
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter

Group-Assign: Type Theoretic
Framework for Human AI
Orchestration
Aik Beng Ng, Simon See, Zhangsheng Lai and Shaowei Lin

Abstract

In today’s Information Age, we work under the constant drive to be more
productive. Unsurprisingly, we progress towards being an AI-augmented workforce
where we are augmented by AI assistants and collaborate with each other (and their
AI assistants) at scale. In the context of humans, a human language suffices to
describe and orchestrate our intents (and corresponding actions) with others. This,
however, is clearly insufficient in the context of humans and machines. To achieve
this, communication across a network of different humans and machines is crucial.
With this objective, our research scope covers and presents a type theoretic frame-
work and language built upon type theory (a branch of symbolic logic in mathe-
matics), to enable the collaboration within a network of humans and AI assistants.
While the idea of human-machine or human-computer collaboration is not new, to
the best of our knowledge, we are one of the first to propose the use of type theory
to orchestrate and describe human-machine collaboration. In our proposed work,
we define a fundamental set of type theoretic rules and abstract functions Group
and Assign to achieve the type theoretic description, composition and orchestration
of intents and implementations for an AI-augmented workforce.

Keywords: AI Augmentation, Human Computation, Human AI Collaboration,
Human AI Framework, Artificial Intelligence

1. Introduction

The nature of work is always transformed when automation is introduced.
Looking back in history, automation has typically served to reduce or eliminate the
need for manual work. From hand-delivered messages to telegraph, written com-
munications in the past has required much manual labour. Today, email and a slew
of instant messaging platforms get the same job done instantaneously and better. In
recent years, highly advanced forms of automation involving AI are making head-
ways into the mainstream workplace. Examples include manufacturing robots
learning how to perform bin picking, robot patrol enforcing social distancing in
midst of a virus situation [1] and many more. Automation therefore has an overall
effect of moving human workers up the cognitive value chain, shifting towards
increasingly managerial and strategic roles that are more knowledge-based. The
reason for this is apparent as automation introduces characteristics such as being
stronger and more tireless relative to human workers, and thereby allowing busi-
nesses to do more. Taking a step further, AI is also beginning to encroach into the

1

cognitive realm at work whereby as an instance, an insurance company reportedly
replaced its employees with an AI system [2]. All things considered; it is under-
standable why the workforce is under a constant drive to do more.

Generally, however, automation is well-suited only for tasks that are repeatable
within a fixed context. Contrast to this, the handling of work tasks across shifting
contexts is not a good candidate for automation. As an example, in the face of a
widespread consumer behaviour change due to a pandemic, AI models supporting
sentiment analysis, fraud detection, marketing and inventory management opera-
tions no longer behaved as expected. The article [3] writes:

What’s clear is that the pandemic has revealed how intertwined our lives are with

AI, exposing a delicate codependence in which changes to our behavior change how

AI works, and changes to how AI works change our behavior. This is also a

reminder that human involvement in automated systems remains key.

Though AImodels are designed for robustness to changes in the incoming data,
situations like these reveal the AImodels’ brittleness when there is a significant shift in
input data distribution. This is termed as out-of-distribution (OOD). Thismeans that the
input data at point of inference is no longer the same as the training data’s distribution
that theAImodel learnt from. This has the negative effect where theAImodel not only
potentiallymakes amistake onOOD inputs, but even confidently classifying it as a
known class. Clearly, this is undesirable and in critical deployments, themistake can be
costly. Clearly, this is undesirable and in critical deployments, themistake can be costly.

To counter this, there are research efforts looking into OOD detection. To
illustrate with an example, a deep generative model for OOD detection was trained
using in-distribution genomic sequences [4], with the log-likelihoods plotted for
both in-distribution and OOD inputs. We can see from the results (Figure 1) that
the histogram of log-likelihood overlaps significantly for both in-distribution and
OOD inputs, thus showing the model’s inability to differentiate between in-
distribution and OOD. The authors further note that their observations are not in
isolation and are congruent with earlier works using image data.

Naturally, artificial general intelligence (AGI) comes to mind when we broach
the topic of narrow AI (as afore discussed). We can think of AGI as the AI’s ability
being on par or exceeding that of a human’s ability to learn, understand and per-
form intellectual tasks. To conceptualise the relationship of narrow AI and AGI, one
may think of them as two sides of the same coin or rather, both ends of the same AI
spectrum. Simply put, advancements in narrow AI will evolve towards AGI ulti-
mately. Consensus indicates that AGI is not here today [5, 6] and predictions for the

Figure 1.
Log-likelihood hardly separates in-distribution and OOD inputs, adopted from [4].

2

Virtual Assistant

advent of AGI ranges widely anywhere from a few years to many decades away.
Towards this goal, there are research directions on multiple fronts such as to pro-
gress deep learning from its current System 1-like abilities to be System 2-capable
[7], improving language understanding through increasingly larger and complex
language models such as BERT [8] (and its variants) and GPT-3 [9], etc. These are
tangible indications that AGI is still some way off.

Meanwhile, we believe there is a complementary and parallel research direction
to advancing narrow AI towards AGI. And that is human AI collaboration in which
we exploit AI (be it narrow or AGI) to augment our natural abilities. In this sense,
for as long as work is envisioned to involve humans, the pursuit for human AI
collaboration remains a valuable research direction which will only be more rele-
vant and strengthened further by AI’s advancements and increasing pervasiveness
at work. In the following sections, we will progressively present our proposed
framework designed to enable the collaboration within a network of humans and
AI. To begin, we will first discuss some background concepts relevant towards our
proposed work.

2. Type theory: formal language of terms and types

Type theory is a branch of symbolic logic in mathematics. The theory of types
was conceived to address Russell’s paradox arising from naïve set theory, which says
that any definable collection is a set. If we define a set of all sets that do not contain
themselves, the paradox is illustrated when the set is not a member of itself and
therefore needs to contain itself, which then leads to a contradiction of its own
definition (Eq. (1)).

Let S ¼ x∈ Setjx ∉ xf g:Then S∈ S⇔S ∉ S: (1)

We can think of type theory as a formal language, complete with a set of rules
that inform us on the construction and computations for strings of symbols which
we will further introduce hereon the concept of terms and types.

a : A (2)

We begin with a basic representation (Eq. (2)), more formally referred to as a
judgement, often encountered in type theory, which simply means that a is a term
of type A. We can also think of this as a is an element of A. To illustrate for further
clarity, we define some examples of terms and types using some real-world objects:

• red, green, yellow, orange : Colour

• mary, john, isaac, caleb : Name

• apple, strawberry, banana, orange : Fruit

• chicken, fish, beef , turkey : Meat

In type theory, every term must have a type as seen in List 2. For ease of
understanding, we can loosely correspond this to the set theoretic statement a∈A
where red, green, yellow and orange are all members of type Colour. Another
correspondence can be thought of as propositions as types under the Curry-Howard
isomorphism [10], where A is a proposition, then a validates the existence of A. To

3

Group-Assign: Type Theoretic Framework for Human AI Orchestration
DOI: http://dx.doi.org/10.5772/intechopen.96739

provide the evidence, we will have to perform some mathematical operation to
construct the object, that is the term inhabiting the type. Here we observe that
constructivism is a foundational aspect of type theory, meaning we cannot just
assume that objects exist through means such as “Suppose that there exists such an
object… .” or by proving the existence of some object through deriving a contradic-
tion from the assumption that object does not exist.

Like other concepts in mathematics, the construction of an object in type theory
is governed by rules and we will focus on the introduction of the relevant concepts
in the following sections.

2.1 Function type

To start, we look at the function type. Given types A and B, we can construct the
type A! B of functions mapping from domain A to codomain B. If we define a
function f of type A! B and apply to the term a of type A, we can obtain a term
f að Þ of type B (also can be written as f að Þ : B). For function types, the mapping
between the domain to the codomain is constant and fixed. Let us look at a more
relatable and practical example of a function type:

• We define a function head that returns the first element of a list.

• head belongs to the type Lista! a

• We apply head to a list 1, 2, 3½ � and result is 1.

• If we apply head to a list, the result will be.

Hence, a function type will always map from some domain A to the codomain B.

2.2 Dependent product type

Next, we introduce the dependent product type for which its terms are functions
whose type of codomain varies depending on the term of the domain that the
function is applied to. It is also referred to as a dependent function type or

Q

-type.
Given a type A and a family of types B : A! U, we can construct the type of
dependent products

Q

x:AB xð Þ : U where U is known as universe whose elements are
types. The dependent product type is often used in type theory, and we can think of
it as a more generalised form of the function type. The main difference lies in B
being a constant family in the function type, such that

Q

x:AB � A! B.
To illustrate, let us define f as a dependent function of type

Q

x:AB xð Þ and apply
term a of type A. The result is such that we obtain a term f að Þ of type B að Þ (also can
be written as f að Þ : B að Þ). We further provide a more relatable example of a depen-
dent product type as follow:

• We define a dependent function intOrString of type
Q

x:BooleanintOrString xð Þ
that returns an integer or string depending on the input true, false : Boolean.

• We further define terms and types as 11 : intOrString trueð Þ and ‘hello’
intOrString (false).

• If we apply intOrString to the term true of type Boolean, an integer 11 is
returned.

4

Virtual Assistant

• If we apply intOrString to the term true of type Boolean, a string ‘hello’ is returned.

• Note that intOrString trueð Þ and intOrString falseð Þ are different types.

Hence, a dependent product type will map to a different codomain depending
on the input term.

2.3 Propositions as types

Earlier on, we briefly talked about the correspondence referred to as propositions
as types. To validate the truth about a proposition, it means that the corresponding
type needs to be inhabited by some term and this is the evidence (or witness) to the
proposition. Generally, the evidence will not be constructed explicitly but rather,
translated from proofs into a term of a type and in this sense, it feels like classical set
theory reasoning. However, a proposition in type theory goes beyond being true or
false, to being a collection of all possible evidence towards the proposition’s truth.
This mirrors much of our real-world work scenarios, in the sense that there is often
more than one correct (true) way of fulfilling a task.

Furthermore, the correspondence between type theoretic and logic operations
(Table 1) allows us to syntactically construct a type theoretical operation with the
semantics of the corresponding logical operation. This is significant because with
the ability to correspond between type theoretical and logical operations, the evi-
dence (or proofs) are therefore first-class mathematical objects instead of being just
a means for communicating mathematics.

Although it may not be immediately apparent, what we just discussed has
impactful implications, mainly:

• Logical operations are integrated within the type theoretical operations, thus
combining semantics and syntax. Hence, under the paradigm of propositions
as types, a proposition is true and valid when we provide a term to the type. In
other words, the type (proposition) is now inhabited by a term (evidence).

• As we are operating with first-class mathematical objects within type theory,
this introduces an important aspect: Computability. This gives rise to a further
correspondence which is termed as evidence (or proofs) as programs.

• Due to the constructivism nature of type theory, terms are constructed through
a set of rules introduced earlier within Section 2. This introduces another
important aspect: Explainability.

Logical Type Theoretic

True 1

False 0

Not A A! 0

A and B A� B

A or B Aþ B

A implies B A! B

A if and only if B A! Bð Þ � B! Að Þ

Table 1.
Correspondence of logical and type theoretical operations.

5

Group-Assign: Type Theoretic Framework for Human AI Orchestration
DOI: http://dx.doi.org/10.5772/intechopen.96739

2.4 Reasoning through structured types

Type theory can be viewed as a mathematical formalisation for a programming
language. Examples of such programming languages include Agda, Coq, Haskell and
more. One notable usage is in proof assistants, that resulted in a verifiable proof of the
four colour theorem [11] well over a century after its introduction in 1852. Another
notable usage is in formal program verification, which is a software programming
paradigm that ensures that the resulting computer program has the rigour of a math-
ematical proof. This is achieved through specifying how a program should behave and
ensuring that it works as specified, which is synonymous with the creation and proof
of a mathematical model. Beyond the guarantee of the program’s correctness, this has
significant implications on cyber security in our highly connected digital society.

Though dependently typed functional programming is not mainstream at the
point of writing, it is on the rise and initiatives such as CompCert [12] are active in
taking functional programming forward. In concluding Section 2, we find the fol-
lowing quote [13] useful as a succinct summary of type theory:

In type theory, unlike set theory, objects are classified using a primitive notion of type,
similar to the data-types used in programming languages. These elaborately structured
types can be used to express detailed specifications of the objects classified, giving rise to
principles of reasoning about these objects.

3. Group-assign: type theoretic framework for human AI orchestration

Having discussed the background and relevant concepts, we will describe our
proposed work hereon. We will first start off with a summary of what the framework
is and what it does in Section 3.1. Following this, we will further describe the frame-
work details, methodology and associated terminologies over the subsequent sections.
We will also openly discuss about the design considerations that influence the current
version of our proposed framework. This is done with the key purpose for sharing our
research thoughts through the journey of developing our framework, to better inform
future interested parties on how they can leverage and further our proposed work.

3.1 Framework overview and contribution

While the idea of human-machine or human-computer collaboration is not new
and different ideas have been proposed. To the best of our knowledge, we are one of
the first to propose the use of type theory as a language to orchestrate and describe
human-machine collaboration. In our proposed framework, we define a fundamen-
tal set of type theoretic rules:

• Base form of intent representation.

• An intent can be applied to different data.

• An intent may result in any number of possible implementations.

• An intent may be composed of one or more constituent intents.

We also define abstract functions forGroup andAssign as basemethodologieswithin
the framework to handle data and assigned towards associated implementations.

As an implementation to the type theoretic framework, we develop a prototype
using Python that allows us to orchestrate independent declaration of intent(s) and

6

Virtual Assistant

instantiating the intent(s) with associated data and implementations, visualised as a
simple directed graph that can be recursively built upon a intent-data-implementa-
tion pattern. Collectively, this graph represents a work plan (e.g. Running a fast
food restaurant) in the real world. Each node symbolises some real-world human
intent, data group, implementation. For example, “Cook Burger Patty” is an intent
that can be instantiated with “Chicken”, “Beef” as data groups associated to “Ten
steps to cook a burger patty” as an implementation.

3.2 It all begins with an intent

In the context of our proposed work, we define intent simply as “the desire to do
something (carry out an implementation)”. It is beyond the scope, however, to
discuss or quantify intent from a philosophical or psychological view. Before we do
something, we first have the intent to do so and the intent does not always neces-
sarily lead to any tangible implementation. Here, we introduce the distinction
between intent and implementation.

Work tasks often involve multiple actions and, in this sense, can be considered
complex. In undertaking the task, we form an overall intent (which is to complete
the task) comprising of constituent intents, which together represents an abstract
plan to manage the task. For example, to set up a meeting, we will need to check for
the meeting room availability, attendees’ availability and then determine the best
common time slot. The overall intent in this example is “set up a meeting” with the
rest being constituent intents. While “check for meeting room availability” and
“check for attendees’ availability” can be independent, “determine best common
time slot” will depend on these two constituent intents. A constituent intent
may depend on one or more other constituent intents or it may also be
independent from (existing alongside) other constituent intents. Here, we intro-
duce the notion of a hierarchy of constituent intents within the context of an
overall intent.

It can be challenging when we talk about intents. Horizontally across a company,
different people in the similar job tiers can have different views about the same
thing. Vertically, people across the job tiers will see things at different granularity.
Using the same illustration of setting up a meeting, a manager may just instruct the
team to set up a meeting. The team member in charge will probably add more
constituent intents such as checking for meeting room and attendees’ availability
because “set up a meeting” is insufficient to fulfil the task. This is an example of
vertical granularity differences. Given if another team member is put in charge, he/
she may also handle it differently and perhaps add “Cater for coffee and tea” as a
constituent intent. This is an example of horizontal diversity. Therefore, to achieve
the overall intent (some collective goal), it is important to have the ability to
connect diverse and distributed intents in a robust manner.

With these design considerations in mind, framework design principles are
summarised as follow:

• Intent and implementation are distinct.

• An intent (within a context) can contain a hierarchy of constituent intents.

• An intent may depend on other constituent intents.

• An intent may have one or more possible implementations.

• Intents should be connected in a robust manner, enabling explanability.

7

Group-Assign: Type Theoretic Framework for Human AI Orchestration
DOI: http://dx.doi.org/10.5772/intechopen.96739

3.3 What is the language for connecting intents?

We earlier discussed about the importance of connecting intents. And by
connecting intents, we are composing some work plan. More generally, we are
composing a structure and examples abound as we live in a world filled with
structures. Examples of structures exist in buildings, deoxyribonucleic acid (DNA),
literature, music and many more. The principle of compositionality [14] states that:

For every complex expression e in language L, the meaning of e in L is determined by

the structure of e in L and the meanings of the constituents of e in L.

Reasoning is not monolithic and whether as an individual or a team, reasoning is
compositional in nature. As we saw earlier, works in AI (both symbolic and neural)
are also looking to emulate this behaviour within their AI models. However, intents
are intangible and formless. We cannot know what another’s intent is unless it is
expressed. From a human to human perspective, we compose expressions using
some language (e.g. English, Chinese, French, German, etc.) to convey our intents
to each another, and the success of it depends on both parties understanding the
language as well as whether the expression is well-formed. This takes place so
commonly in our daily lives that most of us likely have taken for granted the
underlying significance. Hence, an expression is a proxy of our intent and the
language is what enables the connection of intents.

Progressing into a future where humans and AI collaborate, will a human lan-
guage suffice? The answer is clearly no. This is where we believe type theory will
serve a suitable and important role in our proposed framework as the language
(syntax) that allows users of the framework to define and connect intents and
associated implementations (semantics) in a principled way.

3.4 Intents as types can be understood by machines

Humans are not precise and often ambiguous in expressing our intents. Clearly,
there is no metric for compatibility and level of abstraction when it comes to human
intents. The level and the type of details we deem important and sufficient vary
accordingly based on our experience. But with machines, precision and non-
ambiguity is critical for things to work.

We believe type theory serves a key role in our proposed framework as the
language (syntax) that bridges humans and machines. By embedding human-
expressed intents within our type theoretic framework, we posit that the expres-
siveness (and ambiguity) of humans can be preserved while simultaneously having
the precision that machines require in order to function.

This allows users of our framework to define and connect human intents and
associated machine implementations (semantics) in a principled and precise man-
ner that also allows for diversity and distributed contributions from multiple parties
as is reflective of real world conditions.

Earlier, we presented the idea of correspondence in type theory such as “propo-
sitions as types” and “proofs as programs”. In our proposed framework, we further
introduce a correspondence termed intents as types (Figure 2).

implementation : Intent (3)

Recall we established that an intent is distinct from its implementation and an
intent may have one or more implementations. This structure is a natural corre-
spondence to the basic representation of term and type (Eq. (2)) earlier introduced

8

Virtual Assistant

and we will represent the base form of an intent in a similar type theoretic manner
(Eq. (3)). Hence, we can easily understand this correspondence as:

• Intents as types

• Implementations as terms

By establishing intents as types, we have effectively laid down the foundation of
our proposed framework from which we will further extend its functionalities.

3.5 Separation of intent and implementation

In our proposed framework, there is a profound significance underlying intents
as types. And this is because it allows for the separation of intents and
implementations, which we believe to be critical towards enabling collaborations.
Today, intent and implementation are intertwined which can be seen from how
systems often specify and dictate how we carry out tasks in fulfilment of some
intent. However, in context of the knowledge workplace, this is probably too dra-
conian and rigid where the creativity and autonomy of individuals are especially
valued. Furthermore, in reality, intents are often separate from implementations
and may even be contributed by different people. Particularly, collaboration at scale
is complex and we cannot reasonably expect it to be well-defined or pre-defined
from the onset. On contrary, we can expect that for any collaboration:

• Multiple parties are involved.

• Coordination needs to happen vertically and horizontally within the
organisation’s hierarchy.

• People’s ideas and ways of doing things can be fluid, dynamic and diverse.

Essentially, we need to flexibly handle the division of interdependent labour,
interconnected intents, and diverse methods of handling the task at hand. There-
fore, the question is: how can we tie people’s collaboration together - managing the
flow of information, etc. - allowing each person to define what they can do for
others without overtly constraining their implementation, then allowing each task
with input data to be broken into groups of data which can be handled with
different implementations?

To achieve this, we believe that there needs to be a separation of intent from the
implementation using type theory, enabled through our proposed framework.

Figure 2.
Intents as types.

9

Group-Assign: Type Theoretic Framework for Human AI Orchestration
DOI: http://dx.doi.org/10.5772/intechopen.96739

3.6 Framework axioms

Next, we derive the rules (axioms) of our proposed framework which will
govern the operations in a type theoretic manner.

Given some data x : X of type X and an intent G xð Þ, the output is some
implementation g xð Þ. We represent this statement type-theoretically in Eq. (4),
which relates an implementation (term) to its intent (type).

g xð Þ : G xð Þ (4)

Alternatively, we can write

g : Πx:XG xð Þ (5)

where we view g as a term of a dependent product type.
To fulfil an intent G xð Þ:

• there may exist data groups or subtypes X1,X2, … ,Xk ⊆X where the intent
former G can be applied. This means that for different data x1 : X1, x2 :

X2, … , xk : Xk, we could form different intents.

G x1ð Þ,G x2ð Þ, … ,G xkð Þ (6)

• Given some data xi : Xi, the intentG xið Þmay have one ormore implementations.
Moreover, there may exists any number of possible strategies or implementation
formers g1, g2, … , gm for constructing implementations forG xið Þ.

g1, g2, … , gm : G xið Þ (7)

• Each implementation former g j for G xið Þmay consume the outputs from one

or more constituent intents Γ1,Γ2, … ,Γn and associated implementations may
receive inputs from one or more constituent intents (Eq. (8)). This means that
an intent may contain its own hierarchy of constituent intents.

γ1 : Γ1 xið Þ ! γ2 : Γ2 xi, γ1ð Þ

! …

! γn : Γn xi, γ1, … , γn�1ð Þ

! g j xi, γ1, γ2, … , γnð Þ : G xið Þ

(8)

In summary, these framework rules allow us to:

• Define and construct intents.

• Connect intent to constituent intents.

• Associate an intent with its implementation(s) and related data.

3.7 Group and assign

Next, to complete the framework, we will introduce two algorithms, Group
and Assign, as abstract methods respectively described in Algorithm 1 and
Algorithm 2.

10

Virtual Assistant

The Group function (Eq. (9)) is defined as: For every intent, we have a set of
data that can be further grouped into smaller groups based on some grouping
criteria J.

Group G, x½ �ð Þ ! G, x, jð Þ½ �ð Þ (9)

Algorithm 1 Group.

1: Input: G, x½ � where x∈X, J where j∈ J
2: Output: G, x, jð Þ½ �ð Þ
3: Initialise:
4: L Ø where L is a placeholder list to collate all x, jð Þ pairs
5: for each j in J do
6: if x matches criteria j then
7: L x, jð Þ
8: end if
9: end for
10: G, x, jð Þ½ �ð Þ ¼ G,Lð Þ
11: return G, x, jð Þ½ �ð Þ

The Assign function (Eq. (10:)) is defined as: For each group belonging to an
intent G, some implementation g is defined and applied to the group.

Assign G, x, j�ð Þ ! G, x, j, g j x, γ1, γ2, … , γmð Þ
h i� �h�

(10)

Algorithm 2 Assign.

1: Input: (G, [(x, j)])

2: Output: G, x, j, g j

� �h i� �

3: for each x, jð Þ in x, jð Þ½ � do
4: if some g exists for x, jð Þ then

5: x, j, g j

� �

 x, jð Þ.append g j

6: end if
7: end for

8: return G, x, j, g j

� �h i� �

Our proposed framework is collectively formed by the framework rules (Section
3.6), Group and Assign. This completes the description of our framework and in the
following sections, we will discuss the evaluation strategies and findings for our
proposed framework.

3.8 Evaluation approach

Our proposed work brings together type theory, type theoretic framework
axioms and associated functionalities as a human AI intent orchestration framework
intended for real world application. To the best of our knowledge, this is a novel
effort and uniquely positioned idea to introduce capabiltiies for enabling a

11

Group-Assign: Type Theoretic Framework for Human AI Orchestration
DOI: http://dx.doi.org/10.5772/intechopen.96739

collaborative human AI future. This concurrently presents a challenge for us in
determining how best to provide an evaluation of the proposed framework as
widespread adoption and understanding will require more time and effort beyond
our scope of research, as is reasonably expected given that the collaborative human
AI society has yet to be a norm at the point of writing.

Going into the future, we intend to utilise our proposed framework and progress
beyond our preliminary evaluation efforts to progressively identify and engage
external parties for further evaluation through joint collaborations. Nevertheless,
we endeavour to provide an evaluation of our proposed framework here and there-
fore consider the following:

• What is the closest and most relevant domain for our proposed framework?

• In reference to this domain, what are some useful evaluation strategies?

We believe that evaluation strategies for a toolkit (which we liken as comparable
to our proposed framework) from the domain of human computer interaction [15]
is relevant and suitable. We also note that the authors have expressed that “The
problem is that toolkit evaluation is challenging, as it is often unclear what ‘evalu-
ating’ a toolkit means and what methods are appropriate.”, which speaks of a
similar challenge for us and is still commonly faced till date by researchers of
toolkits. Concretely, we reference and adopt two well-established evaluation strat-
egies for the purpose of our evaluation, namely:

• Demonstration: As the name suggests, this evaluation strategy shows what the
framework can support and how users might potentially use the framework
through means such as using examples to illustrate a variety of possible
applications. And it helps with the question of “What can be done with the
framework”. For our proposed work, we conduct this in the form of a “How
To” scenario which is a technique of the demonstration evaluation strategy.
Essentially, it is a walkthrough on a step-by-step breakdown of the workflow
into individual steps and its associated results. Following this method, we
demonstrate using a real-world context and step-by-step breakdown of how
the framework orchestrates the intents of multiple users (Section 3.9).

• Usage: This particular evaluation strategy involves a user group in how they
work with the framework, which helps with verifying aspects such as
conceptual clarity, ease of use, value as perceived to the target user group, etc.
And it helps with the question of “Who can use the framework”. In practice,
this is complementary and often combined with demonstrations. For our
proposed work, we conduct this in the form of a walkthrough which is a
technique of the usage evaluation strategy and gather the users’ overall
impressions. Using this method, we show our proposed framework to our
potential users for their feedback and impressions. As a further enhancement,
we also made this an interactive walkthrough where the potential users
participated under the context of a work task in our team (Section 3.10).

3.9 “How to”scenario

To illustrate the walkthrough, we utilise our prototype software library and
further implement a demo application built on top to illustrate plausibility and
practical usability of our proposed framework. Figures 3–6 are screenshots taken
from the demo application.

12

Virtual Assistant

To begin, let us suppose the scenario where we are planning for a fast food
restaurant operations. Serving meals to our customers would be core to our busi-
ness. In this context, “Serve Meal “would therefore be an overall intent from a
management perspective. Another person on the team might look at this and sug-
gest that we offer nuggets. Another then contributes that selling burgers will be a
great idea too. Now, we have three intents altogether (Figure 3): “Serve Meal” and
two constituent intents, “Serve Nugget” and “Serve Burger”.

Subsequently, another team member points out that a meal would only be
complete with a drink and further contributes “Serve Drink” (Figure 4). Here, we
see that the framework is flexible to handle contributions of intents from different
parties in a distributed manner. We could go on and add more intents, but this will
suffice in this walkthrough for now.

At this point, we start to have a semblance of a plan on our food menu strategy
and at work, this is what is often referred to as a “high level” view. However, it
clearly still lacks further granularity such as:

• What type of burger?

• What type of drinks?

• What type of nuggets?

• What are the types of meal combinations we want to offer in our food menu?

We decide then that what we serve will depend on our inventory except we will
not serve beef nuggets because it is not a norm. Looking through our inventory, we
have chicken and beef in our raw meat inventory and coca-cola in our drinks. So,
we will make beef burgers, chicken nuggets and coca-cola drinks. In doing this, we
have effectively created groups of data based on some criteria and associated them
with the corresponding implementation and intent (Figure 5).

Finally, we decide to offer 2 types of meal: Beef burger with coca-cola and
chicken nuggets with coca-cola. This leads us to having a complete plan (Figure 6):
We know what we want to do (Intent), we know how to do it (Implementation)
and we have the ingredients (Data).

It is clear that different levels of details (i.e. intents, implementations) are often
being handled by different workers horizontally as well as vertically within a com-
pany hierarchy. Any work operations of some scale will necessitate this division of
labour. This is where disconnects will happen because there are no guarantees of
higher level details connecting with more granular details, especially more so when
the big picture is contributed by many different workers.

Figure 3.
Constructing intents in the context of menu planning for a fast food restaurant.

Figure 4.
Adding an intent “serve drink”.

13

Group-Assign: Type Theoretic Framework for Human AI Orchestration
DOI: http://dx.doi.org/10.5772/intechopen.96739

3.10 Usage feedback

To collect usage feedback, we conducted an interactive walkthrough on a
work planning task for strategising our business unit growth, where we
collaboratively develop a workplan by using our proposed framework principles.
For confidentiality reasons, the actual content of the workplan will not be
documented here. However, the process is similar in nature as our detailed step-by-
step breakdown in Section 3.9. Following the conclusion of our interactive
walkthrough, the user feedback for our proposed framework are summarised as
follow:

• Structured yet flexible: The intent-data-implementation pattern for building
up a workplan provided a clear structure for interdependent labour,
interconnected intents, and diverse methods of handling the task at hand.
However, there is still much flexibility for expressing intents and
implementations, and the structure does not inhibit this flexibility.

• Clarity and precision: It is apparent from the workplan to see which intents are
unfulfillable due to the inability to provide implementations or data for. While

Figure 5.
Associating intent-data-implementation. Intents are represented as red rectangles, data is represented as blue
diamonds and implementations are represented as green ovals.

Figure 6.
Completed plan for offering fast food meals.

14

Virtual Assistant

this feels rigid initially, it is subsequently well-accepted as there is a recognition
that we cannot simply speak about our intents at work without the means to
make it happen.

• In summary, we like to highlight some key points:

• The workplan can be easily visualised as a simple directed graph that is
recursively constructed through primitive blocks comprising of 3 types of
nodes: Intent, Implementation and Data.

• Beneath the apparent simplicity, the workplan is type theoretic and built upon
the rules and algorithms (Group and Assign) described respectively in Sections
3.6 and 3.7. This confers any workplan built upon this framework with the
desirable type theoretic properties discussed in Section 2.

From our evaluations, we demonstrate the plausibility of our proposed frame-
work towards its intended goal for orchestrating work plans across a heterogeneous
network of human intents associated with AI/human implementations and data.

4. Conclusions

In summary, we can see that the framework orchestrates the intents and associ-
ated implementations from different people while keeping the intent and imple-
mentation separate.

• This allows for each person to define what they can do for others in a
distributed manner, while also enabling them the flexibility and freedom to
provide their implementations they deem best.

• More so, by utilising primitive blocks of intent-data-implementation, the
workplan is built up in a type theoretic manner where dynamic dependencies
can be captured and represented clearly.

• This essentially makes the workplan a mathematical model which can be fully
described using type theoretic expressions and hence is computable and
constructive in nature.

4.1 Challenges and future directions

At the beginning of the chapter, we established the significance of human AI
collaboration, and proceeded to share about our proposed work and its intended
contributions towards this goal. In ending this chapter, it is apt to candidly discuss
about its potential challenges and associated future directions. To do this, let us
expand our view of human AI collaboration beyond the technological lens. Again,
what then is human AI collaboration? It is a relationship, fundamentally. Like any
successful relationship, trust and communication are crucial. Let us discuss each of
these factors:

• Trust. This represents our confidence level in relying on the output from our
AI counterpart. How do we ensure that the AI is performing as it should? Is
there transparency in the way the AI operates? Are we able to interpret and
understand why the AI does what it does? For example, standard-setting

15

Group-Assign: Type Theoretic Framework for Human AI Orchestration
DOI: http://dx.doi.org/10.5772/intechopen.96739

organisations define criteria for many technologies to ensure that compliance
guarantees quality, digital security protocol such as SSL ensures the security for
internet communications, well-documented manuals aid us in product
troubleshooting and maintenance, etc. Every new technology introduced
would eventually face questions such as these. Going forward, an area of
potential interest lies in the framework integration with proof assistant
capabilities. Work plans built upon our proposed framework are type theoretic
in nature. The broad idea is therefore to treat every work plan as a theorem to
be proven. By proving the theorem (work plan), the strong implication is that
the work plan is verified to be working as intended. The ability to frame real
world work plans as a mathematical model has desirable benefits in terms of
trust, and this is an area which we hope to investigate more deeply.

• Communication. This represents how human and AI convey and exchange
information. While our proposed work contributes towards a facet of human
AI collaboration to enable the description and orchestration of intents across a
network of humans and machines, it is targeted and focused as is the nature of
research. As an analogy, while networking protocols enable the exchange of
information over the Internet, it does not inherently make information easily
searchable by users. For this, technologies such as search engine come into
play. Switching back to our context here, an interesting aspect of
communication (beyond our proposed work) would be to consider how these
intents (along with its associated implementations and data) can be made
discoverable and reusable by others.

Naturally, our discussion here is by no means exhaustive. It is our intent and
hope that our proposed work and discussion contributes towards and catalyse
future discussions in the research community for the continued advancements of
human AI collaboration and ultimately, towards the future of a collaborative human
AI society.

Acknowledgements

In making this work possible, I gratefully acknowledge the support of NVIDIA
and research funding from Singapore Economic Development Board that enabled
the opportunity for conducting this work.

16

Virtual Assistant

Author details

Aik Beng Ng1*, Simon See1, Zhangsheng Lai1 and Shaowei Lin2

1 NVIDIA Corporation, San Tomas Expressway, Santa Clara, CA

2 Singapore University of Technology and Design

*Address all correspondence to: aikbengn@nvidia.com

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

17

Group-Assign: Type Theoretic Framework for Human AI Orchestration
DOI: http://dx.doi.org/10.5772/intechopen.96739

References

[1] CNA. Meet the robot dog promoting
safe distancing in Singapore’s parks
[Internet]. 2020. Available from: https://
www.channelnewsasia.com/news/singa
pore/meet-the-robot-dog-promoting-
safe-distancing-in-singapore-s-12716544
[Accessed: 2020-05-09]

[2] BBC. Japanese insurance firm
replaces 34 staff with AI [Internet].
2017. Available from: https://www.bbc.
com/news/world-asia-38521403
[Accessed: 2017-01-05]

[3]MITTR. Our weird behavior during
the pandemic is messing with AI models
[Internet]. 2020. Available from:
https://www.technologyreview.com/
2020/05/11/1001563/covid-pandemic-
broken-ai-machine-learning-amazon-
retail-fraud-humans-in-the-loop/
[Accessed: 2020-05-11]

[4] Jie Ren and Peter J. Liu and Emily
Fertig and Jasper Snoek and Ryan Poplin
and Mark A. DePristo and Joshua V.
Dillon and Balaji Lakshminarayanan.
Likelihood Ratios for Out-of-
Distribution Detection. In: Advances in
Neural Information Processing Systems
(NEURIPS ‘19); 2019. p. 14707–14718

[5] Cem Dilmegani. 995 experts opinion:
AGI / singularity by 2060 [Internet].
2021. Available from: https://research.
aimultiple.com/artificial-general-
intelligence-singularity-timing
[Accessed: 2021-02-08]

[6] Federico Berruti and Pieter Nel and
Rob Whiteman. An executive primer on
artificial general intelligence [Internet].
2021. Available from: https://www.
mckinsey.com/business-functions/
operations/our-insights/an-executive-
primer-on-artificial-general-intelligence
[Accessed: 2021-02-08]

[7]NIPS. From System 1 Deep Learning
to System 2 Deep Learning [Internet].
2019. Available from: https://nips.cc/

Conferences/2019/ScheduleMultitrack?
event=15488 [Accessed: 2019-12-11]

[8]Devlin, Jacob and Chang, Ming-Wei
and Lee, Kenton and Toutanova,
Kristina. BERT: Pre-training of Deep
Bidirectional Transformers for
Language Understanding. In:
Proceedings of the 2019 Conference of
the North American Chapter of the
Association for Computational
Linguistics: Human Language
Technologies, Volume 1 (Long and
Short Papers); 2019. p. 4171–4186

[9] T. Brown and B. Mann and Nick
Ryder and Melanie Subbiah and J.
Kaplan and Prafulla Dhariwal and
Arvind Neelakantan and Pranav Shyam
and Girish Sastry and Amanda Askell
and Sandhini Agarwal and Ariel
Herbert-Voss and G. Krüger and T.
Henighan and R. Child and Aditya
Ramesh and D. Ziegler and Jeffrey Wu
and Clemens Winter and Christopher
Hesse and Mark Chen and E. Sigler and
Mateusz Litwin and Scott Gray and
Benjamin Chess and J. Clark and
Christopher Berner and Sam
McCandlish and A. Radford and Ilya
Sutskever and Dario Amodei. Language
Models are Few-Shot Learners. In: 34th
Conference on Neural Information
Processing Systems (NeurIPS 2020),
Vancouver, Canada; 2020.

[10] Sørensen, Morten Heine and
Urzyczyn, Pawel. Lectures on the
Curry-Howard isomorphism. 1st ed.
Elsevier Science; 2006. 456 p.
Hardcover ISBN: 9780444520777

[11]Gonthier, Georges. A Computer-
Checked Proof of the Four Colour
Theorem [thesis]. Microsoft Research
Cambridge; 2005.

[12] Inria. COMPCERT [Internet]. 2008.
Available from: http://compcert.inria.fr/
[Accessed: 2020-12-03]

18

Virtual Assistant

[13] The Univalent Foundations
Program. Homotopy Type Theory:
Univalent Foundations of Mathematics
[Internet]. 2020. Available from:
https://homotopytypetheory.org/book
[Accessed: 2020-12-03]

[14] Szabó, Zoltán Gendler. The
Stanford Encylopedia of Philosophy
[Internet]. 2017. Available from: https://
plato.stanford.edu/archives/sum2017/
entries/compositionality/ [Accessed:
2020-12-03]

[15] Ledo, David and Houben, Steven
and Vermeulen, Jo and Marquardt,
Nicolai and Oehlberg, Lora and
Greenberg, Saul. Evaluation Strategies
for HCI Toolkit Research. In:
Proceedings of the 2018 CHI Conference
on Human Factors in Computing
Systems (CHI ‘18); 2018. p. 1–17

19

Group-Assign: Type Theoretic Framework for Human AI Orchestration
DOI: http://dx.doi.org/10.5772/intechopen.96739

