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Chapter

VIGOR: A Versatile,
Individualized and Generative
ORchestrator to Motivate the
Movement of the People with
Limited Mobility
Yu Liang, Dalei Wu, Dakila Ledesma, Zibin Guo,
Erkan Kaplanoglu and Anthony Skjellum

Abstract

Physical inactivity is a major national concern, particularly among individuals with
chronic conditions and/or disabilities. There is an urgent need to devise practical and
innovative fitness methods, designed and grounded in physical, psychological and
social considerations that will effectively promote physical fitness participation among
individuals of all age groups with chronic health condition(s) and/or disabilities. This
research is dedicated to achievingVersatile, Individualized, and Generative ORches-
trator (VIGOR) to motivate the movement of the people with limited mobility. Tai-
Chi is a traditional mind–body wellness and healing art, and its clinical benefits have
been well documented. This work presents a Tai-Chi based VIGOR under develop-
ment. Through the use ofHelping, Pushing and Coaching (HPC) functions by following
Tai-Chi kinematics, the VIGOR system is designed to make engagement in physical
activity an affordable, individually engaging, and enjoyable experience for individuals
who live with mobility due to disease or injury. VIGOR consists of the following major
modules: (1) seamless human-machine interaction based on the acquisition, transmis-
sion, and reconstruction of 4D data (XYZ plus somatosensory) using affordable I/O
instruments such as Kinect, Sensor and Tactile actuator, and active-orthosis/exoskele-
ton; (2) processing and normalization of kinetic data; (3) Identification and grading of
kinetics in real time; (4) adaptive virtual limb generation and its reconstruction on
virtual reality (VR) or active-orthosis/exoskeleton; and (5) individualized physical
activity choreography (i.e., creative movement design). Aiming at developing a deep-
learning-enabled rehab and fitness modality through infusing the domain knowledge
(physical therapy, medical anthropology, psychology, electrical engineering, bio-
mechanics, and athletic aesthetics) into deep neural network, this work is transforma-
tive in that the technology can be applied to the broad research areas of intelligent
systems, human-computer interaction, and cyber-physical human systems. The
resulting VIGOR has significant potentials as both rehabilitative and fitness modalities
and can be adapted to other movement modalities and chronic medical conditions
(e.g., yoga and balance exercise; fibromyalgia, multiple sclerosis, Parkinson disease).

Keywords: deep learning, 4D experience, virtual reality, kinetics, active orthosis,
physical inactivity
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1. Introduction

1.1 Motivation

Physical inactivity, particularly among aging adults and home-bound individuals
with chronic conditions and/or disabilities, is a major national concern in the United
States [1]. Regular physical activity, defined as 150 minutes of moderate physical
activity per week [2], supports improved health and decreases the risk of obesity
and chronic disease for people of all ages and abilities. Physical exercise also has
important benefits for individuals with chronic health conditions such as arthritis
[3]; depression [4, 5]; stroke [6]; lower-limb disabilities [7]; fibromyalgia [8, 9];
cardiopulmonary difficulties [10, 11]; multiple sclerosis [12]; Parkinson’s disease
[13]; and vestibular disorder [14]. In addition to physical benefits, engagement in
physical activity provides psychological benefits for these individuals [15, 16].
Despite this evidence, less than half of all adults get the recommended amount of
physical activity on a regular basis [17]. This issue becomes extremely serious
during Coronavirus (COVID-19) pandemic [18]. The associated economic impact
of physical inactivity is significant: annual health-care expenses are estimated at
$860 billion for community-dwelling adults 50 years or older [2] with still addi-
tional workforce impacts [19]. These impacts are compounded by the fact that
80 percent of chronic conditions can be prevented or managed with regular
physical activity [2]. Therefore, there is an urgent need to develop practical
innovative exercise methods that engage individuals at all ages, including those
with chronic health condition(s) and/or disability, increase regular physical activity
levels, and translate to improved health with optimal functional ability and
participation.

As noted above, typical physical activities may not always be feasible for indi-
viduals who suffer from disabilities or diseases, and may increase the risk of new
and exacerbated chronic health conditions, compounded by advanced age. There is
a critical need to tailor physical activity to an individual, based on their underlying
capability, health risks, and movement goals. For example, different individuals
may wish to strengthen different muscle groups, or have specific movement goals
directed by a physical or occupational therapist.

In order to achieve those goals, we propose a Versatile, Individualized, and
Generative ORchestrator (VIGOR) to motivate the movement of people (particu-
larly those with limited mobility) [20]. To Help, Push, and Coach (HPC) users with
various chronic health conditions to participate in restorative physical activities in
the most effective way, the VIGOR system is designed to adapt to ensure an
individualized experience that accounts for the personal, environmental, and social/
cultural characteristics of the user [21]. Figure 1 compares VIGOR with its compet-
itors. The proposed VIGOR is unique in that it can provide a fully personalized user
experience. Software products in the industry using virtual technology to encourage
engagement in physical activity [23–25] include SaeboVR (www.saebo.com/saeb
ovr), Nintendo Wii, and Verapy Therapy VAST (vast.rehab). Similar software
products in Academia include OpenSim (opensim.stanford.edu) and QuaterNet
(Facebook AI Research). Unlike those products, VIGOR integrates Tai-Chi, the
traditional mind–body wellness and healing art [26, 27], with a series of data-driven
computing technologies that will provide customized restorative physical activities
for individuals with a broad range of chronic conditions and functional abilities.
Our premise is that a user-friendly movement HPC system that may be conve-
niently utilized in sitting or standing positions, will empower individuals to increase
their regular physical activity levels, and thus, improve health, functional ability,
and participation in activities of everyday life. In this way, VIGOR emerges as an
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innovative, individualized and generative fitness modality that demonstrates
connection of data, systems, and people for potential clinical benefits [20, 28].

In this research, we propose developing VIGOR within the context of Tai-Chi, a
traditional mind–body wellness and healing art [26–28]. While our methods and
framework can be applied to multiple exercise approaches, Tai-Chi is ideally suited
to people with limited mobility, such as aging population and disabled people. Tai-
Chi has documented benefits in improving balance as well as muscle strength,
coordination, and endurance in multiple populations [26]. In addition, the low-
impact nature of Tai-Chi is ideal for elderly individuals or groups with neuromus-
culoskeletal impairments. This exercise has low risks for musculoskeletal injury and
joint damage while providing the many benefits of exercise.

While Tai-Chi is proven to have many health benefits, the underlying biome-
chanics of different choreography tailored to individual patient capabilities are
difficult to identify. Knowing the “right” strategy for an individual from a kine-
matic trajectory alone is difficult without understanding underlying physiology.
Biomechanical models can be used to determine the kinetics resulting in a desired
kinematic trajectory [29–32], and then to coach the patient to activate the correct
muscles to work toward their movement goals. Joint kinetics are more directly
mapped to underlying muscular strength and capability compared to joint
kinematics [32]. Thus, the incorporation of underlying biomechanics is critical for
personalization of training sessions and mobility targets.

1.2 Rationale for the VIGOR system to address aging and chronic disability

Tai-Chi is characterized by low impact, flowing, and circular movements
[13, 27]. The practice of these movements requires coordination and

Figure 1.
Motivation and rationale for the proposed VIGOR system: a comparison between existing systems and VIGOR
(online video [22]).
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synchronization of a calm yet alert mind and a relaxed body [15, 16, 21]. It has
enormous potential for improving physical and psychological functionality for users
in both clinical and non-clinical settings by allowing flowing movements that offer
body and mind benefits to users [28, 33, 34].

Enabled by deep learning technology, the proposed Tai-Chi based VIGOR offers
several unique advantages as an individualized, effective, sustainable, and restor-
ative fitness modality for users with movement-based chronic health conditions.
The integration of Tai-Chi with four-dimensional (4D: the sensory data includes X-
Y-Z plus a somatosensory signal [35, 36]) virtual-reality technology is both innova-
tive and feasible in that: (1) Complex human movement can be deconstructed into
primitive components/modes and deep learning methods [37] can be employed to
accurately formulate the spatially and temporally dependent kinetic behavior as
well as reconstruct incomplete joint movement or distorted movement caused by
chronic health condition(s) [38]; (2) 4D kinetic behavior can be captured and
reconstructed through modern sensors, actuators, and VR/AR technologies to
generate seamless human-machine interaction; (3) Despite having significant
storage and computation complexity, real-time kinetic analytics is applicable over a
cutting-edge big-data engine and high-performance computing platform.

1.3 VIGOR’s infrastructure

VIGOR aims to enable users an intelligent, four-dimensional (4D), partial con-
trol (e.g., virtual limb, which indicates that VIGOR can be driven by part of the
inputs. In other words, VIGOR can tolerate and compensate for missing input when
part of an input channel(s) is disabled), virtual-reality, and active-orthosis-enabled
generative modality.

Figure 2 shows the infrastructure of the VIGOR system. A deep-learning-based
virtual coach, which is trained by Tai-Chi master’s kinetic data, is the core module
of VIGOR. By applying experience (obtained via deep learning) with other related
knowledge such as biomechanics and medical pathology, VIGOR measures a user’s
movements, evaluates his/her performance in comparison to the Tai-Chi master,
and offers real-time visual and tactile feedback to the user. Far more than an on-site
real-time Tai-Chi instructor, VIGOR also adapts the master movements to accom-
modate a wide range of mobility restrictions and improvements over time.

Figure 2.
Infrastructure of VIGOR.
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The kinetic data for the Tai-Chi master and users are captured by different
sensors, such as Microsoft Kinect and somatosensory sensors [39]. The fusion,
transmission, storage, retrieval, management, and analytics [40] of sensory data are
computationally and storage intensive. In VIGOR, an edge-computing-enabled net-
work is exploited to connect the user with the virtual coach server. An edge server is
employed to store and process the large volume of sensory data in real-time [41].
Integrated with Tensorflow, a deep learning library, VIGOR measures and predicts
kinetic behavior of VIGOR users.

The system also provides the user with a multi-fold and panoramic 4D experi-
ence that includes visual, somatosensory information and direct physical support.
3D reconstruction and visualization with Unity3D allows the user to place them-
selves in a variety of different simulated spaces with a personalized virtual Tai-Chi
coach walking them through Tai-Chi motions in a 3D world, supported by a soft-
actuator based wearable device.

VIGOR is developed following “5S criteria” as follows: (1) Substantiation (or
personalization) - VIGOR can provide user with personalized service according to
their health condition and clinical requirements; (2) Simplicity - even those who are
untrained or uneducated users can freely use VIGOR; (3) Skimpiness - only com-
modity hardware and software are used in VIGOR so that majority of people can
afford it; (4) Scalability - VIGOR can satisfy the requirement of increasing number
of users; (5) Speed - real-time response is needed to satisfy the requirement of
users.

1.4 Research objectives and function modules of VIGOR

The major objective of the VIGOR is to develop a state-of-art deep learning
system to help, push, and coach the people, particularly those suffering frommobile
disability, so that they can get engaged in physical activities.

• For the people who are not able to move due to aging, disability or health issues, a
Helper is needed to support their movement, virtually or physically. This is a
network completion problem, which infers missing vertices (dysfunctional
joints) and edges (i.e., dysfunctional muscles/bones). Section 4 will talk about
the solution to this problem.

• For the people who are reluctant to move, a Pusher is needed to stimulate them
through specific external audio/video/tactile stimulus (e.g., VR/AR, actuator).
The reconstruction of physics stimulus will be addressed in Subsection 2.2.

• For the people who do not know how to move, a Coach is needed to recognize/
score their’ motion and send them real-time feedback/instruction (Subsections
3.2 and 3.3); or design individualized and optimized exercise according to their
health condition or medical requirement. These two problems are motion
recognition (Section 3) and generation (Section 5), respectively.

As a matter of fact, machine learning approaches ignore the fundamental bio-
mechanics law and clinical regulations for human motion and thus may result in ill-
posed problems. Additionally, deeper and wider deep neural networks (DNNs)
often require large sets of labeled data for effective training and suffer from
extremely high computational complexity, preventing them from being deployed in
real-time systems. As a result, there is a need to incorporate domain knowledge into
DNNs [42, 43]. As one of the major contributions of this project, domain knowledge
will be infused into DNNs through data augmentation, customizing loss function, or
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embedding knowledge block into NN as an independent module (e.g., dynamics-
guided discriminator in the motion choreography module).

Enabled by the deep neural network and multimodal human-machine-interac-
tion techniques, the VIGOR system consists of the following function modules:

• Real-time 4D human-machine interaction based on robust data acquisition,
transmission, and re-construction methods (Section 2). It is challenging to
integrate, represent and analyze heterogeneous 4D temporal data in proper
data formats, which is applicable over various affordable hardware
instruments. In this task, a proper uniform data format characterizing the
human kinetics across heterogeneous hardware platforms is studied. In
addition, to facilitate the interaction between user and VIGOR, two-way
communications are investigated.

• Identification of a user’s kinetic movement (Section 3). To help, push and coach
(HPC) users (including people with mobile disability) in real time, VIGOR
needs to identify a user’s kinetic behavior and respond users with prompt
instructions. Major research challenges are (1) the normalization of the kinetics
of users (including the people with limited mobility), (2) the formulation Tai-
Chi movement philosophy using neural network, and (3) the metrics about
movement grading. The technical contributions of VIGOR include: (1)
normalizing sensory data spatially, temporally, and kinetically, and removing
occlusion using spherical interpolation and Kalman filtering algorithms; (2)
deriving reference Tai-Chi kinetic patterns of using temporal neural network
such as long-short term memory (LSTM); (3) grading users’ kinetic behavior
using entropy; and (4) enriching kinetic data using inverse dynamics theory.

• Adaptive virtual limb generation (Section 4). To motivate a user who has had a
limb amputated to move, VIGOR provides the user with a pleasurable
sensation experience that the limb is still there by generating a virtual limb. To
this end, a major challenge is the difficulty in generating the adaptive motion of
the virtual limb based on the observed kinetic behaviors of functional body
parts. In this task, deep neural network regression is designed for real-time
virtual limb generation and then time series prediction model [44] is used to
improve the consistency of generated kinetics sequence. A hierarchical visible
autoencoder is developed and evaluated for the adaptive virtual limb
generation according to the kinetic behavior of functional body-parts, which
are measured by heterogeneous kinetic sensors. The virtual limbs can be
reconstructed on VR/AR platform and active orthoses [45].

• Creating individualized movement choreography (Section 5). A unique feature of
VIGOR is its ability to create customized movement choreography for individual
users based on their observed health conditions. One of the most challenging
issues in deep learning enabled choreography is how to balance the training
reliability and the creativity of neural network. In consideration of complex
body action coordination in human motion, visible deep neural networks
integrating biomechanics and DNNs are developed to generate Tai-Chi
choreography. Specifically, knowledge-guided neural network architectures of
LSTM, generative adversarial networks (GAN) [46], and their combinations
with multiple data modality are designed to create customized movement
choreography for individual users based on their health conditions and clinical
rehabilitation requirements. New training methods based on the polynomial-
based Hessian-free Newton–Raphson optimizer [47] is also created.

6

Smart and Pervasive Healthcare



Each research objective along with the specific challenges and tasks will be
described in more detail in Sections 2–5 individually.

2. Real-time 4D human-machine interaction

The challenge of Objective 1 is to provide real-time (prompt HPC feedback) and
scalable (to support multiple-user) human-machine interaction environment based on
affordable hardware instruments with heterogeneous modality. To address the chal-
lenge, real-time 4D data acquisition and two-way communication are investigated.

2.1 Acquisition of 4D sensory data

Figure 3 shows the basic input and output equipment of VIGOR. A Microsoft
Kinect and a foot pressure sensor are used as input equipment to acquire kinetic
data (or 4D sensory data) of an VIGOR user. Virtual reality goggles, such as the
Oculus Rift or HTC Vive, tactile actuators, and active orthoses are used as output
equipment that work together to depict 4D feedback to the user.

2.1.1 Acquisition and processing of kinematic data

The Microsoft Kinect collects the kinematic data of the Tai-Chi master (for
training purposes) and the user. Through Kinect, we can obtain joints’ transient

position x, y, zh ikt and corresponding Quaternion rotation [48] cos θ
2

� �

, sin θ
2

� �

v!
D Ek

,

where θ is an angle around unit axis v!, t is the time, and k is the joint identifier.
Quaternions [48] are considered to represent the rotation of a rigid body in 3D
space using four degrees-of-freedom (DOFs).

Quaternions are superior to many other traditional rotation formulation
methods because they completely avoid gimbal-lock [49]. In VIGOR, Quaternions
are used in 4D reconstruction over Unity3D platform and acquisition of kinetic
signal. On the other hand, as a Quaternion is specified with reference to an arbitrary
axis vector it is not a good choice in rotation recognition. In VIGOR, Euler angles
α, β, γh i, which represent the angles rotating around axis Z, X, Y respectively
(denoted as yaw, pitch, rollh i in some literature) are adopted in gesture recognition.

Figure 3.
Input&output instruments (the optional hardware is highlighted in light color).
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VIGOR stores the captured kinetic data in JavaScriptObjectNotation (JSON) format,

which includes joint position x, y, zh ikt

� �

, quaternion rotation cos θ
2

� �

, sin θ
2

� �

v!
D Ek

t

� �

,

tracking status (0: invisible; 1: referred; 2: observable), and potentially forces fkt

� �

and

moments, etc. Tracking status indicates whether or not the joint is observable by the
sensor. The forces andmoments are derived by inverse dynamics analysis.

Due to measurement error or unavoidable occlusion, a joint is not always
observable or tractable by the kinetic sensor. Spherical linear intERPolation
(SLERP) [50] and Kalman filtering techniques (be discussed in Section 3.1) are
employed to compensate the missing data. As illustrated in our preliminary online
video [22], SLERP can effectively address those short-term missed-tracking joints
(namely tracking status = 0 or 1).

2.1.2 Acquisition of tactile data

Besides Kinect, other acquisition instruments such as accelerometers, orienta-
tion sensors, and strain gauges [39] are also considered for the VIGOR system. As
indicated above, a foot pressure sensor is used to obtain the ground reaction force Ft
for inverse dynamic analysis. Furthermore, electromyography (EMG) [39] is selec-
tively employed to evaluate and record the electrical activity produced by skeletal
muscles. The EMG signal is characterized by a frequency range of several hertz to
over 1 kHz and by amplitudes ranging from fractions of a microvolt to a few
thousand microvolts. Electromyographic signals can be analyzed to detect activa-
tion level or to analyze the biomechanics of users’ movement. To acquire high-
quality EMG signals from localized muscle region, identification of localized muscle
region of users, noise reduction and grounding practices (to eliminate extraneous
electrical noise), electrode site preparation and placement (to minimize the detec-
tion of irrelevant bioelectrical signals) and appropriate differential signal preampli-
fication and preliminary signal conditioning (to further enhance signal-to-noise
ratio) can be conducted. EMG signals can be classified to detect movements of limb.
Our active/powered orthosis system, which enables users for movement, has EMG
and Internal measurement Unit (IMU) sensors. Those sensors can monitor body
movement and muscle activity and send the measurement data to the server.

2.2 Reconstruction of 4D data

4D kinetic feedback/instruction is reconstructed through virtual reality, tactile
actuators, and motoring system that drives the active orthosis. (1) VR/AR facility,
which can visualize the kinetics of human body in Quaternion format [48, 49]
(acceptable by Unity3D VR/AR SDK). (2) Tactile actuators, through which VIGOR can
directly guide users with somatosensory feedback. Tactile actuators potentially used in
VIGOR include Eccentric Rotating Mass (ERM), Linear Resonant Actuator (LRA),
Piezo, and Electro-Active polymers (EAP) with high fidelity of sensations, and excel-
lent durability. (3)Active orthosis [51], which enables users with direct physical support
through functional electrical stimulation (F.E.S) [51] or robotic exoskeletons [45].

2.3 Developing communication and edge-computing protocols

2.3.1 Real-time, two-way communication

Two-way communications are of key importance in the proposed system, since
the information needs to be exchanged in a real-time manner. The challenges of the
communication protocol for the proposed VIGOR include: (1) Real-time

8

Smart and Pervasive Healthcare



communication: Information in the VIGOR system needs to be conveyed in real
time. If there is a significant delay in the communications, synchronization between
the Tai-Chi master and user will be lost and the user will experience a disturbed
rhythm. (2) High communication throughput: When there are many users, all the
corresponding multimodal sensory data and feedback information need to be con-
veyed in the network, thus incurring a substantial requirement for communication
bandwidth. (3) Two-way communications: The communications are between the
virtual Tai-Chi master and users with mutual interactions. Therefore, it could be
sub-optimal if one-way communications are considered separately. (4) Dynamics
awareness: The communications may be optimized together with the physical
dynamics of the virtual Tai-Chi master and users (namely the motions).

To address the above challenges, first, VIGOR can be modeled as a cyber phys-
ical system (CPS) [52, 53] and then the bandwidth can be analyzed for controlling
the physical dynamics. Last, the detailed communication protocol can be designed
and evaluated with the whole system.

2.3.2 Deployment of VIGOR on affordable hardware using edge computing

Edge computing enables real-time knowledge generation and application to occur
at the source of the data close to user device [54, 55], which makes it particularly
suitable for the proposed latency-sensitive system. An edge server can be adapted to
serve multiple users through interaction with their devices. There are communication
and computing trade-offs between the edge server and each user device. Data could
either be locally processed at the user device or else be transmitted to and processed at
the edge server. Different strategies introduce different communication costs,
resulting in different delay performance. To provide the best quality of experience for
users, the following tasks are involved: (1) Identification and modularization of com-
puting tasks: the computing tasks of data preprocessing, kinetic movement recogni-
tion, and individualization of movement choreography need to be identified and the
corresponding computing overheads (CPU cycles, memory) need to be determined.
(2) Design, prototyping and enhancement of offloading schemes: Based on the results
of bandwidth and delay analysis as well as delay performance requirement, computa-
tion offloading schemes need to be developed to determine which computing tasks
should be performed locally at the user device and which computation tasks should be
offloaded to the edge server. As shown in Figure 4, an illustrative concept demon-
stration about edge-computing-enabled VIGOR is given in our online video [56].

Figure 4.
Edge-computing-enabled VIGOR deployed on commodity hardware (demo in online video [56]).
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3. Identification and scoring of user’s kinetic movement

To help, push and coach (HPC) users with movement disabilities in real time,
VIGOR is featured with: (1) an enriched dataset by introducing kinetic data (spec-
ified by time series [57–59]), which is derived from the measured kinematic data,
into the neural network; (2) compensating with any missing kinetic data introduced
by users’ disability. Identification of a user’s kinetic behavior during movement
mainly involves the following research tasks:

3.1 Preprocessing pipeline for kinetic movement identification

Data preprocessing operations play an indispensable role in VIGOR because:

• Input data is of a heterogeneous nature. For example, different users have
variable sizes; sensors may have various viewing angles; users may not always
be located in a deterministic position; and the two time-series data sets may not
be synchronized. As a result, scaling, rotating, translating, and dynamic time
warping (DTW) are needed to normalize the original input data.

• The input data set may be incomplete. For example, occlusion inevitably leads to
missing data; Musculoskeletal forces and moments exerted over the joints from
muscles cannot be directly obtained from the sensors [60]; some input
channels are not enabled (e.g., partial control) for users with mobility-based
chronic conditions (i.e., partial control). In the implementation of VIGOR,
Kalman filtering, inverse dynamics, and time-series prediction are employed to
handle the incomplete data [35, 61].

• The measurement-induced noise is significant.

Figure 5 shows the flowchart of data preprocessing of VIGOR [36, 41, 62, 63].

θ, v!
� �

, where θ is the rotation angle about axis v!, indicates a joint’s Quaternion

rotation; x, y, zh i denotes a joint’s position; f t indicates a joint’s applied force,
which is derived from inverse dynamics; α, β, γh i indicates a joint’s rotation under
normalized Joint Coordinate System (JCS) – Euler angle. Its main implementation
techniques include data fusion, inverse dynamics analysis, spatial normalization,
Kalman filtering, and reconstruction of disable input channels. The kinetic data is
stored in JSON format.

Figure 5.
Flowchart of VIGOR’s Preprocessing for kinetic movement identification.
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3.1.1 Formulating musculoskeletal kinetic features

Inverse dynamics analysis (IDA), which is derived from Newton-Euler Equa-
tions [60, 64–68], aims to calculate unknown kinetic information (the net joint
forces and moments) from measured kinematic information (e.g., position, veloci-
ties and accelerations of joints) and measured kinetic information (e.g., ground
reaction forces). As illustrated in Figure 5, given joint locations xi, yi, zi

� 	

, Euler
rotation αi, βi, γih i where i denotes the identity of a joint, and ground-reaction force
F, the joint force fi and other musculoskeletal kinetic features can be computed
via IDA.

As illustrated in Figure 5, VIGOR employs inverse dynamics to compute internal
joint forces and moments with given ground reaction forces. Inverse dynamics is
implemented by dividing the human body into multiple connected rigid bodies
[69, 70], which correspond to relevant anatomical segments such as the thigh, calf,
foot, arm, etc. The model’s anthropometric properties (e.g., the mass and moment
of inertia) are derived from statistical analysis. In addition, it is assumed that each
joint is rotationally frictionless. The proposed methods in Figure 5 can be custom-
ized to investigate the biomechanical response of human motion by considering
different health issues such as cerebral palsy, poliomyelitis, spinal cord injury, and
muscular dystrophy [67].

3.1.2 Spatial normalization

As addressed in Section 2, we can acquire joint positions and rotations, which are

denoted as x, y, zh i and θ, v!
D E

respectively. Both need to be normalized to ease and

boost the gesture recognition: (1) Normalization of Joint Rotations through the inter-

changeable conversion among quaternion θ, v!
D E

, Euler angle α, β, γ, and joint

positions x, y, zh i [71]. (2) Normalization of Joint Positions using bone scaling [61],
axis-oriented rotating of view angle, origin translating (which makes a user posi-
tioned at the center of a sensor), re-constructing x, y, zh i according to joint rotation
[49], and polishing the kinetic curve using a Savitzky–Golay filter. Our preliminary
experimental results demonstrate that the normalization techniques addressed
above can greatly improve the quality of data (less noise and smoother kinetic
performance) so as to achieve higher recognition [36, 41, 61].

3.1.3 Recovering occlusion-induced missing data

During sensory data acquisition, unavoidable occlusion may introduce missing
data or lost-tracking. VIGOR employs spherical linear interpolation (SLERP) to fix
the issues caused by short-term occlusion [35], and employs Kalman filter [72–74]
to fix the missing information (including both position and rotation) caused by
long-term occlusion. A preliminary comparison between the raw and preprocessed
physical rehabilitation kinematic data is available on our online video [62, 63].

3.1.4 Normalization of the kinetics of users with limited mobility

In order to recognize the kinetic movement of users with disabilities, VIGOR
normalizes their kinetic data by compensating the missing data incurred by disabled
input channels: in the event that several input channels are disabled, the VIGOR
model is able to construct the void input channels by taking the advantage of
correlation among all inputs. Compensation can normalize the input data so that
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VIGOR can achieve higher recognition rate, and its psychological and physiological
benefits to users are also under our investigation. Figure 6 demonstrates the appli-
cation of deep neural network [37, 75] on compensating the missing channels
introduced by limited mobility. As our preliminary contribution, multilayer
perceptron (MLP), temporal convolutional neural network (tCNN) [46], and
autoencoder methods are employed to construct disabled legs and the resulted
recognition accuracy is improved [20].

3.2 Entropy-oriented scoring of human motion

The proposed research employs entropy [76] to grade a user’s movement behav-
ior, which is defined as a times series of joint kinetic features such as positions and
rotations. The distance/dissimilarity between two time series can be measured in
time-domain or frequency-domain [58, 59]. In time-domain, Approximate Entropy
(AppEn) and Sample Entropy (SampEn) [76, 77] can be employed to formulate the
regularity and predictability about the normalized Euclidean distance between the
time-series of users’ and reference data.

As our preliminary work, Figure 7 compares the entropy values of an advanced
Tai-Chi user and a beginner. The whole Tai-Chi set is divided into multiple sub-
sequence (or clip), which consists of 25 to 100 frames, and the comparison is made
clip-by-clip. In Figure 7, each subsequence consists of 25 frames. It is observed that
an advanced Tai-Chi user has smaller entropy than a beginner. Besides the overall
entropy of a user, VIGOR also provides the entropy of each joint so that the virtual
Tai-Chi coach can provide accurate instruction to users.

Entropy or cross-entropy analysis can be performed for the time-series in the
frequency domain which is derived from discrete Fourier transformation (DFT) or
discrete wavelet transformation (DWT) [58, 59]. A hybrid metric that combines
both time-domain and frequency-domain information may be considered as well.

3.3 Human motion identification based on machine learning

Many model construction techniques have been developed for time series
recognition [59, 78, 79], including K-Nearest-Neighbor (KNN) [80], Support
Vector Machines (SVMs) [81, 82], neural networks, decision trees [83, 84],
Bayesian networks, the Hidden Markov model (HMM), LSTM-RNN, etc.

In this work, the recognition accuracy of the aforementioned classifiers with
respect to three benchmark datasets was determined: Dataset I: UTD Multimodal
Human Action Dataset (UTD MHAD [85]), Dataset II: UTKinect-Action3D [86], and

Figure 6.
Normalizing the kinetics of user with limited mobility: (a) Compensation of disabled input channels via Deep
Neural Network; (b) tCNN-enabled compensated kinetic status of a wheel-chaired user, who receives “virtual
functional legs” (in yellow color).
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Dataset III: Tai-Chi Yang-Style 24 movement [22, 41] (an in-house Kinect skeletal
dataset collected for Tai-Chi training). The experimental results showed that SVM
and LSTM-RNN surpasses the other classifiers; particularly, LSTM-RNN has a
superior recognition accuracy in case of limited number of training data (e.g., 200
training samples). However, LSTM-RNN suffers from unsatisfactory time perfor-
mance [35]. Scalable algorithms for temporal neural network such as LSTM-RNN
and temporal convolutional network (tCNN) need to be developed [46].

In this work, a musculoskeletal biomechanics guided loss function is used to
formulate the objective of kinetics classifier:

L θð Þ ¼ L f X, θð Þ, y
� �

þ ϱR θð Þ, (1)

where y is the pre-determined movement identity; f (X, θ) is predicting

movement identity of kinetics sequence X ¼ h xkt , y
k
t , z

k
t

� 	

, fÞkt i
� 
tm

t¼t0

n

(as defined in

Figure 5, t is time step ranging from t0 through tm, k is joint’s identity); θ∈ℜn

indicates the parameters (weight and bias) of neural network;R θð Þ : ℜ
n ! ℜ is the

regularizer, whose importance is controlled by regularization strength ϱ∈ℜ; and
L θð Þ : ℜ

n ! ℜ is actually regularized loss. The corresponding optimization method
is called batch optimizer.

3.4 Reconstruction of 4D instruction/feedback for users

VIGOR can be also regarded as a real-time coaching system to help users
improve their physical rehabilitation movement for optimal clinical effect.
According to the measure and recognition result discussed above, VTCS generates
real-time 4D instructions or guidance to users over virtual reality or augmented
reality (AR) platform, as shown in the online video [22, 87, 88] addressed in our
preliminary work.

4. Adaptive virtual limb generation

To relieve the physical and psychological suffering of people with limited
mobility, VIGOR develops an adaptive (versatile to various types of disability) and

Figure 7.
AppEn and SampEn for 25 joints: Comparison of an advanced users and beginner (Each subsequence consists of
25 frames): beginner has larger entropy.
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full-body-driven virtual limb generation system (all measurable body-parts will be
used to formulate virtual limbs). The related technical contributions include: (1)
According to specified kinetic script (e.g., dancing, running, etc.) and users’ phys-
ical conditions, a hierarchical network is extracted from human musculoskeletal
network, which is fabricated by multiple body components (e.g., muscles, bones,
and joints, etc.) that are biomechanically, functionally, or neurally correlated with
each other and exhibit mostly non-divergent kinetic behaviors. (2) The generated
limb can be reconstructed over the VR/AR system, tactile actuator system, and
motoring system.

4.1 Pipeline of adaptive virtual limb generation

The proposed work employs deep learning techniques such as autoencoder to
generate virtual limbs [89] according to the observed kinetic behaviors of other
body parts based on the following hypothesis: (1) The human body consists of
multiple components such as muscles, bones, and joints, which are correlated with
each other mechanically, neurally, and/or functionally. (2) Deep learning tech-
niques such as autoencoder can be used to capture the kinetic pattern of human
movement.

Figure 8(a) shows the flowchart of the adaptive virtual limb generation, which
consists of the following critical aspects: (1) Formulating human musculoskeletal
network [91] according to the functional, mechanical and neural correlation
between each body component (muscle, joint, or bone). (2) Deriving hierarchical
network (in the configuration of forest data structure) from the human musculo-
skeletal network according to the physical status of users, where the virtual limbs
will form the leaves of a hierarchical tree. (3) Building visible autoencoder neural
network according to the hierarchical network so that the kinetic behavior can be
constructed according to the kinetic behavior of user’s functional body parts mea-
sured by heterogeneous sensors. (4) Training the addressed visible autoencoder
neural network according to specific human movement script such as walking,
jogging, dancing, or any other physical activity. (5) Representing kinematic behav-
ior about virtual limbs using VR/AR, tactile actuators, and active orthoses, which
can directly stimulate users. Figure 8(b) shows the screenshot of virtual limb
generation.

4.2 Multivariate time series-based kinetics generation of Virtual Limbs

Adaptive and full-body-driven virtual limb generation can (1) engage various
individuals with limited mobility in regular physical activities, (2) accelerate the
rehabilitation of patients, and (3) release users’ phantom limb pain.

Figure 8.
(a) The flowchart of the proposed adaptive virtual limb generation based on multi-correlation hierarchical
autoencoder; (b) Snapshot of virtual limb generation – walking by moving arms (online video [90]).
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Virtual limb generation is a generative time series problem. Figure 9 shows the
pipeline of kinetics generation (a multivariate time-series) and correction of kinetic
sequence of the virtual limbs.

• Ymeasured
t ¼ f xit, y

i
t, z

i
t

� 	

, fÞit
� 	

gtmt¼t0

�

denotes the measured kinetic sequence of
functional body parts. As defined in Figure 5, t is time step ranging from t0
through tm, k is the identity of joints that are related to function body parts.

• Yvirtual
t ¼ f x j

t , y
j
t , z

j
t

D E

, fÞ
j
t

D E

gtmt¼t0

�

denotes the generated kinetic sequence of

virtual limbs, t is time step ranging from t0 through tm, j is the identity of joints
that are related to virtual limbs.

As illustrated in Figure 6, we can generate the the kinetics of the wheel-chaired
Tai-Chi practitioner according to the movement of his/her arms, which are

functional and healthy. This work employs deep neural network to generate Yvirtual
t

using Ymeasured
t :

Yvirtual
t ¼ f Ymeasured

t , θ
� �

(2)

where f Ymeasured
t , θ

� �

is the output of deep neural network.

4.2.1 Loss function for the Generation of virtual limbs’ kinetics

In this work, a musculoskeletal biomechanics guided loss function is used to
formulate the objective of generated virtual limbs’ kinetics:

L θð Þ ¼ L Yvirtual,Y
� �

þ ϱR θð Þ þ Lbiomechanics Yvirtual
� �

: (3)

In Eq. (3), (Yvirtual, Y) indicates labelled training data; Yvirtual is the expected
kinetic of virtual limbs; θ∈ℜn indicates the parameters (weight and bias) of neural
network; R θð Þ : ℜ

n ! ℜ is the regularizer, whose importance is controlled by

regularization strength ϱ∈ℜ;Lbiomechanics Yvirtual
� �

denotes the bio-mechanics viola-
tion of generated kinetics with weigh γ ∈ℜ and this work uses kinetic imbalance of
human body to measure Lbiomechanics; and L θð Þ : ℜ

n ! ℜ is actually regularized loss.

4.2.2 Correction of generated kinetics using time-series prediction model

The kinetic sequence of virtual limbs does not behave smoothly. This work

corrects Yvirtual
t using Auto-Regressive Integrated Moving Average (ARIMA) [44]

time-series prediction model. ARIMA model is fitted to time series data for pattern
recognition and forecasting. The AR part of ARIMA indicates that the evolving
variable of interest is regressed on its prior (or historical) values. The MA part

Figure 9.
Generation and correction of the kinetics of virtual limbs.
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indicates that the regression error is actually a linear combination of error terms
whose values occurred contemporaneously and at various times in the past. The I
(for “integrated”) indicates that the data values have been replaced with the differ-
ence between their values and the previous values. ARIMA is defined as:

Yvirtual ∗
t ¼ cþ

X

p

k¼1

ϕkY
virtual
t�k þ

X

q

k

ψkεt�k þ εt (4)

where Yvirtual
t is the differenced series (it may have been differenced more than

once). The “predictors” on the right hand side include both lagged values of Yvirtual
t

and lagged errors. Eq. (4) is also called ARIMA(p, d, q) model, where p is the order
of the autoregressive part; d is the degree of first differencing involved; q is the
order of the moving average part.

Any time series may be split into the following components: base Level, trend,
seasonality and error. The coefficient of the ARIMA model is determined through
autocorrelation [44] and the correlation of the series with its previous values.

4.3 Formulating the kinetics of virtual limbs using the measured kinetics of
functional body parts

As described in Eqs. (2) and (4), the generation of virtual limb kinetics consists
of two steps: (1) create preliminary kinetics of virtual limbs according to the
measured kinetics of functional body parts; and (2) correct the preliminary kinetics
using time series prediction models such as ARIMA. This subsection will focus on
Step (1) because it faces more technical challenges.

4.3.1 Configuration of network architecture according human anatomy

It is known that any system can be regarded as a hierarchical structure (i.e.,
system ! subsystem ! sub-subsystem, ...). As illustrated in Figure 10(a), the
human body system can be always divided into sub-components that are
mechanically correlated. Inspired by the Bayesian network, we propose a visible
and hierarchical neural network (VHNN), which is derived from human anatomy,
to accurately formulate a system. As illustrated in Figure 10(b), a sample visible
and hierarchical neural network, which is directly derived from the human body

Figure 10.
(a) Hierarchical human anatomy; (b) visible and hierarchical neural network derived from human anatomy.
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system, is employed to specify the musculoskeletal kinematics. The VHNN can
be employed in virtual limb generation, 4D kinetic behavior recognition, and
individualized Tai-Chi choreography (to be discussed in the remaining sections).
Preliminary experimental results demonstrate that VHNN is superior to a classical
neural network from the point of view of training speed and stability.

4.3.2 Example: generating virtual legs based on arm movement using VHNN

A neural network is trained to generate the kinetic status of hip, knees, and feet
according to the kinetic status of shoulders, elbows, and arms captured by 4D
sensors [90]. As illustrated in Figure 11 (a)–(d), four network architectures are
investigated in this research: (a) multiple layer perceptron (MLP); (b) denoising
autoencoder (a classical autoencoder architecture); (c) visible and hierarchical neu-
ral network with two subsystems (VHNN2); and (c) VHNN with four subsystems
(VHNN4). It can be observed that VHNN splits the input tensor and then feeds the
split tensor into multiple smaller, parallelized autoencoders. Thus, data for each
joint can be calculated in parallel with their own respective autoencoder. The afore-
mentioned parallelized autoencoder pipelines are simplified stacked autoencoders,
allowing for optimization of specific, key tasks rather than one large task. A video
playlist of the generation of virtual legs based on VHNN may be found at [92].

As illustrated in Figure 9, the generated kinetics of virtual limbs can be
corrected using time-series models such as ARIMA.

As illustrated in Table 1, the proposed VPNN architecture has proven to have
overall superior results compared to previous work. Decreased training time com-
pared to previous autoencoders architectures can be observed due to the
parallelization of simpler autoencoders, increasing efficiency by easing optimiza-
tion. This is done by allowing autoencoders to train on specific gestures in a whole
movement. In addition, it does not exhibit data-hungry tendencies that state-of-
the-art models exhibit, allowing it to be trained on small amounts of data.

Lower ground truth error can be seen in the VPNN-AE-2 versus VPNN-AE-4.
This is due to training data having no anomalies that real-time data can exhibit.
While VPNN-AE-2 with single-correlation works better when testing against
ground truth data, VPNN-AE-4 with double-correlation works better in real-time as
the patient may not follow the Tai-Chi movements correctly. This causes worse
ground truth error as the added complexity of the architecture increases noise

Figure 11.
Generation of virtual legs from moving arms using various architecture: (a) MLP; (b) denoising autoencoder
(a classical architecture); (c) two thread (subsystem) visible and hierarchical autoencoder neural network
(VHNN-AE-2); (d) four-thread VHNN (VHNN-AE-4) (notes: LL-LA indicates virtual left-leg induced by
left-arm; LL-RA indicates virtual right-leg induced by right arm) (online video: [92]).
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during output, but enables better patient-error tolerance. Because of this additional
noise produced of VPNN-AE-4, improvements through larger training datasets,
more sophisticated pre- and post-processing of data, as well as improved NN
architecture could be achieved.

4.4 Construction of virtual limb using active orthosis

In order to provide users with physical support, the generated virtual limb can be
re-constructed on motoring system to drive Hip–knee–ankle–foot orthoses
(HKAFOs) [97, 98]. Paralysis of hip abductor muscles is one of the most common
reasons for prescribing HKAFOs. They can incorporate flexion–extension and abduc-
tion–adduction control and have free or locking joints [99]. Different from passive
and semi-active orthoses, the HKAFOs have basically built-in power supplies, one or
more actuators for moving the joint, the sensors for getting feedback data [97].

The designed active orthosis is shown in Figure 12(A). Knee and ankle are
considered rigid; but with locking mechanisms located at the hip and knee joints,
and these parts can move anytime person desires. Therefore, in consequence of any
adverse motion, the limb will be protected from harm. Also, in the active orthosis,
the system acts from the hip zone and only performs “flexion” and “extension”
motions. The HKAFO has two mechanical structures: (1) the gear and T type
deflector reducer mechanism to transmit the generated torques of an actuator to the
hip joints; and (2) pulley and four-bar mechanism, which is used for transferring
the generated torque to the knee joints. With the mechanical system used for the
motor to move in both directions, also provided power save, it is being aimed to

NN architecture Training

time per step

Training time for

1 K epochs

Convergence

in epoch

Ground

truth error

Online

video

MLP NA NA 250 9515.51 [93]

Denoising Autoencoder 108 � 110 μs 9 m 15 s 1000 2107.46 [94]

VPNN-Autoencoder-2 30 � 31 μs 2 m 44 s 500 276.68 [95]

VPNN-Autoencoder-4 52 � 57 μs 4 m 37 s 800 366.15 [96]

Table 1.
Time-performance of virtual-legs generation using visible and hierarchical autoencoder neural network
(VHNN), which is derived from human anatomy (Intel Core i9-7900X, 1x NVIDIA GTX1080 Ti, 64GB
RAM; MLP does not employ GPU).

Figure 12.
Hip-knee-ankle-foot-orthosis (HKAFO): (A) system configuration, with T-type deflector reducer; (B) control
circuit (online video: [98]).
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reduce battery consumption to minimum which was a huge problem in these
devices. Illustration of the control circuit is shown in Figure 12(B). The patient’s
intention to perform a flexion or extension motion is detected by both EMG and
accelerometer sensors. In order to determine the last location of the patient after
movement, physical feedback is utilized from the mechanical system. Adding the
new ankle joint to HKAFOs for real-time virtual limb can also be considered.

The EMG signals may be subject to preprocessing to remove unwanted interfer-
ence; the most common sources of interference are power line harmonics and motion
artifact from electrode movement. As myoelectric signals have a time sequence with a
random number of elements, it is not practical for classification. Therefore, the signal
sequence should be mapped to feature vectors. Feature vectors of EMG signals are
classified to detect which movement produces specific results. Deep neural networks,
fuzzy logic, finite state machine and support vector machine, etc. may be adopted as
classifiers. In this work, the Finite State Machine (FSM) was chosen as a classifier.
The FSM consists of a status set, input, output, event set, and state transition func-
tions. The behavior of each system’s state is characterized by a possible system state.
Here, the transitions between output states are provided, depending on the input
variable and the present state of the system. The EMG signals and the accelerometer
data collected from both legs are classified using the FSM method. The result of this
classification is used for three different situations for actuator input. These situations
are: the patient stops, moves right leg or moves left leg, respectively.

5. Individualized movement choreography

Different users have different health statuses and clinical requirements. VIGOR
employs generative deep neural network architecture to create initiative and
individualized Tai-Chi movements [26] to benefit users in the most effective way
[100–102]. The most challenging issue in deep learning enabled choreography is how
to balance the training reliability and the creativity of neural network. In this work,
we propose the following techniques: (1) visible neural network, which incorpo-
rates biomechanics into the neural network, is employed to formulate the genera-
tive movement; (2) only mechanical property such as joint/muscle force and
moment is used to measure the generative movement; (3) second-order optimizer is
used to speed up the training the neural network.

5.1 Tai-Chi choreography based on LSTM-RNN

In this work, Long Short-Term Memory type of RNN (denoted as LSTM)
[103, 104] is employed to design individualized Tai-Chi choreography [26].
Human3.6M dataset (high quality 3D joint positions and rotations at 50FPS) and
our in-house dataset (acquired by Microsoft Kinect V2, including joints’ XYZ and
Quaternions, 24-30FPS) are used as the training data. The Tai-Chi movement is
created clip by clip (or subsequence by subsequence) according to users’ health
conditions and their clinical rehabilitation requirements [20].

Figure 13 shows the frame-work of LSTM-based Tai-Chi choreography design.
A Tai-Chi movement (or sequence) is partitioned into multiple subsequences (aka a
clip or clips). A seed subsequence, which can be generated randomly, is fed into the
trained model. The output token is regarded as the succeeding subsequence that is
fed back into the model for the following subsequence, as a result a creative Tai-Chi
sequence can be created clip-by-clip. Four thread visible and hierarchical
AutoEncoders [106] are used to reduce problem dimensionality. The resulting
individualized Tai-Chi choreography [100–102] is integrated into the VR or AR
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environment [88] from which users can learn. Online video [105] shows a sample
Tai-Chi choreography. Compared to other deep learning-enabled choreography
projects [107], the proposed method may have faster training speed and be more
problem-oriented because (1) the geometric configuration of human anatomy is
kept by employing Joint-coordinate systems such as Euler angles. [36, 41], and (2)
human biomechanics are preserved by introducing kinetic features [41, 108].

5.2 Movement choreography based on visible GAN

LSTM-based choreography suffers from relatively large accumulated error and
lacks a global picture of Tai-Chi choreography. As an effective deep generative model,
Generative Adversarial Networks (GANs) learn to model distribution either with or
without supervision for high dimensional data (images, texts, audios, etc.), and have
been gaining considerable attention inmany fields [109–111]. In VIGOR, GANsmay be
considered to generate novel Tai-Chi movements by simulating a given distribution.

As illustrated in this work, conventional GAN such as DCAN [46], suffers from
frequent modal collapse during the training state, particularly on generator side.
The discriminator often improves too quickly for the generator to catch up, which is
why we need to regulate the learning rates or perform multiple epochs on one of the
two networks. To balance the training of generator and discriminator for decent
output, this work investigates the following strategies: (1) Application of Wasser-
stein distance to formulate the loss function [46, 112]. (2) Application of visible
neural network by incorporating the biomechanics theory (inverse dynamics and the
transient dynamics simulation of human body [60, 68]) in the formulation of
generator and discriminator. The neural network is personalized using boundary
and initial conditions of human dynamics.

Figure 14 shows the pipeline of GAN-enabled human movement choreography
system. A generator G generates kinematic data out of latent vector, and a discrim-
inator D estimates the probability that a sample came from the training data rather
than G. Fed with latent vector, which is randomly generated in the beginning and
derived from the transient dynamics simulation of human body thereafter, the
generator generates a series of personalized and creative Tai-Chi kinetic subse-
quence to fool the discriminator. The discriminator is trained to discriminate
between “real” Tai-Chi kinetic sub-sequences (from the training set) and “fake”
Tai-Chi sub-sequence generated by the generator. Because the generator is fed with
deterministic simulated data, an equilibrium of the “adversarial game” between the
generator and discriminator can be reached much easily.

In this work, a musculoskeletal biomechanics guided loss function is used to
formulate the objective of discriminator:

L θð Þ ¼ L f X, θð Þ,Yð Þ þ ϱR θð Þ þ γLbiomechanics f X, θð Þð Þ þ ηLaesthetics f X, θð Þð Þ (5)

Figure 13.
The pipeline of LSTM-basedmotion chorepgraphy (online video of LSTM-basedTai-Chi Choreography [88, 105]).
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where {X, Y} indicates labelled training data; f (X, θ) is predicting output of
neural network; θ∈ℜn indicates the parameters (weight and bias) of neural network;
R θð Þ : ℜ

n ! ℜ is the regularizer, whose importance is controlled by regularization
strength ϱ∈ℜ; same as Eq. (3), Lbiomechanics(f (X, θ)) denotes the bio-mechanics
violation of choreography with weigh γ ∈ℜ; Laesthetics(f (X, θ)) denotes the violation
of athletic elegance violation about the designed choreography with weigh η∈ℜ.

Figure 14 also illustrates that the generated kinetics needs to made temporally
consistent according to specific time series prediction models such as ARIMA
(Eq. (4)), LSTM, and Fast Fourier Transformation (FFT).

5.3 Polynomial-based Hessian-free Newton–Raphson optimizer

Many deep-learning-enabled applications suffer from training data scarcity.
Various strategies have been investigated to overcome this limitation. Besides
visible neural network, polynomial-based Hessian-free Newton-Raphson algorithm
(poly-HFNR) [69, 113] is proposed to deal with data scarcity issue by speeding up
the NN learning efficiency. The superiority of poly-HFNR optimizers includes: (1)
A fewer number of training epochs in NN configuration than first-order-conver-
gence optimizers such as stochastic gradient decent (SGD) algorithms; (2) Less
computation and storage complexity (O(N) where N is the degree-of-freedom of
neural network) than typical implementation of Newton-Raphson based algo-
rithms; (3) Non-convex tolerance; and (4) Circumventing the explicit formulation
of the Hessian matrix and the iterative/direct solution to Newton’s equations (for
optimization) during the training process of the neural network.

Poly-HFNR based on Neumann-series-based (Neumann-poly-HFNR) and poly-
HFNR based on generalized least-squared polynomial (GLS-poly-HFNR) [47, 69,
113, 114] have been developed and critically assessed with respect to benchmark
problems such as iris-classification, air-foil recognition, simulation of yacht-
dynamics, and pima Indian diabetes. Both implementations demonstrate reliable
and super-linear convergence performance. The experimental results illustrate that:
(1) from the point of view of storage and computation complexity, poly-HFNR is
comparable with SGD; (2) from the point of view of convergence performance,
poly-HFNR is completely comparable with Quasi-Newton. Our future work will
focus on (a) evaluating poly-HFNR on various large-scale benchmark problems; (b)

Figure 14.
Movement choreography enabled by visible GAN.

21

VIGOR: A Versatile, Individualized and Generative ORchestrator to Motivate the Movement…
DOI: http://dx.doi.org/10.5772/intechopen.96025



improving the convergence of poly-HFNR from super-linear to quadratic conver-
gence rate; and (c) developing CUDA-version poly-HFNR and then transplanting it
into popular deep learning framework such as Pytorch, TensorFlow, and Caffe.

6. Conclusion

This work presents VIGOR system that has a strong potential for broad signifi-
cance to the physical and psychological health of people with limited mobility. It is
expected that VIGOR may (1) produce an affordable and user-friendly platform
which promotes regular physical activity via a seamless interaction between the
user and the Tai-Chi model/master; (2) cultivate and enhance interdisciplinary
research by integrating the expertise of physical therapy, psychology, computer
science, electrical engineering, and structural mechanics; and (3) adapt to other
movement modalities (e.g, yoga).

The major research elements include: (1) Seamless real-time 4D human-machine
interaction based on affordable input/output hardware instruments such as Kinect
sensor, foot-pressure sensors, actuator, assistive device/exoskeleton, and VR
goggle, etc.; (2) Kinetic movement grading and identification; (3) Adaptive virtual
limb generation over VR/AR and assistive device/exoskeketon; and (4) Individual-
ized movement choreography(i.e., creative movement design). As the major research
contributions of this work, visible and hierarchical neural network (VHNN)
architecture is proposed to recognize and predict human kinetics efficiently; and
a polynomial-based, Newton-Raphson algorithm is proposed for efficient
optimization. Both techniques play significant roles in small-data problems.

As part of our future work, the clinical effect of VIGOR system will be assessed.
Specifically, we plan to evaluate both the user-experience and the feasibility of
VIGOR by conducting a few of phases of a human subject study with healthy and
mobility-limited adult human subjects. In every phase, subjects will be surveyed
and interviewed following exposure to VIGOR. The clinical data will be analyzed
using Auto-Regressive Integrated Moving Average (ARIMA) model [44].
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