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Pseudomonas aeruginosa Secreted 
Biomolecules and Their Diverse 
Functions in Biofilm Formation 
and Virulence
Theerthankar Das

Abstract

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium accountable 
for causing life-threatening infections in humans. According to the World Health 
Organization, P. aeruginosa classified as a critical pathogen. Specifically, P. aeruginosa 
in its colonized or biofilm state presents a major infection threat to immunocom-
promised (HIV) patients, Cystic fibrosis, burns, wounds and surgery associated 
infection. It is also a common pathogen responsible for causing hospital acquired/
nosocomial infection and Urinary tract infections. P. aeruginosa biofilm is made up of 
bacterial self-synthesized biomolecules includes extracellular DNA, polysaccharides, 
proteins, RNA, siderophores and metabolites such as pyocyanin. This chapter will 
elaborate the manifold functions of P. aeruginosa secreted biomolecules in establish-
ing and stabilizing biofilms, triggering virulence and pathogenicity in host, and 
resisting antibiotics and antibacterial agents.

Keywords: Pseudomonas aeruginosa, pyocyanin, extracellular DNA, biofilms, 
alginate, rhamnolipids, pyoverdine

1. Introduction

Pseudomonas aeruginosa is an opportunistic Gram-negative bacilli bacterium 
which holds a greater clinical significance in relation to its infection causing ability in 
humans [1]. P. aeruginosa is commonly found in environment (soil and water) and can 
be a source of contamination of drinking water and food spoilage [2, 3]. Prevalence of 
P. aeruginosa and its associated infection is commonly found in cystic fibrosis patient 
and chronic obstructive pulmonary disease (COPD) lungs, urinary tract, immuno-
compromised (HIV) patients, skin and soft-tissue, diabetic leg wounds, burns and 
surgical site infections [1, 4]. It is also a common pathogen responsible for causing 
healthcare associated (nosocomial) infection and microbial keratitis (eye infection 
due to contamination of contact lenses) [4]. World Health Organization (WHO) has 
listed P. aeruginosa as a most critical pathogen, due to the threat of causing blood 
stream infection (septicemia) and its antibiotic resistance ability [5]. P. aeruginosa or 
in general many other bacterial pathogens (e.g. Acinetobacter baumannii, Escherichia 
coli, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus epidermidis, 



Pseudomonas aeruginosa - Biofilm Formation, Infections and Treatments

2

Streptococcus pyogenes, Proteus mirabilis, etc.) has an inheritance ability to colonize and 
form biofilms on biotic (e.g. mucosa, tissue) or abiotic surface (e.g. medical implants, 
surgical instruments, hospital beds, wash basins, sinks, bath tub, etc.). Bacterial 
colonization on these surfaces directly leads to the contamination of surfaces, food 
and water and consequently precedes to infections in host. Bacterial biofilms are 
liable for approximately 80% of hospital and community-associated infections [6]. 
The most serious concern is antibiotic/antibacterial agents’ resistance by the infecting 
bacteria that threatens the very core of modern medicine and impose a greater burden 
on global public health and economy.

2. Bacterial infection and antibiotic resistance are a global concern

National Institutes of Health (NIH), USA statistics data reports 550,000 
death a year and about $94 billion total cost annually associated with biofilm 
infections in USA alone [7]. In Australia, billions of dollars expended annually 
dealing with antibiotic-resistant infections [8]. Statistics on antibiotic-resistance 
bacteria causing healthcare associated infections (HAI’s) and death in European 
countries is alarming. Around, 8.9 million HAI recorded each year in combined 
hospitals and long-term care facilities and one in three bacteria associated with 
HAI’s are antibiotic resistant [9]. In European population death associated with 
antibiotic resistance bacteria is estimated to be around 33,000 annually, this 
statistic is comparable to death associated with combined influenza, tuberculosis, 
HIV/AIDS [10]. Antibiotic resistance associated infections also triggers massive 
loss in productivity and healthcare incidentals estimated to be approximately 
1.5 billion Euro’s each year [11]. Bacterial resistance profile to different antibacterial 
agents is depends of several factors including geographical location of the strain 
(genetic mutations influenced by temperature, nutrient, oxygen), antibiotic 
prescribing practice to patients around the globe, poor hygiene and sanitation 
practice by common public and health care workers in hospitals. For instance, 
report released by Australian Commission on Safety and Quality in Health Care 
(Antimicrobial use and Resistance in Australia, AURA 2019) suggest more than 
26.5 million antibiotic prescriptions were give out to patients [12]. The same 
report also highlighted that 23.5% of hospital prescribed antimicrobials in 
Australia are inappropriate and also community associated increase in antibiotic 
resistance bacteria (MRSA) are higher among old age people living in aged care 
facilities and in remote regions of the country [12]. Misuse or unethical use 
of antibiotics in agriculture, meat and poultry industry and fish farming, is a 
primary concern. Study published by Chinese Academy of Sciences reports use 
of 162,000 tons of antibiotics in the year 2013 alone in which more than half 
(52%) was used for animal husbandry and 48% by humans in addition, massive 
amount (50,000 tons) of antibiotics drained in the environment (water and soil) 
[13, 14]. USA also reported 10,000 tons of antibiotics annually used for livestock 
[15]. India, China, USA, Russia, Brazil, and South Africa are the world leaders 
in consuming antibiotics [16]. South China Morning Post (SCMP) Newspaper 
published an article in 2017 stating “Antibiotic overuse is a ticking time bomb 
for Asia” and health care workers act instantly to restrain misuse of antibiot-
ics to stop public health calamity [17]. World Health Assembly, WHO, United 
Nations (UN), and countries respective government, local health organization 
and institutes are adopting a global action plan to crumb antibiotic resistance by 
educating common public, health care workers on effective sanitation, hygiene 
and infection prevention measures; and spreading awareness on responsible use 
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of antibiotics in human and animal health, investing more funding in research 
and development in developing novel antibacterial agents, diagnostic tools, 
vaccines, improving hospital facilities especially in low-and-middle income 
countries [18].

3. P. aeruginosa Antibiotic resistance profile around the globe

P. aeruginosa inherent and adaptive antibiotic resistance character thus conse-
quently making many existing antibiotics and anti-pseudomonal agents unusable 
against this bacterium and present a significant challenge for medical practitio-
ners to treat infections. In this section, we exhibited few cases based on P. aerugi-
nosa antibiotic resistance profile from different parts of the world by referring to 
previously published literature.

A comprehensive review by Wozniak et al., (2017), that covered the Australian 
data from the year 1990 till 2017, on antibiotic resistance Gram-negative bacteria 
[19]. Their study highlighted that P. aeruginosa isolates from different infection site 
showed resistance to many commonly used antibiotics. Among the P. aeruginosa 
isolates that were collected from surgical site between years 2002–2013, approxi-
mately 0.5%, 7.7% and 0.5% of the isolates showed resistance to fluoroquinolone, 
third generation cephalosporin and gentamicin respectively [20]. Survey on antibi-
otic resistance profile of P. aeruginosa isolates from patient’s sputum between years 
2007–2010 showed resistance to aminoglycosides (43%), beta-lactam (21%) and 
fluoroquinolone (30%) class of antibiotics [21]. Epidemiology studies on P. aerugi-
nosa isolates from blood (years: 2001–2009) showed resistance to fluoroquinolone 
and meropenem about 12.7% and 14.3% respectively [22]. National Healthcare 
Safety Network (NHSN), USA survey on antimicrobial resistance patterns for the 
year 2009–2010, reported about 20% of pathogens (from 69,475 HAI’s incidence) 
are antibiotic resistance in which 2% is carbapenem-resistant P. aeruginosa [23]. 
Microbial analysis on patients affected with Nosocomial and ventilator-associated 
pneumonia (VAP) in a period 2011–2012 in Georgia, USA reported P. aeruginosa 
as most prevalent Gram negative (40%) and highest prevalence of multi drug 
resistance [24]. Similar multi-drug resistance profile of P. aeruginosa was recorded 
in Asian countries. For example, antibiogram of total 2444 Pseudomonas species 
isolated from different clinical specimens (blood, pus, tracheal aspirate, urine and 
sputum from wards, intensive care units (ICUs) and follow up patients) of trauma 
patients from tertiary care hospitals in India over a period 2012–2016 revealed 
dominance of P. aeruginosa (95%) [25]. Among 69%, 68%, 67% 66%, 63% and 
51% were levofloxacin, gentamicin, ciprofloxacin, ceftazidime, meropenem and 
tobramycin resistance, respectively [25]. Antibiotic profile of 121 P aeruginosa 
strains isolated from hospitals of Makkah and Jeddah, Saudi Arabia showed high 
resistance to antibiotics: meropenem (~30.6%), ticarcillin (22.3%), and imipenem 
(19%) [26]. A study reported that in mainland china hospitals prevalence of  
P. aeruginosa related ventilator-associated pneumonia (VAP) and hospital-acquired 
pneumonia were 19.4 and 17.8% respectively [27]. National Healthcare Safety 
Network (NHSN) USA, reports prevalence of P. aeruginosa is common among 
possible VAP [28]. These isolates exhibited high level of resistance to antibiotics: 
Gentamicin (up to 51.1%), cefoperazone (50%), and about 22.5% for amikacin 
[28]. P. aeruginosa resistance to ciprofloxacin has also risen a global concern, 
especially in Asian countries for example, Bangladesh reported 75.5% resistance to 
ciprofloxacin whereas, India, Iran, Turkey, and Saudi Arabia reported 49%, 58%, 
48.9% and 50.9% respectively [29–33].
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4.  Role of P. aeruginosa secreted biomolecules in biofilm formation and 
virulence

Biofilm formation is the most preferred stage of many bacterial pathogens. 
Biofilm formation is a multi-step process to start with i) initial attachment of bacte-
ria to the surface (adhesion) and to each other (aggregation), ii) growth regulations 
and microcolony formation and production of extracellular polymeric substances 
(EPS) and other exogenous molecules, iii) maturation of biofilms includes struc-
tural stability and iv) dispersal of bacterial cells from the mature biofilm into the 
environment and reestablishment at a new site [34].

Bacteria in its biofilm state are known to withstand antibacterial agents by 
many ten’s and 100’s-fold in comparison to its sessile/planktonic state [35]. 
Biofilm main composition includes up to 90% bacterially self-secreted biopoly-
mers also known as extracellular polymeric substances (EPS) and other exogenous 
molecules and 10% bacterial cells [36]. These molecules in combined has been 
termed as house of bacteria and it shelter bacterial cells from numerous chal-
lenges includes antibiotics, antiseptics, detergents, shear mechanical stress, etc. 
[36]. Exogenous molecules synthesized by P. aeruginosa is primarily structured 
by a complex Quorum Sensing (QS) mechanism [37, 38]. In simple terms, QS is 
an intracellular communication phenomenon in which bacterial species able to 
detect and respond to its own cell population and ecological cues by regulating 
genes that facilitates them in survival and colonization in both biotic and abiotic 
environment. In P. aeruginosa QS is hierarchical and its driven through four known 
signaling system. At the top or first stage is driven by las system that activates 
the biosynthesis of autoinducing molecules N-(3-oxododecanoyl)-L-homoserine 
lactone (3-oxo-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL). 
Binding of LasR-HSL molecules triggers the transcription of second QS system: 
rhlR, rhlI, lasI. LasR system further regulates the third and fourth: 2-heptyl-
3-hydroxy-4-quinolone (HHQ ) and pseudomonas quinolone signal (PQS) [39]. 
These four QS circuits are interconnected and depends on each other regarding P. 
aeruginosa biosynthesis of various secreted and surface attached molecules. These 
includes extracellular biopolymers (Extracellular DNA, polysaccharides, proteins/
enzymes), biosurfactant (rhamnolipids), metabolites (phenazine/pyocyanin), 
iron chelator (siderophore: pyoverdine, pyochelin), and bacterium cell surface 
anchored flagella and pili for swarming and twitching motilities [37–40]. These 
biomolecules and cell appendages independently or in coordination with each 
other plays dominant role in P. aeruginosa growth, fitness, biofilm formation, 
virulence, pathogenicity in host during infection, antibacterial resistance, and 
persistence. In this chapter we emphasize only on the diverse role of P. aeruginosa 
secreted extracellular biomolecules. Figure 1 summarizes the diverse function of 
P. aeruginosa secreted extracellular biomolecules.

4.1  Extracellular DNA production, role in P. aeruginosa biofilm formation and 
stability

The role of extracellular (eDNA) in P. aeruginosa biofilm was first highlighted by 
Whitchurch et al. (2002) [41]. Their study revealed that eDNA is predominant in 
P. aeruginosa matrix component and its essential for P. aeruginosa biofilm formation 
[41]. Followed which numerous discoveries were done highlighting several roles of 
eDNA in P. aeruginosa and in other bacterial pathogens as well as in fungi [42–46]. 
Structural analysis study revealed that eDNA is similar to bacterial chromosomal 
DNA in its primary structure and it is not surprising because when chromosomal 
DNA release from bacterial cells (either via membrane vesicles or cell lysis) into 
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its immediate environment is termed as eDNA [47]. eDNA in P. aeruginosa cell 
population is released primarily through QS mechanism [48]. QS system (las and 
rhl -acyl homoserine lactone and pqs-Pseudomonas quinolone signaling), as well 
as flagella and type IV pili (fliMpilA) facilities prophage induction in P. aeruginosa 
cell population and consequently trigger cell lysis and eDNA release [48]. Virulence 
factor pyocyanin/phenazine biosynthesis also shown to trigger cell lysis (via oxida-
tive stress mediated by hydrogen peroxide) and eDNA release in P. aeruginosa [49]. 
Outer membrane vesicles in P. aeruginosa cell also demonstrated to actively release 
eDNA [50].

Studies have confirmed that eDNA plays a key role in different stages of biofilm 
formation including initial bacterial to surface attachment (adhesion), bacteria-
to-bacteria interaction (aggregation), colonization and biofilm formation by con-
necting cells to cells like nanowires [41–45]. Presence of eDNA on P. aeruginosa cell 
surface have shown to dictates physical surface properties of bacterial cell such as 
increase in cell surface hydrophobicity and consequently enables physico-chemical 
interactions forces such as Van der Waals interactions, Acid–Base interactions, 
hydrophobic interactions that aids in bacterial interactions and biofilm forma-
tion [51, 52]. eDNA have proven to induce electrostatic interactions with divalent 
cations like calcium (Ca2+) and triggers bacterial aggregation [53]. eDNA has been 
established being an essential factor in structural integrity of P. aeruginosa biofilms 
and many studies have shown that cleaving of DNA using DNase I (enzyme that 
cleaves DNA through hydrolysis of phosphate di-ester bonds that links nucleotides 
in DNA) disrupts P. aeruginosa adhesion and biofilm formation [41, 44, 45, 54].  
Other general roles of eDNA includes nutrient (e.g. good source of carbon, nitro-
gen, phosphorus) for starving bacteria and facilitate growth, horizontal gene 
transfer among bacteria cell (antibiotic resistance genes, virulence factor genes, 
etc), protects biofilms from shear stress by increasing biofilm viscosity. eDNA 

Figure 1. 
Highlighting the major role of biomolecules secreted by P. aeruginosa. These biomolecules are essential for 
establishment of biofilm, bacterial growth, fitness, and survival, induce virulence/pathogenicity and triggering 
immune response in host during infection, evading antibiotics, and other antibacterial agents.
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directly bindings to cationic antibiotics thus inhibits antimicrobial agents’ inter-
action with bacteria within biofilm, removal of eDNA from biofilms have shown 
increase of bacterial susceptibility to antimicrobial agents [55]. In P. aeruginosa 
biofilm, eDNA release has shown to lower the pH of the local environment and 
subsequently these acidification initiates antibiotic resistance phenotype genes 
(PhoPQ and PmrAB) that fosters alteration of lipid A and the manufacture of 
spermidine on the P. aeruginosa outer membrane and consequently decrease 
entry/intake of aminoglycoside antibiotics [56].

4.2 Multitude task of polysaccharides secreted by P. aeruginosa

Many studies have concluded that polysaccharides as a chief component of 
many bacterial EPS/biofilm matrix. P. aeruginosa biosynthesis alginate, psl, and 
pel as their three predominant extracellular polysaccharides. Alginate producing 
isolates of P. aeruginosa have been acknowledged as a mucoid phenotype regulates 
through mutation in the alginate biosynthesis of algA-algD operon and mucA [57]. 
AlgD is the key gene that promotes alginate production followed by combined 
action of mucA and algU genes [57]. The physical characterizes of alginate posi-
tive P. aeruginosa colonizes are highly viscous and gelatinous structure on the edge 
of the cells [58]. This feature is due to its heavy molecular weight structure of 
alginate which mainly composed of O-acetylated D-mannuronic acid and its C5′ 
epimer L-guluronic acid [59]. Alginate productions make P. aeruginosa virulent 
strain and a foremost cause for respiratory infections and mortality in CF patients 
[60]. Alginate production enhances bacterial adhesion due to its sticky nature and 
its plays key role in shielding P. aeruginosa from host immune defense system by 
scavenging reactive oxygen species (ROS) and evading neutrophils and macro-
phages mediated phagocytosis [61, 62]. A study by McCaslin in rat alveolar mac-
rophages, showed that alginate in combination with lipopolysaccharide produced 
by P. aeruginosa plays a synergy role in sparking airway inflammation by impeding 
alveolar function in removal of apoptotic cells and debris [63]. The anionic (nega-
tive charge) feature of alginate undergoes electrostatic interactions with cationic 
aminoglycosides and thus constrains their dissemination into biofilms [64]. 
Alginate also induce structural and conformational alteration and aggregation in 
the antimicrobial peptides by binding with it thereby, hinders its antimicrobial 
activity against pseudomonas [65].

In absence of alginate biosynthesize, Psl or Pel genes in P. aeruginosa isolates 
up-regulates and activates over production of psl and pel polysaccharide [58]. These 
polysaccharides by itself or in combination with each other exhibit non-mucoid 
bacterial colonies/biofilm and these colonies are termed as rugose small colony 
variant (RSCV) [58]. Psl biosynthesis in P. aeruginosa is induced through a QS (las) 
mediated set of Psl genes (PslA-PslL) and each or group of Psl genes and its cor-
responding protein/enzyme plays a unique role in synthesizing and integrating Psl 
polysaccharide [58]. For instance, PslB enzyme is responsible for sugar-nucleotide 
precursor production, whereas, PslA/PslE/PslJ/PslK/PslL and PslF, PslH, and PslI 
set of enzymes deals with polymerization of polysaccharide, and integration of the 
activated sugar subunits into the polysaccharide repeating structure [58]. Psl is a 
neutrally charged polysaccharide comprised of repeating sugar groups: D-mannose, 
L-rhamnose, and D-glucose [66, 67]. This polysaccharide plays a crucial role in bac-
terial cell-to-cell communication by enhancing intracellular c-di-GMP (secondary 
messenger molecule) and essential for initial P. aeruginosa attachment to a surface 
as tested on various clinical, environmental and common laboratory strains, biofilm 
biomass and antibiotic tolerance (tested on gentamicin) [68, 69].
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Pel is a positively charged polysaccharide comprised of amino sugar groups 
and is biosynthesized is regulated via QS (rhl sytem) through activating pel oper-
ons (pelA-pelG) [70, 71]. Pel composed of acetylated 1–4 glycosidic linkages of 
N-acetylgalactosamine and N-acetylglucosamine [71]. PelA protein is responsible 
for the deacetylase of the sugar amino group, whereas PelD, PelE, PelF, and PelG 
enzymes, these set of enzymes accountable for Pel polymerization and passage 
across the P. aeruginosa cytoplasmic membrane [58, 71]. Study also speculated 
that pel is adapted version of LPS [71]. Pel polysaccharide biosynthesize is a strain 
dependent, and studies shown that in absence of psl polysaccharides pel genes 
up regulated to form primary structural framework in non-mucoid P. aeruginosa 
biofilms. This indicates that pel plays important role on later stage of biofilm and 
not during initial adhesion, aggregation, and colonization [58]. Pel being a cationic 
biopolymer binds to negatively charged eDNA in P. aeruginosa biofilm matrix 
via ionic bonding/electrostatic interactions henceforth, stabilize biofilm matrix 
frame [72].

4.3 P. aeruginosa exotoxins proteins role in pathogenicity

The biosynthesize and secretion of exogenous proteins/enzymes by P. aeru-
ginosa is mediated by QS (las-rhl) system [73]. The common proteins virulence 
factor P. aeruginosa secrets includes elastase/LAS A and B, exotoxin A, U, S, T, Y 
phospholipase C, alkaline protease, type IV protease, phospholipase H and lipolytic 
enzymes [74]. The primary function of these proteins is to play as a virulence factor 
and induce bacterial pathogenicity in host. To induce pathogenicity, evade host 
immune defense and damage epithelial cells, P. aeruginosa secrets these proteins 
predominantly via type II and type III secretion system (out of five protein secre-
tion system) [75, 76]. Type II system constituent of protein secretons that facilitate 
release of exotoxin A, elastase/LasA and LasB proteases, type IV protease, and 
phospholipase H, as well as lipolytic enzymes into the host cells. Whereas exotoxins 
U, S, T, and Y are released into host cells via type III secretion system (T3SS) [76]. 
T3SS forms needle like membrane structure that are anchored to the bacterial cell 
surface and facilitates delivery of bacterial protein virulence factors into the host 
epithelial cells [76].

Some actions of P. aeruginosa virulence proteins are discussed below. For 
example, P. aeruginosa toxin A protein have shown to impair protein elongation 
factor in mammalian cells thereby interferes with host essential protein synthesis 
[77]. The T3SS proteins (Exo U, S, T, Y) have diverse functions such as hinder DNA 
synthesis and modulates cell morphology in host, escaping host phagocytosis by 
impairing host cell actin cytoskeleton polymerization and endothelial barriers, 
phospholipase activity (cleaving host cell lipid layer and increase cell membrane 
permeability), modulates host inflammatory response and consequently extend-
ing bacteria and its virulence factors into host blood stream, different organs to 
cause bacteraemia and septicaemia and organ failure [78–80]. Metalloproteases 
are another group of enzymes such as elastase whose main function is to cleave 
human elastin and leukocyte elastase and neutrophil elastase and consequently 
alters host tissue elastic property and stimulate tissue damage. Elastases also proven 
to degrade human collagen II and IV, impair fibroblast growth and destroy wound 
healing proteins which are essential for mammalian cell and tissue development 
and wound repair [81–84]. Other crucial role of P. aeruginosa elastases includes 
cleaves host immunoglobulins (IgA and IgG) that aids bacterium to evade host 
immune response [85, 86]. Clinical studies in burn and wound patients infected 
with P. aeruginosa, showed protease biosynthesis by this bacterium trigger host 
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cytokinin (interleukins IL6 and IL8) production and induce severe inflammation, 
septicaemia and elevates mortality level in patients [87–89].

4.4 Rhamnolipids P. aeruginosa biosurfactant

Rhamnolipids is a glycolipid biosurfactant produced by P. aeruginosa mediated 
through rhl QS system involving operons rhlA, rhlB for biosynthesis and rhlI and 
rhlR for regulation [90]. It is made up of sugar group (rhamnose) and a lipid/fatty 
acid group 3-(hydroxyalkanoyloxy) alkanoic acid and has a both hydrophilic and 
hydrophobic group like any typical biosurfactant [90, 91]. Rhamnolipids produc-
tion helps P. aeruginosa in uptake and metabolism of hydrophobic molecules such 
as oils, hexadecane for nutritional source and growth [92]. Rhamnolipids (mono-
rhamnolipids) also adhere to P. aeruginosa cell membrane (LPS) and plays key role 
in influencing P. aeruginosa cell surface physical property such as increasing cell 
surface hydrophobicity which aids in bacterial adhesion to substratum and bacterial 
cell-to-cell aggregation through hydrophobic interactions [93]. Rhamnolipids also 
lower the surface tension of P. aeruginosa cell surface thus aid them in swarming 
motility to travel across different location within the substratum [93]. It also proven 
to influence biofilm architecture by establishing and sustaining fluid channels in 
biofilms for water and oxygen transport [94]. P. aeruginosa employs rhamnolipids 
to their own advantage to eradicate competing bacteria. Binding of rhamnolipids 
into competing bacterial cell membrane consequently creates pores and increase 
cell permeability to induce cell lysis [95]. It is also a known virulence element, by 
binding to epithelial cell membrane it interrupts epithelial cell membrane integra-
tion, disrupts epithelial cell junctions, and triggers death in various mammalian cell 
types includes leukocytes, macrophages [96]. Rhamnolipids biosynthesis by  
P. aeruginosa in infected patients has been associated with escalation in pathogenic-
ity in cystic fibrosis lung, ventilator-associated pneumonia patients [97].

4.5 Pyocyanin a unique virulence factor and its diverse function

P. aeruginosa biosynthesis and secretes a unique secondary metabolite called 
phenazines. Different types of phenazines are produced by P. aeruginosa however, 
pyocyanin is the most predominant one. Pyocyanin biosynthesis occurs at the later 
stage in P. aeruginosa population density or in biofilm, in laboratory culture it is 
generally expressed at the late exponential stage via regulation through QS (PQS) 
system [98]. Pyocyanin production is easily identified by its color,  bluish -pure 
pyocyanin and green color when grown in laboratory in bacterial growth media 
(e.g. Tryptone Soy broth, Nutrient media, Luria broth, these media are all  yellow 
in color and blue pyocyanin mix with yellow turns green). The two set genes 
of phzA1-G1 and phzA2-G2 encrypts initial phenazine molecule (phenazine-
1-carboxylic acid, PCA) followed by conversion of PCA to pyocyanin (N-methyl-1-
hydroxyphenazine) encoded by genes phzM and phzS [98]. Pyocyanin production 
has been associated with the severity of infection and acknowledged as a hyper 
virulent strain [99]. Analysis of pyocyanin production on variety of clinical and 
environmental isolates indicates pyocyanin production is very common among all 
isolates however, the amount of pyocyanin production is depended upon strain 
phenotype and genotype variations. A study by Fothergill et al. (2007) on strains 
isolated from different clinical sites (CF, keratitis) and environmental (water) 
strains indicated that Liverpool epidermic strain (LES) from CF patients (attended 
Liverpool CF centre in England between years 1995 to 2004) exhibited significantly 
high pyocyanin production in comparison to keratitis and water isolates [99]. 
Pyocyanin plays diverse role in establishment of P. aeruginosa biofilm formation 
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including inducing oxidative stress in competing bacteria and outcompete their 
growth (e.g. S. aureus) and fungi (e.g. candida albicans) [100, 101]. Pyocyanin 
promote cell signaling by activating transcription factor SoxR and stimulating 
various genes expression includes efflux pump genes mexGHI-opmD, and PA2274 
(monooxygenase, to control oxidative stress response in P. aeruginosa) [102]. By 
regulating target genes pyocyanin also maintain bacterial fitness, pyocyanin/
phenazine deficient mutant (Δphz) showed drastic change in its colony morphology 
(wrinkled colony), whereas pyocyanin over producing mutant strain (DKN370) 
remained smooth [103]. Pyocyanin induce oxidative stress and cell death (via H2O2 
production) in P. aeruginosa population in late exponential phase and triggers eDNA 
production [49]. An interesting discovery by Das et al. 2012 and 2015 revealed that 
pyocyanin intercalates with DNA and influence P. aeruginosa cell surface hydropho-
bicity and subsequently promote biofilm formation [51, 104].

Pyocyanin has been in limelight in many decades due to its virulence property. In 
context to P. aeruginosa infection in human, pyocyanin production has been linked 
to increase in virulence and severity of infection [99]. Different studies reported 
different concentration of pyocyanin to be found in sputum of CF patients from 
0.9 to 16.5 μg/ml and 27.3 μg/ml in bronchitis patients sputum and also significantly 
higher amount (5.3 μg/g) also found in burn wound exudates [105, 106]. In mam-
malian cells, it declines intracellular cAMP and ATP levels, provoke neutrophils 
apoptosis, and modulates host immune system [105–108]. Pyocyanin being a 
zwitter ion (positive and negative charge group and can penetrate into host cell 
membrane), and redox (electron donating and accepting property) molecule it 
oxidized cytosol (mammalian intracellular fluid), produces reactive oxygen species 
(ROS) by diffusing into host cells and undergoes redox reaction to accept electrons 
from NADPH and donates to molecular oxygen [109, 110]. ROS production leads 
to the decline in intracellular glutathione (a master antioxidant in mammalian cells 
essential for cell health and fitness) level which leads to bronchial epithelial cell 
death and tissue damage [109, 110]. It also impedes chlorine ion (Cl−) secretion and 
transport in CF patients’ lungs (bronchial epithelial cells) and consequently halt 
mucous clearance in human airways [111]. In burn wound patients infected with 
P. aeruginosa, pyocyanin production shown to provoke premature senescence and 
apprehend human fibroblast growth by levying oxidative stress [106, 112]. Mouse 
model study revealed that exposing pyocyanin to mouse lung airways triggers 
repress of transcription factors protein FoxA2 expression (essential for tissue devel-
opment) and consequently leads to over production of host cells (cell hyperplasia) 
and mucous hypersecretion by [113].

4.6 Siderophore benefits P. aeruginosa growth and biofilm formation

Siderophore are small molecules and belongs to the class of “iron-chelating 
compounds”. They are intrinsically secreted by microorganisms primarily for 
scavenging and uptake of Ferric ion, Fe3+ for their own benefits including nutrition, 
metabolism, growth, and virulence in mammals [114]. For example, Bacillus spp. 
(subtilis and anthracis) biosynthesis primary siderophore (bacillibactin), enterobac-
tin, vibriobactin, yersinibactin, and pyoverdine by E.coli, Vibrio cholerae, Yersinia 
pestis and P. aeruginosa respectively. Pyoverdine is a fluorescent green color com-
pound and its biosynthesis is encoded by the operons of pvd. Pyoverdine forages 
Fe3+ from host iron-binding molecules (transferrin) and binds strongly to it thus 
contribute to pathogenicity in host as shown in the immunocompromised mouse 
model [115, 116]. Pyoverdine also benefits from P. aeruginosa virulence factor pro-
tease action in degrading human iron-binding protein (ferritin), thus outcompetes 
host and scavenges iron [117]. Burn mouse model study have shown that pyoverdine 
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contribute to severity in infection and mutants deficient in pyoverdine production 
showed significantly less virulence [116]. Infection model study in Caenorhabditis 
elegans, showed that pyoverdine penetrates host cells and undermines mitochon-
drial dynamics and triggers hypoxic response thus hinders ATP generation in 
host [118]. Other features of pyoverdine including communicating molecule to 
control biosynthesis of virulence proteins in P. aeruginosa including exotoxin A and 
protease [119]. Iron is essential to sustain bacterial growth thus pyoverdine aids in 
survival of P. aeruginosa in infection site, triggers biofilm formation where, pyover-
dine deficient mutant strains forms fragile biofilm [120]. P. aeruginosa also produces 
another siderophore molecule called pyochelin, however pyochelin has lower affin-
ity for Fe3+ than pyoverdine. However, this pyochelin-iron complex in coordination 
with pyocyanin undergoes oxidative-reductive reaction and contribute to oxidative 
damage (via hydroxyl radical formation) and inflammation in host [121, 122]. In CF 
patients pyochelin found to be involved in inflammation and tissue damage [123].

5. Conclusion

P. aeruginosa ability to easily colonize in host, biofilm formation, synthesis and 
secretion of virulence factors and causing pathogenicity, evading host immune 
defense system, and antimicrobial resistance made it a critical pathogen and needs 
an immediate attention. Secretion of extracellular molecules by P. aeruginosa plays a 
principal role in fitness of bacterial population, establishment of biofilms, infections, 
and pathogenicity in host. To reduce and eradicate P. aeruginosa associated infections 
development of novel antibiotics or antimicrobial agents, QS inhibiting molecules, 
virulence factor neutralizing agents, biofilm disrupting enzymes or/and combination 
treatment strategy with existing antimicrobial agents are of top priority. Further 
to prevent antimicrobial resistance in bacteria, necessary steps need to be taken by 
government organization, hospitals/clinics, health care workers and scientist from 
research institutes to educate children and students in schools, colleges and universi-
ties, people from rural places and developing countries about proper hygiene and 
use and misuse of antibiotics. Also, proper management of antibiotics uses in the 
agriculture and meat industry need to be implemented. This small steps at every level 
will help in minimize the spread of antimicrobial resistance in bacteria and will help 
to cut down catastrophe in both health and economic division and promotes better 
treatment outcome against infectious diseases.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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