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Chapter

Data Clustering for Fuzzyfier
Value Derivation
JaeHyuk Cho

Abstract

The fuzzifier value m is improving significant factor for achieving the accuracy
of data. Therefore, in this chapter, various clustering method is introduced with the
definition of important values for clustering. To adaptively calculate the appropri-
ate purge value of the gap type �2 fuzzy c-means, two fuzzy values m1 and m2 are
provided by extracting information from individual data points using a histogram
scheme. Most of the clustering in this chapter automatically obtains determination
of m1 and m2 values that depended on existent repeated experiments. Also, in order
to increase efficiency on deriving valid fuzzifier value, we introduce the Interval
type-2 possibilistic fuzzy C-means (IT2PFCM), as one of advanced fuzzy clustering
method to classify a fixed pattern. In Efficient IT2PFCM method, proper fuzzifier
values for each data is obtained from an algorithm including histogram analysis and
Gaussian Curve Fitting method. Using the extracted information form fuzzifier
values, two modified fuzzifier value m1 and m2 are determined. These updated
fuzzifier values are used to calculated the new membership values. Determining
these updated values improve not only the clustering accuracy rate of the measured
sensor data, but also can be used without additional procedure such as data labeling.
It is also efficient at monitoring numerous sensors, managing and verifying sensor
data obtained in real time such as smart cities.

Keywords: fuzzifier value determining, sensor data clustering, fuzzy C-means,
histogram approach, interval type-2 PFCM

1. Introduction

In the majority of cases, fuzzy clustering algorithms have been verified to be a
better method than hard clustering in dealing with discrimination of similar struc-
tures [1], dataset in dimensional spaces [2], and is more useful for unlabeled data
with outliers [3]. Fuzzy C-means proved to offer better solutions in machine learn-
ing, and image processing than hard clustering such as Ward’s clustering and the k
mean algorithm [4–9]. Generally, fuzzy c-mean has 66% accuracy while Gustafson-
Kessel scored 70% [10]. Fuzzy c-mean is one of the most largely applied and
modified techniques in pattern recognition applications [11] even though the sensi-
tivity of fuzzy C-means is counted as a weak point of outcome to the prototypes and
also the optimizing process [12–14].

Classification algorithms are generally subject to various sources of uncertainty
that should be appropriately managed. Fuzzy clustering can be used with datasets
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where the variables have a high level of overlap. Therefore, membership functions
are represented as a fuzzy set which can be either Type-I, Type-II or Intuitionistic.

Data are generated by a possible distribution or collected from various resources;
Since Euclidean distance leads to clustering outcomes of spherical shapes, which is
suitable for most cases, it is a top choice for many applications, it is the measure-
ment used in most clustering algorithms to decide new centers [15].

2. Basic notions

• Degree of membership: The degree of likelihood of one dataset belonging to
several centers. The sum of membership degrees is equivalent to 1.

• Data: Data can be categories, compounded or numbers. Data in matrix form
contains themes and features of various units. For instance, value and time.

• Clusters: Cluster is a group of data points or datasets that share similarities.
Distance or distance norm is a mathematic interpretation of likeness. The point
of the model clustering algorithms is the data structure.

• Fuzzifier value: The fuzzifier value is essential to find the clustering
membership function when the density or volume of a given cluster is
dissimilar to those of another cluster. It is assumed that all of the relative
distances to the cluster center are equally 0.5, which implies that the fuzzifier
value m is 1 and take account of a decision boundary. With these explained
conditions, the fuzzy area does not exist.

Figure 1(a) the case where a small m value is set in two clusters with different
volumes. Because the section with a fuzzy membership value extends to a bulky C2

cluster, applying it to the C1 cluster allot a lot of relatively unnecessary patterns.
Figure 1(b) large m value is set. It seems to have good performance since similar
membership values are assigned, but the center value of the C1 cluster tends to
move to the C2 cluster, Figure 1(c) Fuzzy area in accordance with Interval type-2 m
value. Instead of the fuzzy area according to the value of m1 and m2 using the
characteristics of the Interval type-2 membership set, uncertainty can be reduced
and a proper fuzzy area for the cluster volume can be formed.

As presented above, deciding the lowest and highest boundary range values of the
fuzzier value extracted from particular data has been suggested by some methods.
The following is about PFCM membership function for deciding the fuzzifier value’s
range. The membership function at k-th data point for cluster i is presented in
Eq. (1). dik/dij signifies Euclidean distance value between cluster and data point.

Figure 1.
Fuzzy area between clusters according to m. (a) the case where a small m value, (b) large m value is set,
(c) instance of appropriate fuzzy area using Interval type-2.
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uik ¼
1

Pc
j¼1 dik=dij
� �2= m�1ð Þ

(1)

The neighbor membership values are computed, employing the membership
value presented in Eq. (1) in order to decide the fuzzifier value’s range. Summari-
zation with an expression including fuzzifier value indicates Eq. (2). It obtains the
lower and upper boundary values of the fuzzy constant which includes the number
of clusters as C and the fuzzifier value as m.

1þ
C� 1
C

�
2
δ
� Δj j≤m≤

2 log d
log δ

1�δ
� 1
c�1

� �þ 1 where∆ ¼
di � d ∗

i

d ∗

i

and δ is threshold

(2)

3. Conventional fuzzy clustering algorithm

3.1 Fuzzy C- means (FCM)

FCM includes the concept of a fuzzifier m being used to determine the mem-
bership value of data Xk in a specific cluster with cluster prototype. Specifically, the
equation of FCM is consist of the cluster center vi and the membership value of data
Xk, representing k = 1, 2...n and i = 1, 2...c, where n indicates the number of patterns
and c indicates the number of clusters. FCM requests the knowledge of the initial
number of desired clusters. The membership value is by the relative distance
between the pattern Xk and the cluster center Vi. However, one of the main
weaknesses by using FCM is its noise sensitivity as well as its limited memberships.
The weighting exponent m; is referred to the being effective on the clustering
performance of FCM algorithm [16].

3.2 PCM

In order to solve problems of FCM method, PCM uses a parameter given by
value estimated from the dataset itself. PCM applies the possibilistic approach
which obviously means that the membership value of a point in a class represents
the typicality of the point in the class. It also means the possibility of data Xk in the
class with cluster prototype Vi where k = 1, 2...n and i = 1, 2...c. Then, the noise
points are comparatively less typical, using typicality in PCM algorithm. Further-
more, noise sensitivity is significantly reduced [17, 18]. However, the PCM algo-
rithm also has the problem that the clustering outcome is sensitively reacted
according to the initial parameter value [19].

3.3 PFCM

The PFCM algorithm is a mixture of PCM algorithm and FCM algorithm [20].
Although the representative value limit (or constraint = 1) was mitigated, the heat
constraints on the membership value were preserved, so the PFCM algorithm gen-
erated both membership and possibility, and solved the noise sensitivity problem as
seen in the FCM [21]. The PFCM is based on the fuzzy value m, which determines
the membership value, and the PFCM also uses constants to define the relative
importance of fuzzy membership and typicality values in the objective function.
The PFCM utilizes more parameters to determine the optimal solution for cluster-
ing, which increases the degree of freedom and thus controls better results than the
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above-mentioned study. However, when considering fuzzy sets and other parame-
ters in certain algorithms, we face the potential for fuzzy of these parameters. In
this paper, we describe the fuzziness of the fuzzy value m and the possible value of
the bandwidth parameter and generate FOU of uncertainty for both considering the
fuzzym interval, i.e. them1 andm2 intervals and the fuzzy interval. Existing studies
have been implemented to measure the optimal range along the upper and lower
bounds of fuzzy values through multiple iterations [22]. This study is ongoing, but
the same fuzzy constant range cannot be applied to all data [23].

3.4 Type-1 fuzzy set (T1FS)

Type 1 fuzzy logic was first introduced by Jade (1965). Fuzzy logic systems are
based on Type 1 fuzzy sets (T1FS), and have demonstrated their capabilities in
many applications, especially for control of complex nonlinear systems that are
difficult to model analytically [24, 25]. Since the Type 1 fuzzy logic system (T1FS)
uses a clear and accurate type 1 fuzzy set, T1FS can be used to model user behavior
under certain conditions. Type 1 fuzzy sets deal with uncertainty using precise
membership functions that users think capture uncertainty [26–30]. When the
Type 1 membership function is selected, all uncertainties disappear because the
Type 1 membership function is completely accurate. The Type 2 fuzzy set concept
was presented by Jade as an extension of the general fuzzy set concept., i.e. a type 1
fuzzy set [31]. All fuzzy sets are identified as membership functions. In a type 1
fuzzy set, each element is identified as a two-dimensional membership function.
The membership rating for Type 1 fuzzy sets is [0, 1], which is an accurate number.
The comparison of membership function and uncertainty extracted from the result
of the conventional fuzzy clustering algorithm is shown as below [32].

FCM
JFCM V,U,Xð Þ ¼

P

c

i¼1

P

n

k¼1
umik xk � vik k 1<m<∞

PCM
JPCM V,U,Xð Þ ¼

P

c

i¼1

P

n

k¼1
umikd

2
ik þ

P

c

i¼1
ηi
P

n

k¼1
1� uikð Þm

η : scale, typicality η ¼

Pn

k¼1
um
ik

xk�vik k2
Pn

k¼1
um
ik

FPCM
JFPCM U,T,Vð Þ ¼

P

c

i¼1

P

n

k¼1
umik þ tηik
� �

xk � vik k2

PFCM
JPFCM U,T,Vð Þ ¼

P

c

i¼1

P

n

k¼1
aumik þ btηik
� �

xk � vik k2 þ
P

c

i¼1
δi
P

n

k¼1
1þ τikð Þη

T1FC
JT1FC X,U,Cð Þ ¼

P

c

i¼1

P

n

k¼1
u j xið Þmd2ij

4. Advanced fuzzy clustering algorithm

Fuzzy c-means (FCM) is an unsupervised form of a clustering algorithm where
unlabeled data X = {x1, x2..., xN} is grouped together in accordance with their fuzzy
membership values [33, 34]. Since, data analysis and computer vision problems,
analyzing and dealing the uncertainties are a very important issue, FCM is being
widely used in these fields. Several methods of other IT2 approach for pattern recog-
nition algorithms have been successfully reported [35–41]. Type-1 fuzzy sets cannot
deal uncertainties therefore; type-2 fuzzy sets were defined to represent the uncer-
tainties associated with type-1 fuzzy sets. As shown in Figure 2, the type-reduction
process in IT2 FSs requires a relatively large amount of computation as type-2 fuzzy
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methods increase the computational complexity due to the numerous combinations of
embedded T2 FSs. Methods for reducing the computational complexity have been
proposed, such as, the increase in computational complexity of T2 FSs may be less
costly for improved performance by applying satisfactory results using T1 FSs. In [42],
it was suggested that two Fuzzifier m values is used and the centroid type reduction
algorithm for center update is incorporated for interval type-2 (IT2) fuzzy approach to
FCM clustering. The IT2 FCMwas suggested to clear up the complication with FCM
for clusters with different number of volumes and patterns. Moreover, it was
suggested that miscellaneous uncertainties were linked with clustering algorithms
such as FCM and PCM [43]. Motivation of the success IT2 FSs has made on T1 FSs
algorithms.

4.1 Type-2 fuzzy set (T2 FS)

Due to their potential to model various uncertainties, Type-2 fuzzy sets (T2 FSs)
have primarily received interest of increased research [44]. Type-2 fuzzy sets are
characterized by a three-dimensional fuzzy membership function. The [0, 1] fuzzy
set is the membership grade for each element of a type-2 fuzzy set. The extra third
dimension provides extra degrees of freedom to get more information about the
expressed term. Type-2 fuzzy sets are valuable in situations where it is difficult to
resolve the exact membership function of the fuzzy set. This helps to incorporate
uncertainty [45].

The computational complexity of the Type-2 fuzzy set is higher than that of the
Type 1 fuzzy set. However, the results gained by the Type-2 fuzzy set are much better
than those gained by the Type 1 fuzzy set. Therefore, if type-2 fuzzy sets can signif-
icantly improve performance (depending on the application), the increased compu-
tational complexity of the type-2 fuzzy sets can be an affordable price to pay [46].

Figure 2.
(a) Cluster position uncertainty for T1FCM, (b) 1 T2 FCM, (c) QT2 FCM, (d) GT2 FCM algorithms.
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4.2 Type-2 FCM (T2-FCM)

Type-2 FCM (T2-FCM), whose type-2 membership is promptly generated by
extending a scalar membership degree to a T1-FS. When limiting the secondary
fuzzy set to have a triangular membership function, T2-FCM extends the scalar
membership uij to a triangular secondary membership function [47, 48].

4.3 General type-2 FCM

The GT2 FCM algorithm accepts a linguistic description of the fuzzifier value
expressed as a set of T1 fuzzy- upper and lower value [49]. The linguistic fuzzifier
value is denoted as a T1 fuzzy set of m. Figure 3 is shown as two examples of
encoding the linguistic nation of the appropriate Fuzzifier value for the GT2 FCM
algorithm using three linguistic terms.

4.4 Interval type 2 fuzzy sets (IT2 FSs)

In order to model uncertainty associated to a type-1 fuzzy set with an interval
type 2 fuzzy set, a membership interval with all secondary grades of the primary
memberships equaling to one can represent the primary membership Jx0 of a sample
point x0 [18, 50].

Figure 3(a) represents an instance of an interval type 2 fuzzy set where the gray
shaded region indicates FOU. In the figure, the membership value for a sample x’ is
represented by the interval between upper μ~A x0ð Þ, and lower μ

~A
x0ð Þ membership.

Therefore, each x’ has a primary membership interval as

Jx0 ¼ μ
~A
x0ð Þ, μ~A x0ð Þ

h i

(3)

In the Figure 3(b) shown as the vertical slice x0, where the secondary grade for
the primary membership of each x0 equals one, in accordance with the property of
interval type-2 fuzzy sets. This interval is defined as the FOU. An interval type 2
fuzzy set A can be expressed as

~A ¼ x, uð Þ, μ~A x, uÞð Þj∀x∈A, ∀u∈ Jx ⊆ 0, 1½ �, x, uð Þ, μ~A x, uÞð Þ ¼ 1
� ���

(4)

Figure 3.
Two possible linguistic representation of the Fuzzifier M using T1 fuzzy sets. (a) membership value for a sample
x0 (b) vertical slice x0.
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4.5 Interval type-2 FCM (IT2-FCM)

In fuzzy clustering algorithms such as FCM, the fuzzy fire value m plays a
significant [50] role in determining clustering uncertainty. However, it is generally
difficult to properly determine the value of m. IT2-FCM regards fuzzy fire values as
intervals [m1, m2] and settles two optimization matters [51].

First, an interval type 2 FCM is used to obtain a rough estimate of which data
points belong to which cluster.

In Eq. (3) is minimized with respect to uij to provide upper and lower
membership values.

�uj xið Þ ¼

1
Pc

k¼1 dij=dik
� �2= m1�1ð Þ

, if 1=
Xc

k¼1
dij=dik
� �

<

1
c

1
Pc

k¼1 dij=dik
� �2= m2�1ð Þ

, otherwise

8

>

>

>

>

<

>

>

>

>

:

(5)

uj xið Þ ¼

1
Pc

k¼1 dij=dik
� �2= m1�1ð Þ

, if 1=
Xc

k¼1
dij=dik
� �

≥
1
c

1
Pc

k¼1 dij=dik
� �2= m2�1ð Þ

, otherwise

8

>

>

>

>

<

>

>

>

>

:

(6)

After this cluster prototypes are calculated, then type reduction and then classi-
fication is done. Qiu et al. (2014) proposed this complete method of interval type-2
FCM for finding the clusters in each class of the histogram in individual dimensions
is acquired with these labeled clusters. This histogram is smoothed by the mean of
moving window (using a triangular window in my case). The curve fitting of this
smoothed histogram gets the membership function. Histograms with values greater
than the membership value are assigned as histograms for higher membership, and
histograms for values less than membership value are saved as histograms for lower
membership. Curve fitting is carried out severally in the top and bottom histograms
to supply the top and bottom member values [52]. This membership value is
suggested to estimate the values of fuzzifiers m1 and m2. Fixed-point iteration is a
method of expressing the transcendental equation f(x) = 0 in the form of x = g(x)
and then solving this expression iteratively for x in iterative relationship.

xiþ1 ¼ g xið Þ, I ¼ 0, 1, 2, … (7)

where x0 being some initial guess. Rewriting the equation to express Eq. (5) and
(6) in the form of (7) and dropping the upper and lower term,

u j ¼
1

Pc
k¼1 dij=dik
� �2= m�1ð Þ

(8)

)
1
u j

¼
Xc

k¼1
dij=dik
� �2= m�1ð Þ

log on both sides, Eq. (8) can be rewritten as

log
1
u j

� �

¼ log
Xc

k¼1
dij=dik
� �2= m�1ð Þ

� 	

(9)

∵ log aþ cð Þ ¼ log aþ log 1þ
c

a

� 	
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Extending this logarithmic identity to the sum of N elements,

) log a0 þ
X

N

k¼1

ak

 !

¼ log a0 þ log 1þ
X

N

k¼1

ak
a0

 !

(10)

log
1
uj

� �

¼
2

m� 1ð Þ
log

dij

d1j

� �

þ log 1þ
X

c

k¼2

dij

dik

� �2= miold
�1ð Þ

 !

(11)

Rearranging Eq. (11) and expressing it in terms of m, gives us Eq. (12).

γ ¼

log 1
uj

� 	

� log 1þ
Pc

k¼2
dij
dik

� 	2= miold
�1ð Þ

� �

log dij
d1j

� 	 (12)

mjnew ¼ 1þ
2
γ

So, Eq. (13) gives m1jnew and m2jnew, where m1j new ≥ m2j new. Eq. (12) is used to
calculate fuzzifier values of each data. In some cases, the value of fuzzifier of
particular data shows relatively large variation. Here, upper (mupper) and a lower
(mlower) fuzzifier is necessary, using Eq. (2). If the curtain data point has a fuzzy fire
value below the lower bound, the fuzzy fire value is set to the mlower bound, and if it
exceeds the upper bound, the fuzzy fire value is set to the mupper bound. In the end,
a mean of these fuzzifiers is taken to get the last fuzzifier values m1 and m2.

4.6 Multiple kernels PFCM algorithm

Typically, the kernel method uses a spatial conversion function to convert input
data from input property space to kernel property space [53]. This is to change the
kernel property space to a kernel property space so that it is easy to distinguish
between overlapping data and having a nonlinear boundary surface in the input
property space. If the data in the input space is Xi, i ¼ 1, … ,N, the data converted
to the kernel property space through the function is represented by Φ X j

� �

, j ¼
1…N. Alike as general PFCM, in the case of Kernels-PFCM, the goal is to minimize
the following objective function.

Jϕ ¼
X

n

k¼1

X

c

i¼1

aumik þ btηik
� �

� d2ij þ
X

c

i¼1

γ
X

n

k¼1

1� tikð Þη (13)

In the input space for kernel K, the pattern xi and the distance dij in the kernel
attribute space of cluster prototype vj are expressed as Eq. (14) by the kernel function.

dij ¼ Φ x j

� �

�Φ v j

� �











2

¼ Φ x j

� �

Φ x j

� �

þΦ v j

� �

Φ v j

� �

� 2Φ x j

� �

Φ v j

� �

¼ K x j, x j

� �

þ K v j, v j

� �

� 2k x j, v j

� �

(14)

Commonly, the new Gaussian multi-kernel ~k using a Gaussian kernel assumes a
multi-kernel with the number of kernels S, and the formula is as follows [54].
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~k
jð Þ
¼ x j, v j

� �

¼
X

s

l¼1

wil

σl

exp �
x j�v jk k

2

2σl2

� �

Ps
t¼1

w
σt

(15)

From [55] way, using e FCM-MK, normalized kernel is defined to recognize
weights by cluster prototypes, resolution and membership values. Using this opti-
mization way, following PFCM objective equation should be minimized. By mini-
mizing the objective function, cluster prototype vi, resolution-specific weight wil,
and membership value uij are defined.

Jm,η U,T,V;Xð Þ ¼ 2
X

n

k¼1

X

c

i¼1

ðaumik þ btηik�

1�
X

s

l¼1

wil

σ2
exp �

x j � vi












2

2σl2

 !

�
1

Ps
t¼1

w

σt

0

B

@

1

C

A

þ
X

c

i¼1

γi

X

n

k¼1

1� tikð Þηð Þ

(16)

Here, ρ is a gradient descent way to learn rate parameter. Finally, using type
reduction and hard partitioning, clustering is performed as described in the Interval
Type-2 PFCM [56].

4.7 Interval type-2 fuzzy c-regression clustering

Let the regression function be represented by Eq. (17)

yi ¼ f z xi, α j

� �

¼ az1x1i þ az2x2i þ⋯þ azMxMi þ bz0 (17)

where, xi = [x1i,x2i,. ..,xMi] represents points of data, the number of data indi-
cates i = 1,.. .,n, the number of clusters (or rules) indicates j = 1,.. ., c, the number of
variables in each regression indicates q = 1,.. .,M and the number of regression
functions indicates z = 1,.. ., r. By aj, regression coefficients are denoted. We use
weighted least square method (WLS) for calculating regression coefficients aj,
In this way, membership grades of partition matrix P are worked for weights.
In Eq. (18), Xi is a data point matrix with inputs, y is a data point matrix with
outputs.

xi ¼

x1,i

x2,i

⋮

xM,i

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

T

, y ¼

y1,
y2
⋮

yM

2

6

6

6

6

4

3

7

7

7

7

5

T

,P j ¼

u j x1ð Þ 0

0 u j x1ð Þ

… 0

… 0

⋮ ⋮

0 0

⋱ ⋮

… u j x1ð Þ

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(18)

α j ¼ XtP jX
� ��1

XTP jy

The partition matrix P is acquired through Gaussian mixture distribution which
is the first stage for computing regression coefficients. We consider two fuzzifiers
or weighting exponent m1 and m2 for indicating the problem into IT2F. However,
there is a difference that this model is FCM although our model is FCRM. These two
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fuzzy fires divide the objective function into two separate functions. The aim is to
minimize the total error from Eq. (19) shows these two objective functions. It
should be mentioned that the following proof is an extended and modified version
of’type-1, which has been presented in [57].

Jm1
U, υð Þ ¼

X

n

i¼1

X

C

j¼1

u j xið Þm1Eji α j

� �

Jm2
U, υð Þ ¼

X

n

i¼1

X

C

j¼1

u j xið Þm2Eji α j

� �

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(19)

Where type-1 FCRM, Eji is the total error, which indicates the distance
between actual output and estimated regression equation, and it is presented by
Eq. (20).

Eji α j

� �

¼ yi � f j xi, α j

� �

� 	2
(20)

Eq. (21) represents the Lagrangian of the objective functions of IT2 FCRM
model. We expend the type-1 NFCRM algorithm to interval type-2 NFCRM.

L1 λ1, u j

� �

¼
X

n

i¼1

X

C

j¼1

u j xið Þm1Eji α j

� �

� λ1
X

c

j¼1

u j � 1

 !

L2 λ2, u j

� �

¼
X

n

i¼1

X

C

j¼1

u j xið Þm2Eji α j

� �

� λ2
X

c

j¼1

u j � 1

 !

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(21)

The partial derivatives with respect to uj of Eq. (21) are set to 0 in Eq. (22) and
(23) for minimizing the objective function.

∂L1

∂u1 xið Þ
¼ m1u1 xið Þm1�1E1i α1ð Þ � λ1 ¼ 0

⋮

∂L1

∂uC xið Þ
¼ m1uC xið Þm1�1ECi αCð Þ � λ1 ¼ 0

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(22)

∂L2

∂u1 xið Þ
¼ m2u1 xið Þm2�1E1i α1ð Þ � λ2 ¼ 0

⋮

∂L2

∂uC xið Þ
¼ m2uC xið Þm1�1ECi αCð Þ � λ2 ¼ 0

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(23)

Next, the partial derivatives with respect to k1 and k2 are performed.

∂L1

∂λ1
¼ �

X

c

j¼1

u j xið Þ � 1

 !

¼ 0 (24)
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To adapt KPCM to IT2 KPCM, three steps are included. In other words, we
update the prototype location via initialization, two different fuzzy devices, high
and low membership or typicality value calculation, format reduction, and de-
fuzzing for data patterns. In the way we propose, by using IT2FS, our point lies in
the development of a prototype update process that can solve the cluster matching
problem caused by KPCM. Cluster matching usually results in a set of patterns
containing clusters that are relatively close to each other. This allows by definition a
type 1 fuzzy set to obtain a type reduction via an embedded fuzzy set, but a type-
reduced fuzzy set can be obtained by a combination of central intervals estimated
from the embedded fuzzy set. This approach is a standard method for obtaining
reduced fuzzy set types from IT2FS. However, this approach avoids due to its huge
computational requirements, which include a number of embedded fuzzy sets.
Therefore, we consider the KM algorithm as an alternative type reduction method.
Since KM is an iterative algorithm which estimates both ends of an interval,
calculating the left (right) interval vL (vR) can be found without using all of the
embedded fuzzy sets.

Form KERNELS SFCM ALGORITHM in Figure 4,
The kernel distance,

Φ xkð Þ � vik k2 (25)

can be derived using the kernel way as

Φ xkð Þ � vik k2 ¼ K xk, xkð Þ � 2

PN
j¼1u

m
ij K xk, x j

� �

PN
j¼1u

m
ij

þ

PN
j¼1

PN
l¼1u

m
ij u

m
il K x j, xl
� �

PN
j¼1u

m
ij

� 	2

(26)

The inverse mapping of prototypes is also needed to approximate the prototypes
expressions vi in the feature space. The objective equation can be written as

V v̂i, við Þ ¼
X

C

i¼1

Φ v̂ið Þ � vik k ¼
X

C

i¼1

Φ v̂ið ÞTΦ v̂ið Þ � 2Φ v̂ið Þvi þ vTi vi
�

(27)

Figure 4.
FOU representation for our proposed IT2 KPCM approach with m

1
= 2, m

2
= 5 and variance = 0.5; (a) FOU

of cluster 1 (b) FOU of cluster 2 [58].
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While, the final location for v̂i in the KPCM algorithm becomes,

v̂i ¼

PN
k¼1u

m
ikK xk, v̂ið Þxk

PN
k¼1u

m
ikK xk, v̂ið Þ

(28)

The left (right) interval of the centroids can be found by employing the KM
algorithm on the ascending order of a pattern set and its associated interval
memberships. The result of the KM algorithm can be expressed as,

vi ¼ 1:0= vLvR½ � (29)

While the procedure to calculate the left value of interval set vL and right value
vR, defuzzification is used next to calculate the crisp centers and is defined as the
midpoint between vL, vR. We can now compute the defuzzified output that is a crisp
value of the prototypes by using the expression.

vi ¼

P

v∈ JYi
u vð Þð Þv

P

v∈ JYi
u vð Þð Þ

¼
vL þ vR

2
(30)

Hard partitioning is used to classify test patterns using the resulting prototype of
the procedure above. Euclidian distance is now used to hard partition patterns
because the prototype is in feature space. The pattern is assigned to a cluster
prototype with a minimum Euclidean distance. Experimental results presented in
the following sections will demonstrate the validity of the proposed IT2 approach to
KPCM clustering.

4.8 Interval type-2 possibilistic fuzzy C-means (IT2PFCM)

In order to solve the uncertainty existing in the fuzzifier valuem in the general
PFCM algorithm,Multiple Kernels PFCM algorithm should be extended to the Interval
Type-2 fuzzy set. If there are N data,W set of resolution-specific weight, U partition
matric,C clusters,V set of cluster prototype and S kernels, the cluster prototype can be
obtained from minimizing the Gaussian kernel objective function as follows.

w newð Þ
il ¼ w oldð Þ

il � ρ
∂J

∂wil
(31)

d2ij ¼ 2� 2
X

S

i¼1

wil

σl

exp �
x j�v jk k

2

2σ2
l

� �

Ps
t¼1

w
σt

0

B

B

@

1

C

C

A

(32)

Where,

vi ¼ 2� 2
X

S

i¼1

wil

σl

exp �
x j�v jk k

2

2σ2
l

� �

Ps
t¼1

w
σt

0

B

B

@

1

C

C

A

(33)

The cluster prototype is calculated to optimize the objective function for the
center vi of each cluster [23].
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Where,

K
ið Þ
x j, vi
� �

¼
X

S

i¼1

wjl

σ3l

exp x j � v












2
� 	

PS
t¼1

w
σt

0

@

1

A (34)

optimizedmembership value- the smallest membership value and the largest mem-
bership value for each pattern using the Interval Type-2 fuzzy set- is used for calculat-
ing the crisp value vi. In order to compute vR and vL, determination of the upper or
lower bound of fuzzifier is essential. It is organized as follows by given Eq. (38) [59] .

J U,V,Wð Þ ¼ 2
X

C

i¼1

X

N

j¼1

umij d
2
ij (35)

Using the final vR and vL, the crisp center value is obtained from defuzzification
as follows.

For vR,

if v i< kð Þð Þ then uij ¼ uij

else uij ¼ uij

(36)

Using the cluster Prototype vi, obtained through the optimization function and the
membership value uij, the resolution-specific weight value wil is re-obtain as follows.

∂J

∂wil
¼ �2

X

N

i¼1

umij
PS

t¼1
wt

σt

K x j, vi � K
ið Þ
xi, v j

� �

� 	�

(37)

Where

viR ¼

PN
j¼1u

m
ij K

ið Þ
x j,vi
� �

x j

PN
j¼1u

m
ij K

ið Þ
x j, vi
� �

(38)

To define the Interval Type-2 fuzzy set and calculate uncertainty for member-
ship, the input data, the primary fuzzy set, is needed to assign into the Interval
Type-2 fuzzy set. Eventually, the upper and lower membership function are created
from the primary membership functions.

After calculating the upper and lower membership for each cluster, we need to
update the new center values. The membership is obtained from the Type-2 fuzzy
set, however, the center value is a crisp value, the value cannot be calculated from
the above method. Therefore, in order to compute the center value, type reduction
is performed by the Type-1 fuzzy set. In addition, defuzzification is accomplished
to change the value of Type-1 to a crisp value.

5. Heuristic method: histogram analysis

The goal of heuristic method is to extract information from data, and then
adaptively calculates the fuzzifier value. In this approach, some heuristic type- 1
membership function is used appropriately for given dataset. The parameters are
defined as the upper and lower membership is decided according to following rules.
First, given that the membership values are determined, the IT2 PFCM algorithm
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calculates roughly in which cluster the data belongs to and then secure a histogram
based on the classified clusters. The histogram from IT2 PFCM tends to be gentler
and smoother through the membership function by curve fitting of the same histo-
gram. Curve fitting is enforced separately on upper and lower histograms to obtain
upper and lower membership values. In order to reach to the IT2 FS, determination
of FOU is necessary, which is generally the set of membership values of the T2 FS.
Given that, the greater values of the histogram than the membership value are
allocated as the highest membership histogram while the opposite case is calculated.
Figure 5 shows histograms and FOU determined by classification and dimensional
calculation. To find X, satisfying f (X) = 0, it can be expressed as X = g(X) using
fixed-point iteration, where X is,

Xiþ1 ¼ g Xð Þ, i ¼ 0, 1, … ,N (39)

Eq. (7) and (8) of the membership function ui can be shown in the form of
Eq. (38) as follows.

ui ¼
1

P dik
dij

� 	 2
m�1

(40)

Where fuzzifier value m is a value that determines the degree of final clustering
fuzzifier as the value of the fuzzy parameter. This value ofm1 andm2 is then applied
into the algorithm for calculate updated clusters and this routine is repeated
repeatedly. The detailed algorithm is as follows:

1.Set the initial fuzzifier value of m1 and m2.

Figure 5.
FOU obtained for individual class and dimension updated fuzzifier value m1 and m2 are obtained (a) class 1
dimension 1, and (b) class 2 dimension 1.
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2.Apply m1 and m2 to interval type-2 FCM and obtain the membership of data.

3.Generate a histogram of each cluster from the membership.

4.Curve fit the histogram to get primary memberships.

5.Create histogram of upper and lower membership.

6.Use curve fitting over upper and lower histograms to calculate upper and
lower memberships.

7.Normalize the memberships according to upper membership.

8.Fuzzifier m1i and m2i are obtained using Eq. (13).

9.Average m1i and m2i and update m1 and m2 from the average.

10.The algorithm is iteratively performed using updated m1 and m2.

The Upper Membership Function (UMF) Histogram and Lower Membership
Function (LMF) Histogram are drawn in Figure 5. A new membership function
obtained from the Gaussian Curve Fitting (GF-F) method as.

From simply log process on both sides in Eq. (39), Eq. (40) can be expressed as
follows:

log
1
u1

� �

¼
2

m� 1
log

dki
d1i

� �

þ log 1þ
X

c

j¼2

dki
dji

� � 2
mdd�1

 !

: (41)

Rearranging Eq. (40) and calculate it in terms of m, gives us Eq. (41), (42).

γ ¼

log 1
u j

� 	

� log 1þ
P

C

k¼2

dij
dik

� 	2=mold�1
� �

log dij
dik

� 	 (42)

mjnew ¼ 1þ
2
γ

(43)

As in the above process, the membership value ui ∈ {ui(Xk)} and mjnew is used as
a function to get the ui. Where Eq. (9) is applied to each clustered data and updated,
m1inew and m2inew values is easily calculated, averaging the fuzzifier value by
Eq. (42), the new fuzzifier value m1 and m2 are finally calculated as follow

m1 ¼
X

N

i¼1

m1i

 !

=N,m2 ¼
X

N

i¼1

m2i

 !

=N (44)

6. Comparing performances algorithms

Algorithms can be compared in previous experiences using the following
criteria:
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Root Mean Squared Error (RMSE): The evaluation metric used by all algorithms of
clustering is RMSE. RMSE is calculated by the root of the averaging all squared errors
between the original data (X) and the corresponding predicted values data (X̅).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

k¼1

P

c

i¼1ðxik � xik

n

r

(45)

where n is the total number of patterns in a given data set and c is the number of
clusters; xik and xik the actual and predicted rating values data respectively.

Accuracy is one metric for evaluating classification models. Informally, accuracy
is the fraction of predictions the model got right. Formally, accuracy has the fol-
lowing definition:

Accuracy ¼
number of correct samples

total number of samples
∗ 100 (46)
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