or ψ1

i ¼ μBi xð Þ for i ¼ 3, 4 (5)

Where ψ1
i is for input x or y is the membership grade. Gaussian membership

function had been selected in this paper because of its minimum prediction error.
Second layer: T-norm operator links every rule in this layer between inputs

‘AND’ operator thus:

ψ2
i ¼ βi ¼ μAi xð Þ � μBi xð Þ for i ¼ 1, 2 (6)

Third layer: “Normalized firing strength” is the output of this layer:

ψ3
i ¼ ϖ ¼

Wi

W1 þW2
i ¼ 1, 2 (7)

Fourth layer: Each node i in the fourth layer is an adaptive node and executes the
consequent of the rules as follows:

ψ4
i ¼ ϖ pixþ qiyþ ri

� �

(8)

Figure 4.
ANFIS and first-order Sugeno FIS model configuration.
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ϖ describes the output of layer 3 and pi, qi, r1are the consequent parameters.
Layer 5: Here the overall output of all incoming signals is calculated in this layer as:

ψ5
i ¼ ϖ pixþ qiyþ r1

� �

¼
X

wif i ¼

P

wif i
P

wi
(9)

2.3 Multi linear regression (MLR) model

Linear regression analysis is a conventional technique used in applied science
fields to describe and examine different parameters. Regression analysis especially
aids in comprehending how the standard values of the dependent parameter varies
as independent parameters vary, whilst the other independent parameters are held
constant; examines the correlation between these parameters. The equation below
was obtained from the regression analysis.

SWR ¼ 0:162þ 0:269Lþ 0:369D� 0:293ρþ 0:347Vþ 0:0417S (10)

where SWR is the (specific wear rate), L = applied load, D = sliding distance, ρ =
density, V volume fraction of reinforcement and S = sliding speed.

2.3.1 Sensitivity analysis

In order to find the parameter that greatly influences the specific wear rate of
the composites, nonlinear sensitivity analysis was conducted using neural network.
In the sensitivity analysis each of the input parameter was used to predict the
specific wear rate of the composites through the FFNN model. The performance of
the individual model was assessed based on training and testing stages of the
modeling. The mean value of the prediction performance criterion of each model
obtained in both training and testing phases was then used to rank the contribution
of the parameters to the specific wear rate of the composites.

2.3.2 Data pre-processing and performance evaluation

The data used in this study was normalized between zero (0) and unity (1) using
the (Eq. (11)). The normalization was done to prevent bigger data values from
overshadowing the smaller ones. Besides, data normalization simplifies the numer-
ical computations in the model which in turn improves the prediction quality of the
model and reduces the time taken to achieve global minimum.

λnorm ¼
λ� λmin

λmax � λmin
(11)

Where λnorm is the normalized mass loss value, λmin, and λmax represent actual,
minimum and maximum mass loss values of the data, respectively.

The data was split into training data and testing data. The training data was used
to adjust the weights of all the linking neurons until the required error level was
attained. Consequently, the network performance is evaluated by using the testing
data. The prediction performance is determined using Nush-Scutcliffe or determi-
nation coefficient (DC) and root mean square error (RMSE). DC indicates fitness of
the observed data and lies between -∞ to 1 while RMSE measures the difference
between actual and predicted values and ranges from 0 to 1. Higher B and lower
RMSE indicate efficient model and vice versa. DC and RMSE are given in (Eq. (12)).
and (Eq. (13))., respectively.
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DC ¼ 1�

Pn
i¼1 λacti � λpredi

� �2

Pn
i¼1 λacti � λacti

� �2 (12)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 λacti � λpredi

� �2

N

s

(13)

Where N is number of observations, λacti stands for actual values, λpredi repre-

sents the predicted values and λacti is the mean value of the actual values.

3. Results

3.1 Performances of the models

This section discusses the results obtained from the modeling of the study. The
ANN, ANFIS and MLR models were also compared. Table 2 showed the perfor-
mance of the models.

3.2 Performance of the multilinear regression (MLR) model

In the MLR model, the data was split into two subclasses of training and testing.
The ratios of the training and testing phases were characterized based on the fact that
the common configuration of the model was built with respect to training data set.
Hence, the quantity of data in the training category plays an important function. The
total number of data was 63 in which 70% (44) and 30% (18) were randomly selected
for training and testing, respectively. Figure 5 shows the scatter plot of the relation-
ship between actual and predicted specific wear rate (SWR) of the PTFE composites.

As it was shown in Figure 5, the determination coefficient (DC) of the training
and testing phases were determined as 0.5674 and 0.5267, respectively. In addition,
the RMSE in training was found to be 0.1275 but the testing stage RMSE was com-
puted as 0.2306. As per the prediction analysis the DC and RMSE in the testing phase
were considered. Therefore, MLRmodel with a DC of 0.5267 and RMSE of 0.2306 did
not indicate higher prediction accuracy of the specific wear rate of the PTFE
reinforced composites. This is attributed to the nonlinearity and complex nature of
specific wear rate of the composites and MLR model is commonly good at finding
linear and non-complex relationship between predictor and response variables [25].

3.3 Performance of the feed forward neural network (FFNN) model

Various learning algorithms were tried in order to find the optimum FFNN
architecture and among all of them, Levenberg–Marquardt was found to be the

Model Training Validation Testing

DC RMSE DC RMSE DC RMSE

MLR 0.5674 0.1275 — — 0.5266 0.2306

FFNN 0.9847 0.0341 0.9837 0.031 0.9749 0.0559

ANFIS 0.9847 0.0231 0.9956 0.025 0.9971 0.0168

Table 2.
Performance results of the models.
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most effective. In the FFNN model, the data is categorized into three subsets of
training, validation and testing. The ratios of training, validation and testing are
characterized based on the fact that fundamental architecture of the FFNN model is
built based on the training data set. The whole data of the specific wear rate
measurement was 63 in which 44 (70%) was chosen for training, 9 (15%) was
selected for validation and 9 (15%) was chosen for testing. Besides, the sigmoid
tangent was selected as the transfer function. The ANN model was trained with a
single hidden layer. In addition, the number of neurons in the hidden layer was
approximated using (Eq. (6)). Khademi et al. [26] instead of performing trial and
error approach.

Nh ≤ 2xi þ 1 (14)

where Nh stands for the maximum number of neurons in the hidden layer and xi
equals the number of predictors. Therefore, in this research, based on the predictors
which were five (5), the maximum number of neurons in the hidden layer was
computed as eleven (11). The optimized ANN architecture with a single layer was
thus expressed as [5–11-1]1.

Figure 6(a), (b), and (c) shows the scatter plot of FFNN model in training,
validation and testing stages, respectively. As seen in Figure 6(a) and (b) the
FFNN model exhibited desirable results in both training and validation phases.
Additionally, to estimate the prediction performance of the FFNN model, the DC
was evaluated for the testing step as shown in the scatter plot of Figure 6(c). As
indicated in Figure 6(c), the DC for testing of the FFNN model was determined as
0.9749 with a RMSE of 0.0559. This means that an FFNN model is more efficient in
predicting the wear behavior of the composites, as compared to MLR model. This
result was similar but higher than the previous study [27]. To round off, ANN
model was found to be efficient in predicting the specific wear rate of the
composites. This tallies with past studies of [28–29].

3.4 Performance of the adaptive neuro fuzzy inference system (ANFIS) model

In this study, ANFIS that used the hybrid learning algorithm was employed. The
proportions training, validation and testing were chosen the same as the ones in
FFNN modeling. To determine the best membership function, trial and error

Figure 5.
Scatter plot of MLR model in (a) training and (b) testing stages.
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approach was used and it was found that Gaussian membership function gave the
best results at 50 epochs and 0.05 tolerance errors. Figure 7 shows the scatter plot of
the relationship between the actual and predicted specific wear rate of the compos-
ites training, validation and testing stages. Figure 7 shows perfect coincidence of
the target and the output data which demonstrated the capability of the ANFIS
model. As it was indicated in the figure, the DC of the ANFIS in the testing stage
was computed as 0.9971. More so, the RMSE was computed as 0.0225. To wrap up,
ANFIS model was found to be capable of approximating the specific wear rate of the
composites with satisfactory performance. This excellent performance of the ANFIS
model agrees with the research by [30–31].

3.5 Comparing the results of FFNN, ANFIS and MLR models

In this article, the performance of FFNN, ANFIS and MLR models on predicting
the specific wear rate of PTFE composites based on determination coefficient (DC)
and root mean square error (RMSE) was investigated. The higher values of DC and
lower values of RMSE indicate better and accurate prediction capability of model.
For the purpose of the comparison, the data was split into 65% (40) and 35% (22) in
training and testing, respectively for all the models. The comparative results of the
models were shown in Table 3 above. As seen in Table 3, the performances of the
FFNN and ANFIS models were better than that of the MLR model. FFNN and
ANFIS models outperformed the performance of the MLR model by 43.14% and
43.12% and 48.23% and 50.02% in training and testing phases, respectively. In other
words, the prediction quality of MLR model was ineffective compared to the high
prediction quality of ANN and ANFIS of 0.9783 and 0.9961, respectively. Their
capabilities to predict the specific wear rate with minimum errors of 4% and 2%

Figure 6.
Scatter plot of FFNN model in (a) training (b) validation and (c) testing phases.
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(within acceptable level) as compared to the high error of MLR model of 21% is
associated with their abilities to deal with nonlinear, noisy, complex relationship
and to learn from outside environment and generalize. More so, the prediction
performance of the ANFIS model was slightly higher than that of ANN model by
2%. This is because ANFIS model combines the attributes of both learning algo-
rithm and fuzzy logic structure. Figures 8 and 9 show the scatter plot of the models
prediction quality and the simulated prediction results, respectively. It can be seen
that ANFIS and FFNN models indicated perfect match with the actual SWR of
composites while MLR model exhibited imperfect consistency with respect to the
observed SWR of the composites.

3.6 Sensitivity analysis

Identification of most influential parameter in the study of wear is a significant
step in achieving optimum results. In the light of this, a nonlinear FFNN sensitivity

Figure 7.
Scatter plot of ANFIS model in (a) training (b) validation and (c) testing.

Model Training Testing

DC RMSE DC RMSE

ANFIS 0.9841 0.0249 0.9961 0.0186

FFNN 0.9843 0.0248 0.9783 0.0441

MLR 0.5529 0.1314 0.4959 0.2067

Table 3.
Comparative performance results of the models.
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of the specific wear rate of the composites was applied in this study to establish the
dominant parameters in place of using traditional linear methods. The five specific
wear rate were evaluated and ranked based on the mean value of the DC of the
single modeling obtained in training and testing phases of the FFNN modeling. The
results of the ranking based on the sensitivity analysis of the specific wear rate was
presented in Table 4.

As seen from Table 4, in terms of the experimental conditions sliding distance is
the most influential parameter, then sliding speed and the least was the applied
load. On the contrary [27] reported that the sliding speed had the greatest effect on

Figure 8.
Scatter plot of (a) MLR, (b) ANFIS and (c) FFNN models in testing stages.

Figure 9.
Comparing the performance of the models: Testing stage.
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the volume loss of the polymer composites. This means that the various sliding
distances can lead to different specific wear rate of the composites. The higher the
applied load the more the composites will spend in the elastic deformation phases.
With respect to the composites constitutions, volume fraction of the reinforcements
had the greatest effect on the specific wear rate followed by density. This implies
that as the volume fraction of the reinforcing phases was increased hardness with a
corresponding increase in density that minimizes the specific wear rate of the
composites. This agrees with the work of [13]. However, when all the parameters
are compared it was found that volume fraction was the most influential and
applied load presented the least effect on the specific wear rate of the composites.

The model’s goodness of fit versus the actual values for the ANN and ANFIS
models was tested using t-test at 5% level of significance and the outcomes revealed
that there was no significance difference between the predicted and the actual
values of the SWR. This was as shown in Figures 6 and 7 and the t-test result was
presented in Table 5.

4. Conclusions

In this study, three various data driven models namely: feed forward neural
network (FFNN), adaptive neuro fuzzy inference system (ANFIS) and multi linear
regression (MLR) were applied in modeling and prediction of the specific wear rate
(SWR) of polytetraflouroethylene (PFTE) composites. MLR model with DC of
0.5266 and RMSE of 0.2306 was found to be inefficient enough to predict the SWR
of the composites. This is due to the complex and nonlinear relationship between
the investigated variables and MLR model is usually good at establishing linear
relationship between predictors and responses. FFNN model having DC equals
0.9802 and RMSE as 0.0471 was found to be capable in predicting the SWR of the
PTFE reinforced composites. ANFIS model DC equal to 0.9967 was found to be
talented in approximating the SWR of the composites. FFNN and ANFIS models
were found to be highly qualitative in predicting the SWR of the composites, yet
MLR model was found to be incapable in the same prediction scenario. The high
prediction performance of the FFNN and ANFIS models is owing to their capability

Parameter Average DC Rank

Volume fraction 0.4658 1

Density 0.4027 2

Sliding distance 0.3503 3

Sliding speed 0.2985 4

Applied load 0.1476 5

Table 4.
Sensitivity analysis results of each input parameter.

Output ANFIS Model FFNN Model MLR Model

SWR t-stat t-critical t-stat t-critical t-stat t-critical

0.3464 1.6702 �0.4492 0.3464 0.4701 1.6702

Table 5.
Results of t-test at 5% significance level.
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to deal with nonlinear, noisy and complex relationship which is typical of SWR of
the polymer composites. Although, both ANFIS and FFNN models were capable of
predicting the SWR of the composites, ANFIS was found to be more efficient in
predicting the SWR of the composites than FFNN model. The sensitivity analysis of
the built FFNN model indicated that sliding distance was the dominant parameter
on the SWR of the composites in terms of the experimental conditions while vol-
ume fraction of the reinforcing phases was also influential parameter on the SWR
with respect to the composites compositions. However, considering all the input
parameters volume fraction of the reinforcements was the most dominant parame-
ter and applied load was the least parameter influencing the SWR of the PTFE
composites. The goodness of fit was rechecked using t-test at 5% significance level
and the results affirmed the superiority of the FFNN and ANFIS models as powerful
and efficient tools of modeling and prediction of SWR of the PTFE composites.
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