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Chapter

On the Determination of Molar
Heat Capacity of Transition
Elements: From the Absolute Zero
to the Melting Point
Ivaldo Leão Ferreira, José Adilson de Castro and

Amauri Garcia

Abstract

Molar specific heat is one of the most important thermophysical properties to
determine the sensible heat, heat of transformation, enthalpy, entropy, thermal
conductivity, and many other physical properties present in several fields of phys-
ics, chemistry, materials science, metallurgy, and engineering. Recently, a model
was proposed to calculate the Density of State by limiting the total number of
modes by solid–liquid and solid–solid phase nucleation and by the entropy associ-
ated with phase transition. In this model, the new formulation of Debye’s equation
encompasses the phonic, electronic, and rotational energies contributions to the
molar heat capacity of the solids. Anomalies observed in the molar specific heat
capacity, such as thermal, magnetic, configurational transitions, and electronic, can
be treated by their transitional entropies. Model predictions are compared with
experimental scatter for transitional elements.

Keywords: molar heat capacity, density of state, phase transition entropies,
transitional elements

1. Introduction

Einstein [1] developed the first model approach regarding the atoms in a crys-
talline solid as independent harmonic oscillators vibrating at the same frequency by
assuming the density of state as a delta function. Debye [2–4] modeled the vibra-
tions in a solid as normal modes of a continuous elastic body, which corroborates
well for long-wavelength vibrations that do not depend on the detailed atomic
character of the solid and do conform better with experimental scatters at lower
temperatures. The density of state modeled by Debye failed for many materials,
which present a gap in the density of state [5, 6]. The Debye model does not
consider rotational, electronic, and magnetic contributions [7–11]. Ferreira et al.
[12, 13] considering Gibbs–Thomson coefficients for equilibrium and non-
equilibrium nucleation conditions, and the assumption that when cleaved, certain
crystals exhibit surface stress that gives rise to small but detectable strains in the
interior of the crystal, i.e., microscopic considerations that predict the presence of
surface stress whenever a new surface is created [14], derived a model for pure
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elements and compounds, regarding the critical radius expressed in terms of the
temperature drop employing the correlation between the solid–liquid surface ten-
sion and the bulk melting entropy by unit volume, given in terms of the Gibbs–
Thomson coefficient [15, 16]. Consequently, based on the nucleation of solid–liquid
or solid–solid phases, the total number of atoms in the volume and a correspondent
density of n atoms limited by nucleation conditions were proposed to calculate the
density of state. Ferreira et al.’s model consists of the phonic, electronic, rotations
contributions and predicts magnetic anomalies, such as phase transition temperatures.

In this paper, model predictions of the molar heat capacity of transitional ele-
ments from absolute zero to the melting point are compared with the Thermo-Calc
Software simulations and experimental data.

2. Modeling

The Gibbs–Thomson coefficient describes for pure elements the melting tem-
perature depression ∆Tm K½ �, based on the solid–liquid interface energy γsl N:m�2½ �

and on the bulk melting entropy by unit volume ∆S∀ J:K�1
:m�3

� �

. Let us consider an
isolated solid particle of radius r in the liquid phase; the Gibbs–Thomson equation
for the structural melting point depression can be expressed by [12, 13]:

Γ ¼
γsl

∆S∀
(1)

According to Gurtin et al. [14], surface stress gives rise to detectable strains in
the interior of the crystal whenever a solid surface is created. A relation of surface
tension in terms of η and ζ parameters is given by:

Γ ¼ η
σsl

∆S∀
ζ (2)

and,

η ffi
σsl

γsl
(3)

By substituting (3) into (2) and making ζ ¼ 1 m½ � provides

Γ ffi
σsl

∆S∀
ffi

σslT
bulk
m

∆H∀

¼
2 Γ

r
(4)

where σsl is the solid–liquid interface tension N:m�1½ �,Tbulk
m is the bulk melting

temperature K½ �, ∆H∀ is the latent heat of melting per unit volume J:m�3½ � and r is
the spherical grain radius m½ �, respectively.

For a stable nucleus, the critical radius can be expressed in terms of the temper-
ature drop ∆T rð Þ through the correlation between the solid–liquid surface tension
σsl and the bulk melting entropy by unit volume ∆S∀, which can be written in terms
of the Gibbs–Thomson coefficient Γ.

∆T r≥ rCð Þ ¼
2 Γ

r
(5)

The density of state D ωð Þ for a given grain of volume ∀ regarding the critical
nucleation radius, is defined as

2

Recent Advances in Numerical Simulations



D ωð Þ ¼
∀ω2

2 π2ν3
(6)

where ω is the frequency, ν is the speed of sound in the solid. For a total number
of atoms N in the volume ∀ and a correspondent density of atoms n, these variables
can be expressed as,

N ¼ n∀ (7)

The first Brillouin zone is exchanged by an integral over a sphere of radius kD,
containing precisely N wave vectors allowed. As a volume of space k by wave vector
requires,

2πð Þ3

∀
N ¼

4πk3D
3

(8)

Then, the density of atoms n can be obtained as,

n ¼
k3D
6π2

¼
1

6π2
kBΘD

ℏ ν

� �3

(9)

As observed in Eq. (9), the element fundamental frequency is expressed as

ωD ¼
kB � ΘD

ℏ
(10)

where, ΘD is the Debye‘s temperature of the element, kB and ℏ are the constants
of Boltzmann and Planck, respectively.

The electronic contribution to cve is written in terms of the phonon energy cVibv as,

cve

cVibv

¼
5

24 π3
Z

Θ
3
D

T2Tbulk
m

(11)

where, Z is the valence of the element, Tbulk
m is the melting temperature of the

element K½ � and T is the absolute temperature K½ �.
In 2019, Ferreira et al. [15, 16] considered the following approach for the rota-

tional energy,

ERot ¼
5

4
ℏ
2 J J þ 1ð Þ

M � r2
  J½ � (12)

where, J is the rotational level corresponding to integer J ¼ 0, 1, 2, 3, … , r and M

are the atomic radius and the molar mass, respectively. The rotational contribution
cRotv to the molar heat capacity can be derived as,

cRotv ¼
5

4

R � ℏ3�

k2BωD T þ ΘDð Þ2
J J þ 1ð Þ

M � r2
J:mol�1

:K�1
� �

(13)

where, ωD is the maximum admissible frequency known as Debye’s frequency

and, R is the universal gas constant J:mol�1
:K�1

� �

.

Debye’s temperature for transition elements is found in the literature [4]. The
additions of Eq. (17) of the electronic and of Eq. (19) of the rotational contributions
to cv, provide,
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cv ¼ 1:0þD ωð Þð Þ 9 NakB
T

ΘD

� �3 ð
T
ΘD

0

x4ex

ex � 1ð Þ2
dx 1þ cveð Þ

þ nþ
1

2

� �

9:0 cRotv þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E � ρDia

EDia � ρ

s
 !

RT3

ΘDT
2
m

" #

(14)

3. Results and discussion

Figure 1 presents the model predictions of molar heat capacities for pure Chro-
mium and experimental data from absolute zero to the melting point. Debye’s
model predictions are presented as a reference for Ferreira’s model calculations
[15, 16]. Thermo-Calc equilibrium calculations were performed in the range 176 K

Figure 1.
Comparison of the molar heat capacity of pure chromium by applying Debye,Thermo-Calc, and Ferreira et al.
[15, 16], and Touloukian et al. [17].

Figure 2.
Comparison of the molar heat capacity of pure niobium by applying Debye,Thermo-Calc, and Ferreira et al.
[15, 16], and Kirillin et al. [18], Novikov et al. [19], Righini et al. [20] and Scheindlin et al. [21].
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to 2180 K. The proposed model agrees, for low and high temperatures, with the
experimental data of Touloukian et al. [17].

Figure 2 shows model calculations for Niobium compared with calculations
performed with Thermo-Calc, and four experimental data sets [18–21]. In the
literature, experimental values of molar heat capacity at high temperatures (for
which measurements are complicated) generally overestimate the heat capacity. On
the other side, at low temperatures, where measurements are difficult to control,
the experimental values underestimate this property [22]. Furthermore, observa-
tions of the thermophysical properties of Nb applied in the model predictions, such
as surface tension, Debye’s temperature, atomic radius, the density of solid at the
melting point, latent heat of fusion, among others, should be carefully compared
with those from different authors, as values for the thermophysical properties
found in the literature differ from author to author, and they could also be a likely
source of the slight deviation observed in the predicted curve. The equivalent

Figure 3.
Comparison of the molar heat capacity of pure Vanadium by applying Debye,Thermo-Calc, and Ferreira et al.
[15], and experimental data Desai [23].

Figure 4.
Comparison of the molar heat capacity of pure titanium by applying Debye,Thermo-Calc, and Ferreira et al.
[15, 16], and experimental data Desai [23] and Chase [24].
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wavevectors simulated are n ¼ 0, 1, and 2. The experimental data are close to the
theoretical calculations for n ¼ 0.

Figure 3 shows the experimental scatter for Vanadium from the absolute zero to
the melting point, Thermo-Calc and Ferreira et al. model’s calculations [15, 16]. The
predictions for n ¼ 1 agrees, for the whole temperature range, with the experimen-
tal data, and Thermo-Calc.

Figure 4 shows the molar specific heat for Titanium, the experimental data from
Chase [24] and found in Desai [23]. Chase experimental data, in green, follow n ¼ 2
for the whole temperature range. In this case, Chase’s experiment’s thermodynamic
conditions allow concluding that no phase transition at T ¼ 1156K takes place,
which configures a non-fundamental state specific heat. On the other hand, after
the transition temperature, Desai’s [23] experimental data and Thermo-Calc agree
with the theoretical model for n ¼ 0 from 1156 to 1941 K, configuring a fundamen-
tal state specific heat.

4. Conclusions

The model previously proposed by Ferreira et al. [15, 16] based on the critical
radius of phase nucleation to determine the total numbers of modes, and conse-
quently, the Density of State successfully predicted the molar specific heat capacity
of transitional elements. In Cr and V, the experimental data follow the theoretical
prediction curves with n ¼ 2 and n ¼ 1, respectively. Furthermore, the model’s
calculation for Nb agrees with the experimental data except for the set found in
Kirillin et al. [18]. The thermophysical properties of Niobium at high temperatures
and experimental difficulties might be the reasons responsible for the slight devia-
tion observed between the predictions and experimental data at high temperatures.
For Titanium, non-fundamental states and fundamental state molar heat capacity
were predicted experimentally and theoretically, as Chase’s experiments follow the
model’s theoretical predictions for n ¼ 2.
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