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1. Introduction 

New economic challenges and recent trends regarding globalization have forced companies 
of many industries, including the Canadian lumber industry, to question aspects of their 
organizations. Many of them have looked to reengineer their organizational processes and 
business practices and adopt supply chain management best practices. An aspect studied by 
many researchers recently is supply chain sales and operations planning, which deals with 
the management of client orders through the supply chain. Each partner involved must 
decide quantities and production dates, and allocate resources for each product needed, 
with respect to production capacities and transportation delays. Coordination between 
production partners is essential in such a context in order to deliver products on time to 
final clients. As perturbations occur all the time in such complex system, production centers 
have to react quickly to correct deviances and create new plans, while coordinating changes 
with partners.  
At the structural level, centralized approaches handle supply chain planning and 
coordination with difficulty, mainly because of the complexity of such problems and the 
challenges of sharing private information between partners. Decentralized approaches are 
now being considered to overcome these problems, giving different partners the 
responsibility to locally plan their production, using coordination schemes to insure 
coherent supply chain behavior. Agent-based technology provides a natural approach to 
model supply chain networks and describe specialized planning agents. On the other hand, 
decentralized approaches are generally sub-optimal. Heuristics are used by agents to 
coordinate and optimize their production plan in order to reach feasible global solutions. 
Because a local change in a plan can impact other partners, a coordination mechanism must 
be used to insure that every partner is informed of the change and can make their own 
changes if necessary.  
Most of the time, system designers or production planners select a planning heuristic at 
design time, choosing what they believe to be the best decision for their specific application. 
The main problem is that the heuristic may not be adapted to further perturbations or 
environmental conditions the planning agents will face in a production context. Usually, 
these local algorithms used by agents can be parameterized on several levels (such as 

Source: Supply Chain,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-22-6, pp. 558, February 2008, I-Tech Education and Publishing, Vienna, Austria
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objectives, penalties, etc.), creating a variety of planning behaviors for an agent. We call a 
local planning behavior any planning strategy used by an agent to construct a production 
plan. A global planning behavior, or team behavior, is the combinational result of all local 
behaviors demonstrated in the supply chain. The task to set behavior parameters for every 
agent composing the supply chain is complex because all these setting are interdependent. 
In a dynamic environment it is extremely difficult, and sometimes even impossible, to 
correctly specify these parameters a priori, at the time of their design and prior to their use 
(Weiss, 2003). 
Our main argument is that it is preferable not to choose a specific behavior for each agent at 

design time, but to develop agents possessing different planning behaviors. We term them 

multi-behavior agents. Confronted with a perturbation, an agent can dynamically change the 

planning and coordination mechanisms and, ultimately, increase supply chain performance 

through improved coordination. The idea is not to handle every single perturbation (there 

will be always be a need for human interventions), but to automate certain perturbations 

with effective known responses. 

This chapter presents a framework to design such agents, to help identify perturbations, 

propose planning behaviors, and how to use experiment and simulation to adopt the best 

behavior for specific situations. Section 2 provides a literature review on agent-based supply 

chain planning, coordination in supply chain, adaptive agent-based planning and learning 

agents. Section 3 presents the proposed framework to design multi-behavior agents, 

explaining how different planning behaviors can be identified, compared and introduced in 

an agent-based planning system. In Section 4, we give results from an application of the 

framework to the lumber supply chain. Finally, section 5 presents a conclusion and provides 

an overview of intended future work. 

The North American lumber industry represents a perfect context for this proposal. In fact, 

this industry is highly distributed, with many production units geographically dispersed, 

interacting in all activity levels, using a variety of specific planning processes. What makes 

this industry interesting for research is the large amount of stochastic perturbations in many 

aspects of the supply chain, mainly due to the highly heterogeneous aspect of the resource, 

uncertain process output, production of co-products and by-products, price variation in the 

spot market demand, resulting in a variation in commodity markets all inducing a very 

complex planning activity. 

2. Literature review 

In order to understand the research context of this chapter, this literature review covers the 

literature from organizational approaches to more functional approaches. Distributed 

supply chain planning approaches are first reviewed and agent-based planning is presented 

as a particularly interesting paradigm to manage supply chain planning. Next, in order to 

create a coherent environment, coordination mechanisms used in these approaches are 

presented, including negotiation between partners. Because agent-based planning systems 

can be made of a variety of agent types, a closer look at functional agent mechanisms is then 

made by investigating agile planning agent architectures. Finally, a specific agent 

characteristic is investigated, which is the ability to learn.  
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2.1 Distributed supply chain planning 

Traditionally, centralized planning systems have been used for production planning in a 
single company. Offering a complete view of the production activities, they usually use 
optimization algorithms to find the best production planning solutions. In a distributed 
context like supply chains, where different partners work together to deliver goods to final 
customers, planning problems become rapidly too complex to solve centrally. Centralized 
planning systems tend to be rigid under dynamic system environments and are less likely to 
succeed than distributed approaches (Alvarez, 2007). Also, supply chain partners are 
usually reluctant to share private information that can be crucial to their competitiveness. In 
centralized systems, this typically leads to incomplete information and sometimes infeasible 
plans. 
Different paradigms have been studied to operate distributed systems, such as fractal 
factory, bionic manufacturing, holonic manufacturing and the NetMan paradigm (see 
Frayret et al., 2004 for a review) and many resolving approaches have been applied, 
including integer programming, priority dispatching rules, heuristics (Alvarez, 2007) and 
constraint programming. Another trend in supply chain operational planning has resulted 
in the development of agent-based planning systems. Agent-based systems focus on 
implementing individual and social behaviors in a distributed context, using notions like 
autonomy, reactivity and goal-directed reasoning (Bussmann et al., 2004). They are 
computer systems made from a collection of agents, defined as intelligent software with 
specific roles and goals, interacting with each other to make the best decision according to 
the situation and its goals, in order to carry out their part of the planning task (Marik et al., 
2001). 
Several articles present reviews of research projects related to planning, scheduling and 
control, using agents (Shen et al., 2006; Caridi & Cavalieri, 2004, Frayret et al., 2005; Moyaux 
et al., 2006). Among these projects, Montreuil (Montreuil et al., 2000) presented a NetMan 
application, which is an operation system for networked manufacturing organizations that 
aims to provide a collaborative approach to operations planning. The ExPlanTech multi-
agent platform (Pechoucek et al., 2005) gives decision-making support and simulation 
possibilities to distributed production planning. Relying on communication agents, project 
planning agents, project management agents and production agents, the platform uses 
negotiation, job delegation and task decomposition instead of classic planning and 
scheduling mechanisms to solve the coordination problems. In order to reduce 
communication traffic, social knowledge is precompiled and maintained, which represents 
information about other agents. The FORAC experimental agent-based planning platform 
(Frayret et al., 2005) presents an architecture combining agent-based technology and 
operation research-based tools. The platform is designed to simulate supply chain decisions 
and plan supply chain operations. Each agent can be designed with specific planning 
algorithms and is able to start a planning process at any time, following a change in its 
environment. More details will be given of this platform in section 3. 

2.2 Coordination in supply chains 

As discussed previously, distributed planning provides clear advantages over centralized 
planning for supply chains, but represents a major challenge for coordinating the 
independent planning centers in order to build coherent and efficient production plans. In 
fact, without coordination, a group of agents can quickly degenerate into a chaotic collection 
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of individuals (Shen et al., 2006). The coordination between planning centers is essential 
because decisions concerning production planning are interdependent and have an impact 
on partners (Moyaux et al., 2006). These interdependencies need to be managed, which 
requires building coordination mechanisms to keep a certain degree of coherence between 
the different decision centers (Frayret et al., 2004). These coordination mechanisms are in 
fact sets of rules that partners use to choose their own planning activities. Different 
categories of coordination mechanisms have been proposed for distributed systems, but can 
be summarized in five basic categories: third party coordination, coordination by mutual 
adjustment, coordination by standardization, mediated coordination and coordination by 
reactive behaviors (Shen et al., 2001). A new classification has been proposed (Frayret et al., 
2004), which tries to overcome certain limits of previous classifications, including a 
distinction made between coordination before and during activities. 
Negotiation is a common supply chain coordination approach, as a part of the mutual 
adjustment category. Jiao (Jiao et al., 2006) identifies negotiation as crucial to successfully 
coordinate different supply chain entities. Various negotiation strategies can be deployed, 
including contract based negotiation, market based negotiation, game theory based 
negotiation, plan based negotiation and AI based negotiation (Shen et al., 2001). Dudek and 
Stadtler (Dudek & Stadtler, 2005) proposed a negotiation-based scheme between two supply 
chain partners, using a convergence mechanism based on exchange of local associated costs. 
Different agent-based manufacturing systems using negotiation have been proposed (see 
Shen et al., 2001; Shen et al., 2006). Among them, Jiao (Jiao et al., 2006) presented an agent-
based framework that enables multi-contract negotiation and coordination of multiple 
negotiation processes in a supply chain. Monteiro (Monteiro et al., 2007) proposes a new 
approach to coordinate planning decisions in a multi-site network system, using a planning 
agent and negotiation agents. The negotiator agent is responsible to limit the negotiation 
process and facilitate cooperation between production centers. Chen (Chen et al., 1999) 
proposed a negotiation-based multi-agent system for supply chain management, describing 
a number of negotiation protocols for functional agent cooperation. 
While most of these agent-based supply chain planning approaches use a specific 
coordination and optimization mechanism to face a perturbation and develop new 
production plans, they can be insufficient in dynamic environments. Many complex and 
unpredictable situations require planning agents to adapt their behavior to their 
environment and change the coordination and optimization mechanism used. This leads to 
the need to design and implement highly adaptive multi-behavior agents. 

2.3 Adaptive agent-based planning 

When the planning environment shows a high level of variability and perturbation, 
common to a supply chain context, planning agents are asked to create or review production 
plans continually. In some situations, it could be advantageous for agents to adapt their 
planning behavior and use different coordination and optimization mechanisms. Such 
adaptive planning requires developing new kind of agents. Different adaptive agent models 
have been proposed in the literature, some of them specifically designed to improve supply 
chain performance 
One of the best known is the InteRRaP architecture (Muller, 1996). This layer-based agent 
model provides an interesting approach to react and deliberate when confronted with 
perturbations, using different capability levels. The agent can build action plans, depending 
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if an event requires a reactive response, local planning or collaboration for planning. The 
Agent Building Shell (ABS) (Fox et al., 2000) is a collection of reusable software components 
and interfaces needed for any agent involved in a supply chain management system. The 
ABS is geared to handle perturbations caused by stochastic events in a supply chain. An 
interesting simulation is presented using ABS agents to analyze the impact of coordination 
in supply chains when facing unexpected events. Another adaptive agent model is the tri-
base acquaintance model (3bA) (Marik et al., 2001). It provides the possibility of dealing 
with perturbations in a global perspective instead of resolving problems from a local 
perspective. This is accomplished by using information about other agents without the need 
of a central facilitator. Theses authors present some applications to supply chains and they 
define the social knowledge needed to increase the efficiency of agents. In the MetaMorph 
adaptive agent-based architecture (Maturana et al., 1999), mediator agents are used to 
facilitate the coordination of heterogeneous agents. These mediators assume the roles of 
system coordinators and encapsulate various mediation behaviors (or strategies) to break 
decision deadlocks. Jeng (Jeng et al., 2006) proposed an agent-based framework 
(Commitment based Sense-and-Respond framework – CSR) which is an adaptive 
environment for continuous monitoring of business performance and reacting to 
perturbations, using multiple decision agents. An application to the microelectronic supply 
chain is presented. 
These agent architectures all offer the possibility of adapting their behavior when a certain 
situation occurs. Some of them know beforehand which behavior must be used for each 
situation, while other agents successively try different alternatives. More advanced agents 
compile the performance of past experiences and learn from it: these are the learning agents. 
The multi-behavior agent model is inspired by these architectures, possessing alternative 
behaviors for different situations and using learning abilities to link successful behaviors to 
situations. 

2.4 Learning in supply chain planning 

Multi-behavior agents in supply chain show many promising features. However, linking 
behaviors with environmental conditions can be a hard task, even for experienced system 
designers. The main reason is that most changes and perturbations in manufacturing 
environments are not predictable in advance (Shen et al., 2006). Environmental conditions 
can change so that what was preferable at the design time is not anymore. This raises the 
need for agents that can not only adapt but also learn (Weiss & Sen, 1996). Agents then have 
the possibility of recognizing situations and applying the best behavior instead of trying 
each of them one at the time. Alonso (Alonso et al., 2001) argues that learning is the most 
crucial characteristic of intelligent agent systems. 
Many researchers have been investigating learning agents, from defining fundamental 

issues of intelligent learning agents (Schleiffer, 2005) to describing major learning techniques 

for multi-agents systems (Alonso et al., 2001; Weiss & Sen, 1996). Shen (Shen et al., 2000) 

present a research review related to the enhancement of agent-based manufacturing systems 

through learning, including the use of learning in a more general manufacturing context. 

Among them, mediator agents in the agent-based architecture MetaMorph (Maturana et al., 

1999) use two learning mechanisms, learning from history and learning from future, in order to 

enhance the manufacturing system’s performance and responsiveness. Crawford (Crawford 

& Veloso, 2007) recently studied how agents can learn to negotiate strategically to reach 
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better performance. To create adaptive and learning agents, Fox (Fox et al., 2000) uses the 

Markov decision processes in conversation protocols. Each action included in the protocol 

has a probability to cause a transition to a determined state. From obtained results, the agent 

updates probabilities, which change agent behavior over time. 

In a case where multiple agents must cooperate and coordinate their actions, they can learn 

together how to maximize their global performance; it is called cooperative multi-agent 

learning. Panait (Panait & Luke, 2005) presents a complete review on this topic, including 

team learning and concurrent learning. Basically, team learning involves a single agent 

learning for an entire group, specifying the set of behaviors for every member, while 

concurrent learning describes the use of multiple agents, where each one is responsible for a 

certain learning space.  

3. Behavior design framework 

This section presents a framework to design multi-behavior agents, using a multi-behavior 

agent conceptual model. The basic steps are described to give a design guideline, including 

the identification of the environment characteristics (perturbations) which require the 

adoption of a new behavior, the description of different behaviors available to react to 

perturbations, experiments to identify the best behaviors for different situations, simulations 

for continuous adaptation and finally, implementation and continuous learning. 

3.1 Identification of perturbations 

In a highly dependent network of entities, when activities are tightly planned, perturbations 

can have important impacts throughout the supply chain. For example, a major mechanical 

breakdown in a strategic third-tier supplier can reduce supply availability for several days, 

which can trigger a cascade of perturbations within the supply chain, translating into a 

delay for the final client. Another example is a quick change in demand pattern. When such 

changes happen, every local production plan and demand plan exchanged between partners 

must be updated. If it is not done in a very short period of time, inventories will pile-up, 

money will be wasted and the client will be unsatisfied. The first step in the methodology is 

to identify a maximum number of perturbations that show an impact on production plans. 

Table 1 presents examples of perturbation in the lumber industry and their related impact, 

obtained during interviews with decision takers. Inspired by Davis (Davis, 1993), 

perturbations have been classified into three categories: demand, execution and supply. 

Each of these renders current production plan inadequate. In order to correct this deviation 

and retrieve a feasible plan, agents must take action to change production plans.  

For each perturbation, it is necessary to identify environmental conditions that would 

change the intensity of the impact on the supply chain. An environmental condition is any 

identifiable state that may change the kind of response needed. For example, a minor 

mechanical breakdown will not have the same impact depending on the level of use. This 

information represents the planning environment that agents must analyze to make 

decisions concerning their actions. 
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Perturbations Impacts

Demand Variation

Changes in product price Changes in demand plan

New purchase order Changes in demand plan

Execution Variation

Out of stock Execution delay

Strike Execution delay

Resignation Execution delay

absenteeism Execution delay

Power outage Execution stopped

Minor mechanical breakdowns (few hours) Execution stopped

Major mechanical breakdowns (few days) Execution stopped

Corrective maintenance Execution delay

Stocks lost, misplaced Execution delay

Resrouce different as expected Changes in supply

Machining time longer Execution delay

Wrong product produced Changes in supply

Out of tranport ( lack of trucks, wagons) Delevery delay

Supply Variation

Politic disorders (environnementalists, etc.) Execution stopped

Bad weather Execution delayed or stopped

Resource production different from forecast Changes in supply

Transportation delay Execution delayed or stopped

 

Table 1. Examples of perturbations 

3.2 Identification of planning behaviors 

The second step is to identify possible planning behaviors available to agents to respond to 
the perturbations previously identified. Different behaviors can be specific for specialized 
agents, while others can be more generic, all leading to far different performances 
depending on perturbations and environmental conditions. We distinguish two kinds of 
planning behaviors, which are optimization behaviors and a coordination behavior. The 
former characterizes different planning optimization algorithms and heuristics available for 
the planning problems. Various optimization algorithms have been applied to production 
planning and are available in the literature, such as JIT, forward planning and FIFO (first in 
first out). Also, different research heuristics can be used, like branch-and-bound, tabu search 
and genetic algorithms. The latter refers to mechanisms used to coordinate plans between 
partners. It can concern changing the order of planning actions between partners or the type 
of rule used to exchange information. 
This step identifies planning behaviors, without associating them to any specific 
perturbations. All different behaviors must be identified, even those which at first sight 
seems less effective. 

3.3 Team learning experiments 

The complexity of supply chains makes it very difficult to identify which agent behavior is 

favorable for different environmental situations. Using learning abilities, agent designers do 
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not need to make initial decisions on linking behaviors to situations. Agents experiment 

with different environment situations, adopt different planning behaviors and observe the 

results. The third step is the team learning experiments, where agents experiment with 

different planning behaviors together and gather information on obtained performances. 

The objective of this learning process is to test all combinations of planning behaviors for 

every agent, in all environmental conditions. Each of these combinations creates a different 

team behavior. Performances from all team behaviors are gathered for each environmental 

condition toward different performance indicators (ex. maximizing profit, minimizing 

inventory, minimizing lateness, etc.). Results from these experiments are put in a knowledge 

matrix indicating to the agent the best planning behavior available for specific 

environmental conditions.  

Such experiments must be realized following a clear strategy of experimentation. This 

includes the number of replications, the order of experimental trials, randomization 

restriction and the type of statistical analysis to check the validity of the results. The reader 

is invited to refer to Montgomery (Montgomery, 2005) for further details. 

3.4 Test simulation 

The next step is to use knowledge matrix previously built from team experiments to run 

simulations over a rolling horizon. Instead of using a fixed planning horizon with the same 

behavior corresponding to a specific perturbation, multiple perturbations can be observed 

and behavior changes can be applied. This more realistic approach enables the possibility of 

comparing the performances of an agent switching behaviors when it is necessary, to an 

agent keeping the same behavior. Again, a strategy of experimentation must be designed 

and results must be verified with proper statistical analysis. 

The execution of these simulation runs verifies assumptions made previously by the team 

learning experiments. Agents can update their knowledge and become more accurate when 

responding to perturbations. Work is currently in progress to gather data from these 

simulations and verify the performance increase. 

3.5 Implementation and continuous learning 

The last step of the framework is the implementation of behaviors in a production context 

and the use of multi-behavior agents for on-line planning of production activities. In order 

to continuously check planning performance of behaviors for specific environmental 

conditions, continuous learning represents an interesting approach. Periodically team 

learning experiments can be executed and agents can modify designed relations according 

to new results. Multi-behavior agents geared with learning abilities would be able to update 

their preferences. 

4. Results 

An application has been developed to test the proposed framework for the lumber industry. 
In this section, the application context is first described, including the agent-based planning 
platform used to implement the agents, the multi-behavior agent model followed to 
coordinate the different behaviors and the industrial base case used for experiments and 
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simulation. Then, details of the framework application are given for each step, as well as the 
obtained results. 

4.1 Application context 

4.1.1 Agent-based planning platform 
With the purpose of developing a new operation management approach for the lumber 
supply chain, the FORAC Research Consortium has developed an experimental Internet-
based planning platform built on an agent-based architecture for advanced planning and 
scheduling (Frayret et al., 2005). This platform allows the different production centers to 
independently plan and correct deviance in line with their own needs, while maintaining 
feasibility and coordination. By distributing planning decisions among specialized planning 
agents using adapted optimization tools, the platform increases supply chain reactivity and 
performance. More than a planning tool, this platform can also be used to simulate different 
supply chain configurations and coordination mechanisms. 
The agent-based architecture presented is based on the functional division of planning 
domains, inspired by the SCOR model proposed by the Supply Chain Council (Stephens, 
2000). Figure 2 presents an example of a planning unit, including external exchanges with 
suppliers and customers. Planning units divide activities among specialized production 
planning agents: a sawing agent, a drying agent and a finishing agent, since each of these 
planning problems are quite different in terms of the way the process and the set-up are 
conducted. Each of these agents is responsible for supporting the planning of its production 
center in terms of production output each day. Other agents are also part of the architecture, 
such as the deliver agent, source agent and warehouse agent. The validation of these 
developments was carried out with the collaboration of a Canadian lumber company. 
 

Source

Agent
Deliver

Agent

Sawing

Agent
Drying

Agent

Suppliers

Customers

Warehouse

Agent

Finishing

Agent

 

Figure 2. Example of a planning unit from the FORAC experimental platform 

Implementation of multi-behavior agents in the platform is simple since every agent is 
loosely coupled with others. Each agent can be removed, replaced or modified with a 
minimum of manipulations. It becomes easy to modify agent’s behaviors on the fly and 
observe performance in simulations.  
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4.1.2 Multi-behavior agent model 
The framework presented in the previous section is a guideline to design multi-behavior 
agents based on the multi-behavior agent model. These multi-behavior agents can replace or 
enhance any existing planning agents in the experimental platform. In order to specify how 
works a multi-behavior agent, a descriptive model has been proposed (Forget et al., 2006) 
and a brief description is presented here. 
The multi-behavior agent model presents three basic behavior categories, inspired by the 
coordination mechanisms found in the literature (Shen et al., 2001; Frayret et al., 2004; 
Moyaux et al., 2006). They are identified as Reaction, Anticipation and Negotiation. Each of 
these categories includes different planning behavior variations, from which the agent has to 
choose. While mono-behavior agents construct plans using the same planning strategy 
continuously, multi-behavior agents can adopt different planning behaviors, depending on 
the environment. Multiple behaviors can be designed and added in order to create adapted 
response to the environment. Figure 3 presents the multi-behavior agent model. 
 

State

Plan diffusion

Partner

Partner

Local model

Partners’ models

NegotiationAnticipation

T
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s
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Agent Planning

Situation Analysis

Reaction

 

Figure 3. Multi-behavior agent model 

Because the agent is not controlled by a central supply chain planning system, it is free to 
decide which action it will perform, using its own preferences. From a new state in the 
environment, the agent first starts the Situation Analysis phase. An analysis of the agent 
environment is performed in order to determine if a reactive behavior or a deliberative 
behavior must be selected. Reactive behaviors use no new information during processing. 
The agent uses its own knowledge and local goals to respond to a perturbation. A large 
variety of task flows or algorithms can be available, some of them taking a considerable 
amount of time but leading to optimal solutions, others finding acceptable (but not optimal) 
solutions in a very short period of time.  
If more deliberative behaviors must be adopted the Agent Planning phase is started. The 
agent deliberates to decide which planning behavior it should adopt, using different 
selection criteria, such as available time, chance of success of a particular task flow, source of 
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the perturbation and local goals. Researchers have presented several approaches to select 
the best task flow in a shop floor context, using case-based reasoning and heuristic search 
techniques (Aytug et al., 2005). This model uses a rule-based reasoning approach with 
learning abilities.  
Two kinds of deliberative behaviors have been identified, Anticipation and Negotiation 
behaviors. Anticipation behaviors consist in using partners’ models in addition to the 
agent’s own local model. Basically, it concerns integrating information about partners into 
its planning behavior. Collaboration between planning partners through anticipation has 
been studied in hierarchical relation types to improve decision making (Schneeweiss & 
Zimmer, 2004). Anticipation in supply chain planning can be interesting in situations where 
communication is limited or time is constrained. For example, a drying agent can use an 
internal model of its partner, the finishing agent, to supply it with alternative products, if 
the required ones are not available in time. 
Negotiation behaviors involve some forms of exchange with partners during planning. This 
may take the form of proposal and counter proposal (e.g. Contract Net, alternative demand 
and supply plans). For instance, when the agent is not able to respond to its partner’s needs, 
it can offer changes in delivery dates or alternative products. Following this, an iterative 
exchange of proposals is started, where both agents try to find a compromise. These 
proposals can take the shape of new constraints, which can be used by partners to re-plan 
production and send a new demand plan.  
When the agent planning phase is ended, the next phase is the execution of the task flow, 
which is mainly the allocation of resources (machine, labor, etc.) to specific production tasks. 
Using a pre-determined algorithm, a production plan is built, creating demand plans for 
suppliers and supply plans for clients. The last phase is the Plan diffusion which distributes 
operation plans to all interested actors in the environment, including other planning agents 
and production staff related to the agent.  

4.1.3 Industrial base case 

In order to use the agent-based planning platform and experiment multi-behavior agents, it 
was necessary to set an industrial base case. Inspired by a real lumber supply chain, 
decisions were made concerning the number of partners, production centers, capacity, initial 
inventory, number of products and demand orders. The production planning agents 
(sawing, drying and finishing) have been parameterized following realistic industrial 
production centers in term of production lines, production hours and production processes 
specific to the lumber industry (e.g. cutting patterns). A total of 45 different products are 
available to the final client, corresponding to different lengths and quality of wood pieces. 
An initial inventory has been determined for each production center, corresponding to 
approximately one week of production at full capacity. 
Demand orders from clients are generated by a probabilistic demand generator. This 
generator creates random demand, according to predetermined settings such as distribution 
curves, minimum/maximum limits and seasonality. Supply from the forest is considered 
unlimited, since all demand from the sawing agent is completely fulfilled. 

4.2 Framework application 

Following the steps described in section 3, we first identified major disturbances that need 
to be handled in a planning context. Table 1 previously presented the results of our 
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investigation. To simplify the current application, we focused our efforts by considering a 
common perturbation, which is a new purchase order from a client. Impacts from this 
perturbation can vary greatly depending on the environment of the agents. 
In this case, we identified two different environmental conditions: (1) demand type (spot or 
contract) proportion and (2) demand intensity. In demand type, we distinguish a spot 
demand (one-time order, irregular frequency) with contract demand (regular demand from 
a contract client, including a premium bonus). A late spot demand is considered lost 
because the client usually changes supplier. A late contract demand is not lost, but a penalty 
for each day is charged. The demand intensity represents the percentage of production 
capacity used. For a nominal demand intensity of 100%, which approximately represents the 
production unit capacity, different intensity can be considered, such as 50% and 150%. Other 
environmental conditions can be used (but have not been applied here) such as order 
intensity over total demand and client priority. Order intensity denotes the importance of 
the last order over all orders. For example, an order can represent less than 1% of the next 
month’s production, which can have a minor impact on production planning. Finally, client 
priority represents the importance given to a specific client over another, which can give 
clues about which order to prioritize and which can be late. 
In order to respond to this perturbation, different planning behaviors have been identified. 
Two planning algorithms were used, which are the Just-in-Time (JIT) algorithm and the 
forward planning algorithm. JIT is about planning orders at the latest possible date without 
being late, while forward planning plans order as soon as possible. Different planning 
options related to these two algorithms were available to give different solution: priority on 
spot orders, priority on contract orders, equal priority for spot and contract, strong penalty 
for back orders (BO) and equal penalty for inventory and BO. Table 2 presents the different 
planning options identified in this application. An agent must choose an algorithm, a 
priority option and a penalty option, creating a specific planning logic.  
 

Algorithms Priority options Penalty options

Just-In-Time (JIT) Priority on contract Penalty on back orders (BO)

Forward planning Priority on spot Equal penalty inventory/BO

Equal priority

Planning logic

 

Table 2. Planning logic available to agents 

Another way to change supply chain behavior is to modify the coordination strategy 
between agents. Here, five coordination strategies are identified: downstream planning, 
upstream planning, two-phase planning, complete planning loop and truncated planning 
loop. Downstream planning (1) is characterized by plan coordination from the bottom of the 
supply chain, which is generally used in the lumber industry. In this case, the products 
harvested in the forest dictate what will be processed in the supply chain. In upstream 
planning (2), agents plan their operations one after the other, beginning with the agent that 
is closest to the final customer. This presupposes that each agent is able to satisfy the 
demand of its customer agent. This mechanism was not used in the present application, 
mainly because of the difficulty to have good results in a highly dynamic environment such 
as the lumber industry. Two-phase planning (3) is a coordination mechanism combining 
both upstream and downstream planning. This approach involves a hierarchy of 
subproblems that implicates each agent twice (except the raw material supplier). The agent 
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first makes a temporary plan to compute its supply needs and sends this information to its 
supplier. In turn, the supplier tries to satisfy this demand and responds with a supply plan 
that does not necessarily meet all demand (e.g., some deliveries may be planned to be late or 
some products can be replaced by substitutes). If some capacity is left unused, agents can 
decide to plan other products by using on-hand inventory. When informed of the supply 
granted by its supplier, the initial agent has to revise its production plan in order to account 
for supply constraints. 
Also, coordination between partners can be modified by intervening in the sequence of 
information exchanges. The complete planning loop (4) is referred to as an exchange of 
plans involving each partner successively, receiving demand plans from immediate 
customers and transmitting requirement plans to suppliers. The truncated planning loop (5) 
is similar to the complete loop but skips one or several partners in the communication 
sequence. This is particularly interesting when a specific production center represents a 
bottleneck and needs to be planned before other production centers. In this application, the 
drying unit is an important bottle neck in the supply chain. Figure 4 presents these different 
coordination strategies. 
 

DryingSawing Finishing

DryingSawing Finishing(4) Complete planning loop

(5) Truncated planning loop

DryingSawing Finishing
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Figure. 4. Coordination strategies and information exchanges 

During the team experiments phase, we identified five different planning behavior 
combinations, leading to five team behaviors. The priority option was applied to the deliver 
agent only, which had the possibility to put planning priority on different kinds of demand 
(contract or spot). Coordination mechanisms and information exchange changes were 
applied to the entire supply chain. This selection of team behavior was based on the 
experience of managers and researchers, but may not represent the best behaviors available. 
Table 3 present the team behaviors used in our experiments, which were set for 
demonstration purposes. 
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To analyze the different planning behaviors over the supply chain, different performance 
indicators are used. These can be various, such as maximizing supply chain profit, 
minimizing inventory and maximizing level of service. Depending on the choice of a 
specific indicator, the best team behavior may be different. In certain environmental 
situations, a specific behavior can dominate others for all indicators, but in another situation 
the same behavior can show poor results. Here, results were analyzed regarding two 
different performance indicators, which are supply chain inventory and back orders. 
 

1 JIT Contract Back orders Two-phase Complete loop

2 Forward planning Contract Back orders Two-phase Complete loop

3 JIT Contract Back orders Dowstream Complete loop

4 JIT No priority Back orders Two-phase Complete loop

5 JIT Spot Back orders Two-phase Complete loop

Planning logic Coordination strategies

Algorithms Priority options
Coordination 

mechanisms
Penalty options#

Information 

exchange

 

Table 3. Team behaviors used in experiments 

Basically, in each experiment planning agents have to prepare a production plan for the 30 
next days, knowing the incoming orders in that time horizon. Using each team behavior 
alternatively, the supply chain was confronted with a combination of demand intensity 
(100%, 50% and 150%) and contract demand proportion (0%, 25%, 50%, 75% and 100%). A 
penalty cost is associated with lateness of contract demand (1.5% for backorder per day) and 
a premium bonus is given for the fulfilled contract demand (5%). A daily inventory holding 
cost of 0.5% of the market value is charged. From these experiments, different graphics were 
drawn to observe the evolution of the behaviors’ performance with supply chain goals. 
Figures 4 and 5 present a sample of obtained results, showing the evolution of the 
performance for the different planning behaviors, under different environmental conditions. 
Figure 4 illustrates the results in terms of average inventory for the entire supply chain, for 
50% demand (left graph) and 150% demand (right graph). For this specific performance 
indicator, it is not possible to identify a dominant planning behavior. Behavior 5 performs 
better in a context of 50% demand, while behaviors 1 and 4 seem to perform well for 150% 
demand. In these results, behavior 3 was removed from the figure because it was offering 
very poor results.  
Figure 5 presents another example, showing the evolution of the average lateness (per board 

foot) for contract demand, again for 50% demand and 150% demand. This time, behaviors 1 

and 2 appear very close to each other as the best behavior to adopt. In the case where 

lateness is a performance indicator, either behavior would be an acceptable choice. But if 

both minimizing lateness and minimizing inventory are indicators of equal importance 

(when multiple indicators are used), a different decision can emerge by analyzing results 

from figure 4 and figure 5. One would prefer behavior 1 as behavior 2 demonstrates poor 

performance in regard to inventory level. Table 4 presents the best planning behavior for the 

selected combination of environmental conditions and performance indicators. When two 

behaviors are suggested, none of these has proven to be significantly better. 
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Figure 4. Average inventory for four planning behaviors 
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Figure 5. Average lateness for five planning behaviors 

 

Minimize 

inventory

Minimize BO Maximize sum of 

local profits

Contract <=25% 5 1-2 1

25%< Contract >=75% 4 1-2 1

Contract >75% 5 2 1

Contract <=25% 4 1-2 2

25%< Contract >=75% 5 2 2

Contract >75% 5 1 2

Contract <=25% 4 1-2 4

25%< Contract >=75% 1 1-2 4

Contract >75% 5 1 4

5

1-5

2

2

2

5

Maximize supply 

chain profit

5

5

5

Demand 

50%

Demand 

100%

Demand 

150%

Objectives
Environment

 

Table 4. Knowledge matrix built from experiments 

Work is still on-going to realize test simulations over a rolling horizon. Figure 6 gives an 
example of a simulation for a planning agent confronted to perturbations, here with three 
successive demand intensities. The best team behavior identified from experiments is used 
with each perturbation. In this example, behavior 1 is associated to 50% demand, behavior 2 
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with 100% demand and behavior 4 with 150% demand. Results are then compared to a 
simulation where only one behavior is used instead of different. 
 

1st plan  –Behavior 1

2nd plan –Behavior 2

3rd plan –Behavior 4

50%

100%

150%

50% 100% 150%
1st plan –Behavior 1

Compared to:

 

Figure 6. Example of a simulation for a demand increase 

5. Conclusion and future work 

This chapter proposes a framework to design multi-behavior agents in a supply chain agent-

based planning system. The basic steps are described to give a design framework, including 

(1) the identification of environment characteristics which require a change of behavior, (2) 

the description of the different planning behaviors available to the agent, (3) an experiment 

methodology, (4) a test simulation phase and (5) an on-line implementation with continuous 

learning. An application from the lumber industry has been tested on an agent-based 

planning platform and results are presented.  

By following this design framework for multi-behavior agents, the planning system 

designer gives a system’s agents the possibility to change their planning behavior according 

to change in the environment, instead of planning with the same strategy over time. 

Preliminary results show a potential to increase supply chain performance, depending on an 

agent’s local and global goals. Supply chain planning agent models which use the advantage 

of reactivity, utility evaluation, anticipation and negotiation, such as multi-behavior agents, 

can be a powerful tool to reach appreciated gains when implemented in an agent-based 

supply chain planning system such as the FOR@C experimental platform.  

Future work is intended to continue this research, starting with the completion of current 

simulations, the implementation of multi-behavior agents for on-line planning and the 

development of the on-line learning ability. Several features have been simplified in the 

application of the design framework presented in this chapter. Experiments were conducted 

using only reaction behaviors, with a unique perturbation (new demand order). Also, the 

base case used in this application included a single planning unit. The next application will 

be extended to multiple planning units, leading to a more complex but realistic supply 

chain. It will be interesting to develop anticipation and negotiation behaviors, and simulate 

to compare them to previous behaviors. Another important feature that must be studied is 

the synchronization of the behaviors of all agents. Indeed, multi-behavior agents can 

recognize situations and adapt their behavior, but in order to avoid multiple behavior 

changes, it may be necessary to use a synchronization agent. 
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