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Chapter

Evolutionary Conservation of 
the Role of CD4 as a Receptor for 
Interleukin-16
Gregory D. Maniero

Abstract

The interaction of CD4 with MHC class II during helper T-cell activation and 
effector function is required for the initiation of an adaptive immune response in all 
gnathostomes. CD4 is comprised of four immunoglobulin domains but most likely 
arose from an ancestral two-domain homolog. The distal, D1 domain of CD4 binds to 
non-polymorphic regions of the MHC molecule, but despite the absolute requirement 
for this interaction, the sequence and structure of this domain are not well conserved 
through phylogeny. Conversely, the proximal, D4 domain of CD4 contains the binding 
site of the cytokine IL-16 and is highly conserved in its amino acid structure. IL-16 is a 
cytokine that has been described in a wide variety of invertebrate and vertebrate spe-
cies. The CD4-binding residues on IL-16 are highly conserved throughout phylogeny, 
allowing for promiscuous binding of IL-16 to CD4 between members of unrelated 
taxa. This chapter aims to present structural, and functional support for the hypoth-
esis that the CD4 co-receptor of the TCR arose from a primordial receptor for IL-16.

Keywords: IL-16, CD4, evolution, chemoattraction, T cells

1. Introduction

The importance of acquired immunity for the survival of an organism in the face 
of an environment full of potential pathogens cannot be understated. The immune 
functions essential to acquired immunity arose with the vertebrates [1–3] and rely 
heavily on the activation of a CD4+ subset of T lymphocytes. The role of CD4+ lym-
phocytes is well known and seems to have appeared with gnathostomes. Although 
T-helper (Th) cells require interactions between CD4 and classical MHC class II, 
both molecules most likely did not arise at the same point in evolution. A growing 
body of evidence suggests that CD4 was originally a receptor for Interleukin-16 
(IL-16) that was integrated into the immune system as a co-receptor of the T-cell 
receptor (TCR) complex. The aim of this chapter is to present some of the struc-
tural and functional characteristics that have been retained in CD4 among diverse 
vertebrate taxa, and the same type of characteristics retained in IL-16 throughout 
phylogeny, including in species much older than vertebrates.
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2. Il-16

IL-16 was first described in 1982 as Lymphocyte Chemoattraction Factor (LCF) 
for its ability to recruit lymphocytes independent of antigen specificity to the site of 
inflammation during a delayed-type hypersensitivity (DTH) reaction [4–8]. IL-16 
is a unique [6, 9] pleiotropic cytokine that is secreted primarily by CD8+ T cells 
but can also be produced by eosinophils, dendritic cells (DCs), monocytes, mac-
rophages, mast cells, as well as activated CD4+ T cells, fibroblasts, and bronchial 
epithelial cells [10–14]. Production of IL-16 can be stimulated by mitogens or hista-
mines as well as by recognition of antigen [4–6, 9, 15]. IL-16 influences pathological 
states including asthma and multiple sclerosis. Additionally, IL-16 mRNA is often 
present in lymphoid organs, suggesting a role in normal immune function [11].

IL-16 is post-translationally cleaved by caspase 3 from the C-terminal end of a 
68-kDa pro-IL-16 molecule [16–18]. Active IL-16 is a 17 kDa protein that contains a 
single PDZ domain [6, 7]. Unlike in other PDZ-containing proteins, this domain is 
not functional for protein binding as it is partially blocked by a nearby tryptophan 
side-chain [19]. Native IL-16 is released as a monomer and as a tetramer, which is 
the primary active form of the molecule [9]. A GLGF motif within the PDZ domain 
may be important for the oligomerization of IL-16 [6, 17–19] and secreted mono-
meric IL-16 will auto-aggregate to spontaneously form active tetramers [11]. IL-16 
is stored in its active configuration in granules of CD8+T cells that are the main 
contributors of this cytokine in an immune response [16–18]. Although tetrameric 
IL-16 is the primary active form, monomeric IL-16 is capable of binding to CD4 and 
can induce a variety of phenotypic changes in target cells [9, 16].

3. IL-16 as a ligand for CD4

IL-16, whether in monomeric or tetrameric configuration, most notably 
attracts CD4+ cells and most IL-16-mediated cell migration has been demonstrated 
in human and murine lymphocytes. The only described receptor for IL-16 is the 
CD4 co-receptor of the TCR complex, and IL-16-induced lymphotaxis is strictly 
limited to CD4+ cells [6, 14], as evidenced by the fact that CD4+, but not CD4− T 
cells migrate in response to IL-16 [9, 20]. Additionally, the degree of IL-16-induced 
chemotaxis in vitro is proportional to the density of CD4 on the surface of the 
responding lymphocytes [9]. The chemoattractant activity of recombinant IL-16 
(rIL-16) is blocked by preincubation with Fab fragments of the anti-CD4 mAb 
OKT4 [9, 15]. Furthermore, IL-16 elicits the migration of Th1 lymphocytes more 
than that of Th2 cells [19]. Recombinant human IL-16 (rhIL-16) initiates T-cell 
chemotaxis, in vitro, at 10 nM rhIL-16 to as low as 0.001 nM with a 50% effective 
dose (ED50) of 0.01 nM [6, 20, 21].

Upon binding to CD4, IL-16 induces a variety of changes on Th cells in addition 
to chemotaxis. In addition to being a growth factor for CD4+ T cells, IL-16 syner-
gizes with IL-2 to promote the expansion of T-cell populations [12]. The binding 
of CD4 by IL-16 stimulates T lymphocytes to upregulate the production of vari-
ous secreted and surface-bound proteins. Following incubation with IL-16, CD4+ 
lymphocytes increase IL-2R on the cell surface [7, 9, 12], which indicates that IL-16 
is involved in the expansion of T-cell populations independent of the recognition of 
antigen on MHC. Both native and recombinant IL-16 can induce expression of clas-
sical MHC class II molecules (primarily HLA-DR) on the membrane of non-stim-
ulated human CD4+ T cells in vitro [7, 9, 16] as well as stimulate them to produce 
GM-CSF [12]. Incubation with rhIL-16 will cause conA-stimulated, human CD4+ 
MHC class II+ PBMCs to down-regulate production of IL-2 [22]. By interfering with 
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the interaction of CD4 with the TCR complex, rIL-16 effectively disrupts mixed 
lymphocyte reactions (MLR, [15]). Attraction of CD4+ Th cells is induced by both 
native IL-16 and monomeric rIL-16 [4, 5].

4. IL-16 is an ancient and ubiquitous cytokine

IL-16 is a cytokine that is found ubiquitously throughout vertebrate phylogeny 
and has been described not only in humans but in a variety of mammals [20], 
birds [23–26], fish [27, 28]. IL-16 has even been described in invertebrates [29–31] 
Additionally, inferred protein sequences from genetic data can be found for IL-16 and 
pro-IL16 in amphibians and reptiles [32]. The sequence and structure of IL-16 and pro-
IL-16 show considerable homology among disparate vertebrate groups [13, 32, 33]. In 
mammals, IL-16 is highly conserved among humans, mice, and African green mon-
keys at the structural and genetic levels [6, 16]. Conserved residues on IL-16 that have 
been determined to be important for binding to CD4 by competitive binding assays are 
arginines at positions equivalent to human 106 and 107, and possibly a leucine at the 
equivalent of position 108 [13, 19].

5. CD4 as a receptor for IL-16

Although this chapter focuses on its functions as receptor for IL-16, CD4 is 
predominantly known for its role as a co-receptor in the T-cell receptor complex. 
As a co-receptor, CD4 binds, in conjunction with the α:β TCR, to MHC class II 
during antigen-dependent helper T-cell (Th) activation, differentiation, and 
effector function to substantially increase TCR-signaling [34, 35]. CD4 is a non-
polymorphic 55-kDa monomer that consists of four extramembrane, Ig-like regions 
named from the distal D1 to the proximal D4 region [17, 36–39]. The D1 and D3 
regions closely resemble V-type immunoglobulin domains, and D2 and D4 resemble 
C-type domains [34, 38, 40]. The CD4 co-receptor is expressed on the surface of 
Th cells and on some subsets of neutrophils and monocytes. Several models have 
been proposed to explain the association between CD4 and the ɑ:β TCR on Th cells 
however the functional result of all of them is that CD4 associates with the TCR 
and enhances effector function [41]. The distal D1 region of CD4 interacts with the 
non-polymorphic region on the β2 domain of MHC class II molecules [39, 42]. This 
CD4:MHC association appears to stabilize and increase the affinity of TCR bind-
ing to antigen-bearing MHC class II molecules expressed on the surface of antigen 
presenting cells (APC) [42–44]. Additionally, CD4 augments intracellular signaling 
by recruiting the intracellular kinase p56lck that enhances the phosphorylation of 
ITAMs (immunoreceptor tyrosine-based activation motifs) upon the engagement 
of a TCR with its cognate antigen:MHC molecular complex. The phosphorylated 
ITAMs recruit ZAP70 that, when phosphorylated by p56lck, continues downstream 
T-cell activation events [45]. The inclusion of CD4 in the immune synapse is neces-
sary for effective T-cell effector function mediated by signaling through the TCR 
complex [34, 37].

A typical Th response begins with the engagement of the TCR with its cognate 
antigen:MHC complex. Complete cellular activation requires interaction with the 
CD4 co-receptor, the CD3 tetramer, and the intracellular ζ-chain. Binding of CD4 
without subsequent co-receptor signaling can result in incomplete T-cell activation, 
limited IL-2-mediated proliferation, and eventual anergy. Crosslinking of the CD4 
co-receptor results in downstream signaling that is independent of antigen, the 
TCR, and CD3. Partial activation can occur with cross-linking of CD4 by anti-CD4 
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F(ab’)2 fragments in the absence of antigen recognition or cell-to-cell contact. 
As in normal CD4+ T-cell signaling, the low-level stimulation of exclusively CD4 
engagement is due to the recruitment and activation of p56lck [10]. Phosphorylation 
and activation of p56lck initiates cell migration and increases in intracellular NFκB, 
IP3, and Ca2+ as well as nuclear translocation of PKC [6, 10, 12, 15]. Treating CD4+ 
immune cells with IL-16 results in a cell phenotype that bears a striking resem-
blance to that seen following anti-CD4 treatment [6].

Cross-linking of CD4 by tetrameric IL-16 or binding by monomeric protein results 
in the association of CD4 with, and the phosphorylation of p56lck [9, 10]. Transfection 
with human CD4 allows murine hybridomas to migrate in response to IL-16, but this 
response is absent in cells transfected with a mutant CD4 variant that is unable to asso-
ciate with cytoplasmic p56lck [10, 20]. Native, but not recombinant, IL-16 stimulates 
CD4+ T cell proliferation [7, 18], whereas rhIL-16 stimulates CD4+ lymphocyte pro-
gression from G0 to G1a but does not initiate proliferation [6, 16, 22]. Both native and 
recombinant IL-16 will induce the expression of MHC class II (specifically HLA-DR) 
on the surface of resting human CD4+ lymphocytes [7, 9, 42] and can induce their pro-
duction of GM-CSF in vitro [12]. Since IL-16 can spontaneously form tetramers follow-
ing release, it is difficult to tease out the difference between activation by monomeric 
and tetrameric IL-16. In addition to initiating signaling through CD4, IL-16 blocks the 
interaction of the CD4 co-receptor with the TCR complex. In fact, this is the mecha-
nism that is responsible for IL-16-mediated disruption of in vitro MLR [15].

6. IL-16 preferentially recruits and activates regulatory T cells

In part due to its ability to induce lymphocyte migration, IL-16 is classified as 
a pro-inflammatory cytokine, yet it appears to slow TCR-mediated activation [7]. 
As a chemoattractant of CD4+ lymphocytes, IL-16 appears to preferentially attract 
and activate regulatory T cells (Tregs), which suppress T cell activity [21]. IL-16 
inhibits the production of IL-2 by mitogen-activated CD4+ lymphocytes in humans 
and preferentially attracts lymphocytes that express mRNA for FoxP3 in vitro [22]. 
During inflammatory lung injury, IL-16 produced in part by the lung endothelium, 
attracts CD4+ T cells that express FoxP3, produce IL-10, and act to protect the lungs 
from infiltration by neutrophils [46]. T cells that migrate in vitro in response to IL-16 
in transwell experiments express more CD25 and CTLA-4 on their surface and release 
more TGFβ than control cells. In addition, cells that migrate in response to IL-16 
express higher levels of FoxP3 mRNA and protein than do control cells [21], suggest-
ing that IL-16 primarily attracts T cells with a regulatory phenotype. Recombinant 
rhIL-16, as well as recombinant Xenopus IL-16 (rXIL-16, Maniero, unpublished data), 
recruits lymphocytes to the body cavity of Xenopus laevis. Upon examination, the 
recovered lymphocytes are seen to express mRNA for CD4 to a greater extent than for 
CD8, CTLA-4 more than CD28, as well as both FoxP3 and IL-10, suggesting a regula-
tory phenotype for the IL-16-recruited lymphocytes [47]. These mRNA levels were 
found in cells that were recovered approximately 16 h post injection with IL-16, so it 
is impossible to distinguish, from these experiments, if regulatory cells are attracted 
by IL-16 or if IL-16 induces the expression of a suite of regulatory genes [47].

7. Conservation of CD4

CD4 is highly conserved in mammals, yet the primary and secondary structures 
vary considerably among vertebrates [32, 38]. In the distal, D1 region, the canonical 
MHC class II-binding motif of FLXK is found on all eutherian mammals that have been 
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studied [32, 38]. However, even though all gnathostomes demonstrate CD4-dependent 
Th-activity, the D1 region is not highly conserved among representatives of disparate 
vertebrate groups [32, 38]. Most non-mammalian vertebrates do not possess the classic 
FLXK MHC class II-binding motif seen in mammals [32] yet rely heavily on traditional 
T-helper activity, suggesting that the role of CD4 binding to classical MHC molecules 
is an important function that has arisen on multiple occasions in vertebrate evolution. 
Other conserved motifs on the CD4 molecule are not involved with MHC class II bind-
ing. These conserved regions include a WXC motif and the intracellular CxC motif 
that associates with p56lck in the cytosol [34, 38]. The association of p56lck with CD4 is 
imperative for Th cell activation and the conservation of the lck-binding site demon-
strates the essential and primordial association between these molecules [41, 48].

Although CD4 binds to ligands other than MHC class II molecules, including the 
surface glycoprotein gp120 of the Human Immunodeficiency Virus (HIV), which 
binds outside of the MHC class II-binding domain [34, 42, 43], the only described 
physiological role for the proximal, D4 region of CD4 is that of a receptor for the 
cytokine IL-16 [6, 19]. The IL-16 binding site on the proximal D4 domain of CD4 is 
an effectively long distance from the MHC-binding site [6, 19, 34]. On human CD4, 
there are two points on the D4 domain that are important for the binding of IL-16. 
A WQCLL motif from amino acids 344–348 is of major importance, but two valines 
at position 334 and 336 have been shown to be important in humans [33].

Amino acid sequence alignments, produced with CLUSTALW (www.genome.
jp), show that the proximal D4domain of CD4, and especially the binding site 
for IL-16, is highly conserved (Figure 1), allowing for promiscuous binding of 
IL-16 to CD4 between disparate gnathostomes. In fact, human IL-16 recruits 

Figure 1. 
Multiple alignment (CLUSTALW) of deduced amino acid partial sequences from CD4 D4 region of 
several vertebrates. The top portion presents the proximal, D4 domain of CD4. Conserved cysteines near the 
N-terminus of the proximal Ig domain are bolded and marked with an ▲. The canonical mouse and human 
WQCLLS motif that corresponds to human Val334, Val336, Gln345, is shaded, as are conserved residues that 
occupy the positions of and Leu347 and Leu347 required for binding IL-16 on human CD4 [19]. The bottom 
section shows amino acids from the transmembrane region and the cytoplasmic tail of CD4. The box surrounds 
the putative (CxC) binding site for p56lck . (human:Homo sapiens NCBI accession no. NP_000607.1, 
mouse: Mus musculus NP_038516.1, rat: Rattus novegicus NP_036837.1, chicken Gallus gallus CAA72740.1, 
Xenopus laevis NP_001233240.1, zebrafish CD4–1: Danio rerio XP_005173553.1, catfish CD4–1: Ictalurus 
punctatus NP_001187155.1, trout CD4: Oncorhynchus mykiss AAY42070.1, Salmon CD4-like Salmo 
salar XP_014019051.1, Fugo CD4–1; Takifugu rubripes NP_001072091.1, Tetraodon CD4–4b; Tetraodon 
nigroviridis ABU95654.1.
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murine CD4+ lymphocytes in vitro, and mouse IL-16 similarly recruits human 
CD4+ lymphocytes [16]. In mice, IL-16-induced chemotaxis of CD4+ lympho-
cytes is blocked by the addition of anti-human IL-16 antibodies [16]. As would 
be expected with the conservation of the IL-16 binding region on CD4, IL-16 
from derived vertebrates can activate CD4+ T lymphocytes from more ancestral 
organisms [32]. Recombinant human IL-16 (rhIL-16) binds to lymphocytes from 
the African Clawed Frog, Xenopus laevis with sufficient avidity to allow rhIL16-
bound lymphocytes to be separated on magnetic columns [32]. No reagents exist 
that can positively identify CD4 on Xenopus cells [3], and magnetic bead separa-
tion can merely suggest that rhIL-16 is binding to Xenopus CD4. Monoclonal 
antibodies specific for Xenopus CD8, however are available and can be used to 
isolate Xenopus CD8+ T cells [3]. Incubation of Xenopus lymphocytes with rhIL-16 
in vitro, correlates with the expression of MHC class II mRNA by CD8− cells but 
not those that are CD8+, indicating that rhIL-16 is most likely binding to Xenopus 
CD4+ lymphocytes [32]. As explained earlier, the role originally attributed to 
IL-16 was lymphocyte attraction, and injection of rhIL-16 into the body cav-
ity of the amphibian Xenopus leads to the accumulation of lymphocytes in the 
peritoneum [32, 47]. The cells that are recruited to the Xenopus body cavity by 
rhIL-16 express mRNA for CD4 to a greater extent than that for CD8α or CD8β 
[32], again suggesting that rhIL-16 is recruiting CD4+ Xenopus lymphocytes. 
The ability of IL-16 to affect CD4 cells from members of disparate vertebrate 
groups is hardly surprising. Not only is the IL-16-binding site highly conserved 
on CD4 (Figure 1), but the region of IL-16 that binds to CD4 is highly conserved 
throughout phylogeny (Figure 2).

Figure 2. 
Multiple alignment (CLUSTALW) of IL-16 deduced amino acids from several different vertebrates. The 
conserved GLGF binding cleft of the PDZ domain highlighted in gray. The residues that are critical for 
binding to domain 4 of CD4 to initiate chemotaxis, Argenines106–107 and Lysine108, are conserved throughout 
phylogeny and are underlined and bolded. (human:Homo sapiens NCBI accession no. AAC12732.1, mouse: 
Mus musculus AAC16039.1, rat: Rattus novegicus XP_006229550.1, chicken: Gallus gallus NP_001264925.1, 
Xenopus laevis XP_018108634.1, rainbow trout: Oncorhynchus mykiss CAD70074.2, puffer fish: Tetraodon 
nigroviridis AAX36076.3, shrimp: Penaeus vannamei ASJ26360.1, mitten crab: Eriocheir sinensis, Mud 
crab: (Gu et al., 2017), leech: Hirudo medicinalis ACF07997.1.
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8. The binding domains for IL-16:CD4 interactions are highly conserved

IL-16 is a cytokine that is produced by many organisms. Two residues crucial 
for binding to CD4 and homologous to human arg106–107, are highly conserved in 
IL-16 from mammals, birds, amphibians, and teleost fish (Figure 2) [13, 19, 32]. 
Additionally, the GLF cleft of the IL-16 PDZ domain necessary for IL-16 oligomer-
ization (Figure 2) [6, 16, 18, 19] is highly conserved throughout phylogeny [32]. 
The conservation of the D4 region of vertebrate CD4, along with the conservation 
of vertebrate IL-16, especially the conserved arginine residues that bind to CD4, 
certainly explains the intraspecies promiscuity of the IL-16:CD4 binding and 
activation [32].

In addition to vertebrates, IL-16 or proIL-16 has been described in several 
species of invertebrates, including the Chinese Mitten Crab Eriocheir sinensis, [49]), 
the mud crab (Scylla paramosain, [29]), and the Pacific white shrimp (Litopenaeus 
vannamei, [30]). A homolog of IL-16 has even been described from the nervous 
system of the European medicinal leech, Hirudo medicinalis [31]. The amino acid 
sequences of invertebrate IL-16 homologs indicate that these molecules contain 
the conserved arginine residues necessary for interaction with CD4 (Figure 2). 
These residues are equidistant from the PDZ domain in vertebrate IL-16 in all of the 
sequences that we examined. This is of particular importance since these organisms 
lack CD4, a molecule that is only found in vertebrates. The conservation of these 
residues on ancestral organisms has not been demonstrated previously, but strongly 
argues for the existence of a receptor for IL-16 that has at least some similarity to 
the D4 domain of vertebrate CD4.

Jawed vertebrates possess similar adaptive immune systems that rely on helper 
T-cell effector functions that depend, in a large part, upon CD4-MHC class II 
interactions. A vast majority of jawed vertebrates, with some notable exceptions, 
express CD4 on a subset of lymphocytes despite the fact that genes for CD4 are 
not well conserved among disparate species, even if they are closely related [50]. 
The gene for CD4 has been described and cloned in many species of teleost fish 
[51–58]. Helper, CD4+ T cells in teleost function in a manner similar, if not identical 
to that found in their tetrapod counterparts. Like those in tetraposds, teleost T cells 
develop in the thymus as CD4+CD8+ double-positive cells migrate to the periphery 
as single positive lymphocytes. As in mammals, teleost CD4+ T cells proliferate in 
mixed lymphocyte reactions and in an antigen-specific manner [55]. Helper T-cell 
function has been documented in fish, and adoptive transfer of CD4+ cells from 
sensitized fish enhances virus-specific antibody formation [59].

9. Two-domain, CD4-like molecules

Two discrete forms of CD4 have been described in teleosts; one, consisting of 
four immunoglobulin-like domains that folds in a manner similar to that of tetrapod 
CD4 and interacts with classical MHC class II molecules [57], and a second type 
of CD4 molecule, that consists of only two immunoglobulin-like domains that 
does not appear to possess the ability to interact with MHC class II that is referred 
to as CD4–2, CD4REL, or CD4-like [50]. These two-domain CD4 molecules are 
expressed on the surface of a limited subset of teleost T cells and have cytoplasmic 
tails that associate with kinase p56lck like those of canonical, four-domain CD4 mol-
ecules [40, 50, 53, 58]. A genes for a four-domain CD4 molecule has been described 
in lamprey, but this lamprey CD4-like molecule does no include a canonical CXC 
motif that is required for the interaction with p56lck [60, 61]. Elasmobranchs lack 
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genes for either two- or four-domain CD4 molecules but possess genes for both 
MHC class I and MHC class IIα and β. Elasmobranchs exhibit only T-cell responses 
of a Th1 phenotype. Additionally, these primitive cartilaginous vertebrates possess 
CD4/LAG3-like genes that may encode an as-yet un-described molecule that is 
functionally homologous to CD4 in derived vertebrates [62, 63].

The two-domain, CD4-like molecules in fish have a proximal domain (D2) 
that possesses structural similarity to immunoglobulin constant regions (C-like) 
and a distal domain (D1) more similar to Ig variable domains (V-like) [61]. As 
stated above, the CD4 molecule of all gnathasomes, including teleosts, consist of 
four immunoglobulin-like domains. Due to the repeating domain structure of this 
molecule it has been postulated that the genes for typical CD4 molecules are derived 
from a duplication of an ancestral gene that encoded a two-Ig-domain, CD4-like, 
cell-surface molecule [64], although this does not explain the sole, four-domain 
CD4-homolog seen in the ancestral cyclostomes. In Tetraodon, lymphocytes that 
express CD4–2 appear to bind and migrate in response to recombinant IL-16 
preferentially compared to those that express CD4–4 [56]. Additionally, the CD4–2+ 
Tetraodon lymphocytes appear to have a regulatory phenotype, expressing mRNA 
for FoxP3 and having a CD25-like molecule on their surface [56]. The affinity of 
the likely ancestral CD4–2 for IL-16, and the possibility that IL-16 recruits CD4–2+ 
regulatory lymphocytes supports our hypothesis that four-domain CD4 arose from 
an ancestral, two-domain interleukin receptor.

Many, and perhaps all four-domain CD4 molecules possess amino sequences 
that are homologous to human to IL-16-binding residues (Figure 1), and it seems 
that similar motifs are present on the proximal domains of two-domain CD4-related 
proteins. Although not identical to those seen on four-domain proteins, the deduced 
amino acid sequences of two-domain CD4 homologs from teleosts show potential 
IL-16-binding motifs that are spaced equidistant from the conserved cysteine at 
the N-terminal region of the most proximal Ig-like domain seen in traditional CD4 
molecules (Figure 3). In all of the teleost two-domain CD4s that we have compiled, 
there is a valine at a position similar to the mammalian val336. Additionally, two-
domain CD4 homologs possess a sequence similar to the four-domain WQCLL 
motif, again, in a similar, if not identical, position in the proximal Ig-like domain. 
Rather than WQCLL, the two-domain motif is WTCQ(or L, K, or T)I (or V, F, or 
P). Although not identical, these motifs in both types of CD4 have some distinct 
similarities. Both of the five-amino acid domains have a cysteine at the center that 
is found in sequences of all of the species that we examined. The first amino acid 
in almost all of these motifs is a tryptophan (W), and the fourth and fifth amino 
acids are almost always aliphatic. The second of the five usually contains an acidic 
residue but some variation is seen. Regardless of the differences, there is evidence of 
a possible IL-16-binding motif on both CD4 and CD4–2 molecules. It is interesting 
to note that, although the lamprey CD4-like molecule has four Ig-like domains, the 
proximal domain is more similar, including at the putative IL-16-binding site, to 
teleost two-domain molecules that to conventional CD4 (Figure 3).

As previously stated, the lamprey CD4-like molecule does not possess a 
canonical motif that associates with p56lck. Unlike CD4, many cytokine receptors 
lack a domain for tyrosine kinases. Like two-domain CD4-like molecules, and 
perhaps the ancestral form of CD4, many cytokine receptors are composed of 
two immunoglobulin-like extracellular domains and exist as single chains on the 
surface of cells but, upon encountering an appropriate ligand, form dimers that 
initiate downstream signaling [65, 66]. The proximal immunoglobulin-like domain 
is essential to the dimerization of hematopoietic cytokine receptors and involves 
a motif of four conserved amino acids that resides towards the c-terminal end of 
the extracellular portion of the molecule and consists of two pairs of conserved 
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amino acids separated by a single, non-conserved residue (WSxWS, [65, 66]). Like 
these cytokine receptors, CD4 appears to form homodimers by association at the 
D4 domain [37, 67], the domain that contains the IL-16 binding site. Like cytokine 
receptors, dimerization of CD4 appears to be a prerequisite to Th activation [67]. 
Dimerization is also important for effective binding to IL-16, and IL-16 appears to 
function by bringing CD4 molecules into close proximity [6, 33, 67].

10. Conclusion: probable origins of Gnathostome CD4

Genetic and structural similarities between the D1 and D3 domains and 
between the D2 and D4 domains give credence to the hypothesis that vertebrate 
CD4 arose from a precursor with two extracellular immunoglobulin-like domains 
[36, 61, 64, 68]. In both agnathans and teleost fish, CD4-like molecules with 
two immunoglobulin domains do not associate with MHC class II molecules but 
nonetheless appear to be important in immune protection. Lymphocytes with two-
domain CD4 molecules, such as those found in teleosts, could very well represent 
an ancestral CD4+ subset of T cells [61]. The hypothesis that CD4 arose from the 
duplication of a gene for a protein consisting of two extracellular immunoglobulin 
domains has been thoroughly discussed and supported [64]. It is quite possible that 
the physiological importance of these truncated CD4 molecules is that of receptors 
for IL-16. Regulatory T lymphocytes play a critical role in controlling the immune 

Figure 3. 
Multiple alignment (CLUSTALW) of deduced amino acid sequences from proximal domains of CD4–2 from 
several fish species. Conserved cysteines near the N-terminus of the proximal Ig domain are bolded and marked 
with an ▲. A motif similar to IL-16 binding motif of four domain CD4, is shaded, as are conserved leucines 
that occupy positions similar to the Leu347 required for binding IL-16 on human CD4 [19]. The box surrounds 
the putative (CxC) binding site for p56lck . Zebrafish CD4–2;Danio rerio NCBI accession no. NP_001352990.1, 
catfish CD4–2: Ictalurus punctatus NP_001187156.1, trout: Oncorhynchus mykiss XP_021437193.2, Salmon 
CD4–2a like Salmo salar ABZ81914.1, Salmon CD4–2b like Salmo salar ABZ81915.1, Tetraodon CD4–2; 
Tetraodon nigroviridis ABU95652.1, lamprey CD4-like Petromyzon marinus AAU09669.1.
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response. The gene for IL-16 arose well before the advent of jawed vertebrates and 
CD4. Although the role of IL-16 in invertebrates has not been clearly elucidated, 
the ancestral role for CD4 and its evolutionary precursors may be as a receptor for 
IL-16 that functions to regulate immune function.
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