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Abstract

This book chapter will comment on fluorescent reporter proteins and  
nanocrystals’ applicability as fluorescent markers. Fluorescent reporter proteins in 
the Drosophila model system offer a degree of specificity that allows monitoring 
cellular and biochemical phenomena in vivo, such as autophagy, mitophagy, and 
changes in the redox state of cells. Titanium dioxide (TiO2) nanocrystals (NCs) have 
several biological applications and emit in the ultraviolet, with doping of europium 
ions can be visualized in the red luminescence. Therefore, it is possible to monitor 
nanocrystals in biological systems using different emission channels. CdSe/CdS 
magic-sized quantum dots (MSQDs) show high luminescence stability in biological 
systems and can be bioconjugated with biological molecules. Therefore, this chapter 
will show exciting results of the group using fluorescent proteins and nanocrystals 
in biological systems.

Keywords: nanocrystals, fluorescent proteins, fluorescent markers, magic-sized 
quantum dots, titanium dioxide

1. Introduction

Several types of tools have been developed in order to monitor biological pro-
cesses through fluorescence images. Some of these tools are the use of fluorescent 
proteins and nanomaterials. This book chapter will comment in particular on green 
fluorescent protein and luminescent nanocrystals.

The green fluorescent protein (GFP) of Jellyfish Aequoria victoria and fluo-
rescent homologous proteins of different colors isolated from other sea creatures 
have led to the development of fluorophores that have been widely used in recent 
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decades. In the biological area, fluorescent antibodies are a powerful tool for 
analyzing the subcellular location of proteins of interest. In addition, a gene 
encoding a fluorescent protein can be introduced into a model organism, resulting 
in the expression of functional fluorescent proteins, which can then be detected by 
fluorescence microscopy, flow cytometry, and other fluorescence-based methods. 
Fluorescent proteins have revolutionized biological and biomedical research, 
for example, it is possible to monitor the activity of a gene promoter by placing a 
fluorescent protein under its control. By using this tool, the spatial and temporal 
patterns of gene activation were revealed, as well as it was possible to trace the 
specific fates of cell populations or even to visualize the different shapes that cells 
can assume during development. Perhaps the most sophisticated area is the con-
struction of genetically modified fluorescent sensors for the detection of ions, small 
molecules, and various types of enzyme activity [1–3].

One of the best and most used in vivo models to investigate biological phe-
nomena is the fruit fly. The fruit fly Drosophila melanogaster is a well-established 
model organism in nanotoxicology studies [4]. Drosophila has a short life cycle, low 
maintenance cost, and a considerable amount of conserved genes and physiologi-
cal mechanisms with humans [5, 6]. The complete sequencing of the Drosophila 
genome combined with genetic editing techniques allows the construction of 
reporter lines (for example, GFP) fused to specific genes [6]. One of the main tools 
that make the fruit fly an excellent model organism is the possibility of express-
ing genes of interest in specific tissues through the UAS-GAL4 binary expression 
system. This system consists of two factors: the GAL4 transcription factor fused 
to the promoter region of a gene of interest and the upstream activation sequence 
(UAS). GAL4 is able to bind the upstream activation sequence (UAS), activating 
the transcription of a target gene linked to UAS, allowing ectopic gene expression 
[6]. Thus, the use of fluorescent reporter genes under the control of the UAS-GAL4 
system allows a degree of specificity necessary to monitor cellular and biochemical 
phenomena in vivo in different tissues, such as autophagy, [7] mitophagy [8], and 
changes in the redox state of cells [1]. Taken together, these features are essential 
for studies that evaluate the effects of xenobiotics on development, however, it can 
still be improved in the nanotoxicology area, mainly in the use of reporter lines for 
the elucidation of cellular mechanisms responsible for toxicity and the subcellular 
localization of nanocrystals.

The development of different nanoscale materials has increased for differ-
ent applications. Titanium dioxide (TiO2) nanocrystals (NCs) have been used 
in several types of cosmetics, food, and the textile industry [9, 10]. This is 
because this NC has a wide variety of properties that improve materials, such as 
its bioluminescence and chemical stability [11]. Bioluminescent techniques are 
widely used in biomedicine for studies of drug screening, molecular markers, and 
monitoring of molecular reactions, among other applications [12]. Bioluminescent 
NCs, such as TiO2, present an excellent opportunity to obtain ultra-sensitive and 
enhanced analyzes and images, in addition to allowing the study of biolumines-
cence [13–15]. The use of bioluminescent imaging in vivo allows the visualization 
of biological processes in intact living organisms, providing abundant quantitative 
space–time information beyond the reach of conventional in vitro tests and fixed 
material [15].

Doping is a technique that allows the incorporation of substitutional ions into 
the crystalline structure of materials, generating exciting properties [16]. TiO2 
nanocrystals (NCs) with europium ions incorporated in their structure can be 
visualized in red fluorescence [17]. This acquired property makes it possible to 
track luminescence, thus being able to be coupled to biomolecules and drugs for 
studies of effects and tracking them, for example, which can assist in the studies of 
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quantitative monitoring of molecular reactions and cellular behaviors, allowing a 
better understanding of the functions dynamic and complicated biological  
phenomena [18, 19].

Quantum dots (QDs) of cadmium chalcogenides (CdSe, CdS, and CdTe) absorb 
and emit in the visible electromagnetic spectrum, and for this reason, they are used 
in several applications of biological and biomedical marking, such as fluorescent 
probes, biosensors, and others. In the area of   biological labeling, the great appli-
cability of QDs occurs because they present several advantages over traditional 
organic fluorophores, such as a long fluorescence life span, ~ 100 times greater, 
which allows to distinguish it from the background b signal, seen that autofluores-
cence has a much shorter fluorescence life; absorption and emission spectra tun-
able; high photo resistance and chemo-degradation; and high fluorescence intensity 
[20–22]. However, this comparison of the fluorescence intensity of the QDs was 
performed in non-aqueous solvents, with unconjugated QDs, and in non-biological 
media, since the fluorescence intensity may be lower when the QDs are conjugated 
and used in biological labeling experiments [23].

Ultra-small PQs (USPQs) are nanocrystals with extremely small sizes, present-
ing strong quantum confinement effects, in which most of their atoms are located 
on the surface [24]. A large number of atoms on the surface and the presence of 
several pendant bonds lead to changes in the properties of nanocrystals, which can 
be observed in the fluorescence spectra [25].

The quantum dots of magic-sized (MSQDs) are nanocrystals with extremely 
small sizes (<2 nm) and that present physical property utterly different from 
traditional QDs [26]. Although MSQDs have similar properties to USQDs, including 
composition and size, some fundamental properties place these QDs in different 
classes. The characteristic properties of MSQDs are thermodynamically stable 
structures, wide luminescence range, high size stability over time, relatively narrow 
absorption spectra and/or heterogeneous (discontinuous) growth [27–31]. The 
structures are thermodynamically stable; they are formed from the arrangement 
of a certain number of atoms, which gives it high stability. Nguyen et al. made 
theoretical predictions of different types of CdSe MSQDs structures aligned with 
the literature’s experimental results [32]. The term magic size is related to a (magic) 
number of atoms in the structure that makes QDs extremely stable [32]. The broad 
luminescence spectrum occurs due to MSQDs having internal atomic defects 
(absence or extra presence of atoms) [27, 29, 32].

The development of new alternatives for the study of biomolecules in organic 
systems has grown considerably. The high specificity and sensitivity of scientific 
methodologies based on fluorescence clarify biological events [33]. Fluorescent 
probes based on organic dyes have been shown to identify biomolecules [34, 35]. 
Silva et al. demonstrated that the biocompatibility of CdSe/CdS MSQRd could 
be tuned in the synthesis, [36] present high luminescence stability in biological 
systems [37], can be bioconjugated with several biomolecules aiming at the most 
diverse luminescent probes [38–42] and in biosensors [43, 44].

This chapter shows recent results that the group has been working with fluores-
cent reporter proteins and the applicability of nanocrystals as fluorescent markers. 
Nanocrystals of pure and europium doped TiO2 and CdSe/CdS (MSQDs) will be 
some of the exciting tools for marking in biological systems.

2. Fluorescent proteins and nanocrystals

This section will show the group results using GFP tagged proteins and nano-
crystals’ applicability as fluorescent markers.
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2.1 Drosophila lines expressing fluorescent proteins

In 2011, Albrecht et al. established a monitoring system that allows assessing the 
status of chemically defined redox species (the redox pair GSH/GSSH and H2O2) 
in subcellular compartments cytosol and mitochondria in vivo. They have fused a 
probe sensitive to redox changes (ro-GFP2) [45–47] to the microbial H2O2 sensor 
oxidant receptor peroxidase 1 (Orp1) [46]. In a reduced state, this probe exhibits 
excitation around 488 nm, while upon oxidation, roGFP2 gains excitability at 
405 nm and loses excitability at 488 nm. In the present work, we used one of the 
transgenic Drosophila lines described by Albrecht and collaborators, called mito-
roGFP2-Orp1 [1] to exemplify how in vivo sensors can be valuable for analyzing 
the redox state and to propose its use for the analysis of nanomaterials biocompat-
ibility in vivo. In Figure 1 we show different dissected larval tissues of Drosophila 

Figure 1. 
Drosophila lines expressing fluorescent proteins can be used as in vivo sensors of redox status. Different GAL4 
drivers were used to express Mito-orp1-GFP in different Drosophila larval tissues. (A-F) The Drosophila GAL4 
driver sgs3-GAL4 was used to express Mito-orp1-GFP2 in larval salivary glands. A- bright field image of a 
Drosophila larval salivary gland. In (B) the Mito-orp1-GFP can be visualized in its reduced state, while in (C) a 
weak signal is seen under 405 nm light. A greater magnification of the salivary gland shown in a can be seen in (D) 
while in (E) the overlap of the Mito-orp1-GFP2 in its reduced (488 nm) and oxidized (405 nm) state is shown. 
(G) Larval midgut showing the overlap of the Mito-orp1-GFP2 in its reduced (488 nm) and oxidized (405 nm) 
state. The Mito-orp1-GFP2 in its reduced state is shown in (H) and (K) while the sensor oxidized fluorescence is 
seen in (I) and (L). All images were acquired using ThermoFisher Scientific EVOS M7000 Imaging System.
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expressing the redox sensor mito-roGFP2-Orp1. Figure 1A shows the bright field 
image of a dissected larval salivary gland, while in 3B we can see that there is a 
high concentration of mito-roGFP2-Orp1 in its reduced state, evidenced by green 
fluorescence, and a low concentration of mito-roGFP2-Orp1 in its oxidized state. 
In 1D, a higher magnification image of the salivary gland in 1A is shown, while in 
1E the merged image of 488 nm and 405 nm channels shows the balance between 
reduced and oxidized mito-roGFP2-Orp1. In 1G, a portion of the midgut also shows 
a higher concentration of reduced mito-roGFP2-Orp1. Figure 1H shows reduced 
mito-roGFP2-Orp1 distribution throughout the larval fat body. It is interesting to 
notice that there is a clear difference in the concentration of reduced mito-roGFP2-
Orp1 in cells within the same tissue, which is even more evident in the image in 
greater magnification shown in 1 K. The samples in 1I and 1 L show the oxidized 
mito-roGFP2-Orp1 in the same larval fat body. As expected, our analysis of control 
samples showed that most mito-roGFP2-Orp1 proteins are in its reduced state, 
exhibiting excitation around 488 nm. We are currently using this valuable tool to 
analyze the effect of different nanocrystals on the redox balance in Drosophila as an 
additional approach for the determination of biocompatibility in vivo.

Figure 2 shows three different transgenic lines of Drosophila that can be used 
to assist in the subcellular localization of fluorescent nanoparticles. Figure 2A-C 
shows dissected tissues of the D1-GFP transgenic line (BL.66454). The D1-GFP 
protein binds to chromosomes allowing the nuclei visualization. In Figure 2A we 
can see a pair of larval salivary glands while Figure 2B-C shows different portions 
of the larval gut. The progeny of the cross between the lineage mef2-Gal4 and 
UAS-mito-GFP (BL. 8443) was used to visualize the larval muscles (Figure 2D-F). 
This is because mef2-Gal4 drives Gal4 expression in muscles where it binds to the 
regulatory sequence UAS-mito-GFP, which in turn regulates the expression of a 

Figure 2. 
The expression of fluorescent proteins in Drosophila as a tool to visualize cellular subcompartments. (A-C) 
D1-GFP expression in Drosophila larval tissues. A pair of larval salivary glands is shown in a while (B) and 
(C) shows different portions of the larval gut. (D-F) L3 larvae expressing Mito-GFP in muscles. (G-I) shows 
salivary glands expressing LamC-GFP localization at the nuclear envelope of cells.
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mitochondrial import sequence fused to the fluorescent protein GFP, allowing the 
visualization of mitochondria in the muscle tissues. Figure 2G-I shows salivary 
glands of the LamC-GFP transgenic lineage (BL. 6837) which allows for the visu-
alization of the nuclear envelope of cells. In these examples, we showed 3 different 
Drosophila transgenic lines in the green band (GFP) that can be used to assist in 
the subcellular localization of fluorescent nanoparticles, however, it is essential to 
notice that hundreds of lines are available. Data on the genome and the wide range 
of reporter lines of Drosophila can be found on Flybase (https://flybase.org/). 
Reporter lines of Drosophila can be purchased in collections such as Bloomington 
Drosophila Stock Center (BDSC) at Indiana University. These different tools allow 
the investigators to choose from a great variety of cell types, subcellular compart-
ments as well as the fluorescence band that best adapts to the nanoparticles of 
interest.

2.2 Nanocrystals as luminescent markers (nanomarkers)

Figure 3 shows exciting results on pure and europium (Eu) doped TiO2 NCs. 
TiO2 NCs absorb and emit in the ultraviolet, but when incorporating the europium 
ions in its crystalline structure, by replacing some titanium ions, it shows lumines-
cence in red. The colors emitted by the pure and Eu doped TiO2 NCs (Figure 3a), 
and the crystalline structure in the anatase phase (Figure 3b) are illustrated. Also, 
in Figure 3c, the emission spectra of these nanocrystals are observed.

In order to investigate whether TiO2 and TiO2:Eu nanocrystals could be tracked 
on adult Drosophila after exposure during development TiO2 and TiO2:Eu nanocrys-
tals were mixed in standard Drosophila culture medium at the final concentration of 
100 mM.. The larvae were carefully staged and transferred as L1 (first instar larvae) 
to medium containing TiO2 and TiO2:Eu. The control contained only a standard 
Drosophila culture medium. The animals developed through all larval stages during 
the following 3 days. At this stage, the larvae actively feed until they become pupae. 
After pupal metamorphosis, the animals emerged as adults were dissected and 
its abdominal fat body was analyzed through fluorescence microscopy under UV 
light to analyze the TiO2 bioaccumulation and under red light to detect TiO2:Eu. 
All samples images were acquired using the same light intensity and exposure 
time. Figure 4 shows the tracking data of TiO2 and TiO2:Eu in the fat body of adult 
animals after exposure during the larval stage. It is possible to observe that the fat 
body spheres of the control animals (Figure 4A and C) show intrinsic fluorescence 
when excited with ultraviolet light, however when the animals were exposed to TiO2 
the intensity of fluorescence was significantly higher (Figure 4B and D).

In order to distinguish between intrinsic fluorescence from fat body and TiO2 
fluorescence, the pixel intensity was measured and compared among all fat body 
spheres of control images and TiO2 treated samples. As we can observe in the 
graphic in Figure 5a there was a drastic increase in fluorescence due to the presence 
of TiO2. The fat body spheres of the control animals (Figure 4E and G) also showed 
intrinsic fluorescence when excited with red light; however, when the animals have 
exposed to TiO2:Eu the intensity of fluorescence was higher (Figure 4F and H). The 
pixel intensity analysis showed that the presence of TiO2:Eu caused a significant 
increase in fluorescence (Figure 5b). The observation that the NCs of TiO2 and 
TiO2:Eu could be detected in the fat body of newly emerged adult animals indicates 
that the bioaccumulation of nanocrystals during larval development persisted until 
the beginning of the adult stage. Surprisingly, we observed that animals dissected 
on the second day of its emergence no longer had fat bodies fluorescent spheres 
containing nanocrystals. This may indicate that one day following the emergence, 
the animals were able to excrete the NC. The disappearance of nanocrystals may 
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also be related to the rapid absorption of the fat body during the first days of life. 
Similar results were described by Jovanovic et al. 2016, which observed that animals 
that received TiO2 during the larval stage did not have TiO2 as adults [9].

The optical properties and illustration of CdSe/CdS are shown in Figure 6. The 
aqueous solution and the illustration of the core/shell structure of CdSe/CdS MSQDs 
with a surfactant are exemplified to facilitate understanding (Figure 6a, b). The 
optical absorption and broad luminescence spectra are characteristics of magic-sized 
quantum dots of CdSe/CdS (Figure 6c). In addition, one of the essential properties 
of the CdSe/CdS MSQDs that allows its application in biological systems is entering 
and staying inside cells. To test this capacity, we incubated a classical macrophage 
cell line (RAW 264.7) with CdSe/CdS MSQDs of (200 ng/μL) and evaluated their 
internalization by Flow Cytometry in different time points (1 to 60 minutes). Flow 

Figure 3. 
(a) Photographic image of nanopowders, (b) anatase crystalline structure, (c) luminescence spectra of pure 
and Eu doped TiO2 NCs.
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Cytometry is a unique methodological approach to determine cell staining as it 
evaluates a considerable number of cells per second, one by one, and reports if cells 
are fluorescent. Just after 1 minute, the MSQDs nearly 50% of cells were fluorescent, 
and this percentual was growing to >97% after 60 minutes (Figure 6c, d).

Bioimaging assays are biological applications QDs since they can be biocon-
jugated with proteins, antibodies, and DNA [39, 48, 49]. In general, these tests 
depend on the biocompatibility of QDs, which is obtained by functionalizing 
the surface of these nanoparticles [39, 50–52]. The bioconjugation allows the 
study and tracking of biomolecules in biological systems such as cell cultures 

Figure 4. 
In vivo fluorescence of TiO2 and TiO2:Eu in adult Drosophila fat body. Drosophila tissues as the fat body 
shows a well-known intrinsic fluorescence as observed in representative images of control animals (A) and (C) 
at 405 nm E and G at 546 nm), however in the TiO2 (B and D) and TiO2:Eu (F and H) treated animals it is 
possible to observe a drastic increase in luminescence when compared to control. Scale bar represents 50uM.
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and laboratory animals [53, 54]. The versatility of QDs associated with maltose-
binding protein for intracellular delivery of the drug beta-cyclodextrin [55]. 
Other studies have used the quantum dots for in vivo multiphoton biologic 
imaging. Kwon et al. conjugated iron selenide QDs with monoclonal human 
epidermal growth factor receptor 2 antibodies to study xenograft breast tumor 
model in mice [56].

The tracking and study of biomolecules labeled with QDs in vitro and in vivo 
is a reality in several areas, allowing us to analyze the location and distribution 
of bioconjugate in biological systems. Silva et al. demonstrated that the CdSe/
CdS MSQDs could be bioconjugated with several biomolecules aiming at the most 

Figure 5. 
Indirect quantification of TiO2 and TiO2:Eu fluorescence. (a) Pixel intensity analysis of fat body spheres of 
TiO2 treated Drosophila to control fat body spheres. (b) Pixel intensity analysis of fat body spheres of TiO2:Eu 
treated animals compared to control fat body spheres.

Figure 6. 
(a) Photographic image of solution, (b) illustration of CdSe/CdS MSQDs, (c) optical absorption/luminescence 
spectra of CdSe/CdS MSQDs (d, e) incorporation of MSQDs by RAW 264.7. The intracellular location was 
determined by flow cytometry after incubation of CdSe/CdS MSQDs (200 ng/uL) with RAW 264.7 cell 
line (1x10^4/mL) at different time points. Cells were washed in saline solution before acquisition to exclude 
extracellular MSQDs. At least 5000 events were acquired in a FacsCalibur flow cytometer.
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diverse luminescent probes [38–42] in biosensors [43, 44]. Dias et al. labeled a 
phospholipase A2 isolated from Bothrops alternatus snake venom with CdSe/CdS 
MSQDs to track it in myoblast culture, making it possible to identify the bioconju-
gate on the surface of the plasma membrane and in the nuclear region [39]. Figure 7 
corroborates these data since it is possible to observe fluorescence markings only in 
myoblasts treated with the bioconjugate MSQDs-BaltPla2.

3. Conclusion

In this chapter, we have shown that fluorescent reporter proteins in the 
Drosophila model system are excellent tools to monitor cellular and biochemical 
phenomena in vivo, such as changes in the redox state of cells, as well as are a 
valuable tools to assist in the subcellular localization of fluorescent nanoparticles. 
We also showed that TiO2 and Eu doped TiO2 NCs fluorescence could be detected 
in adult animals following exposure during development. Intracellular location of 
CdSe/CdS MSQDs in RAW 264.7 cell line and tracking of BaltPLA2 bioconjugated 
in myoblast culture. Therefore, the use of fluorescent proteins and nanocrystals 
in vivo are exciting tools as they provide abundant qualitative and quantitative 
data and allow the visualization of biological processes in intact cells and living 
organisms.

Figure 7. 
Fluorescence microscopy images showing the tracking of BaltPLA2 in myoblast culture. (A) Cell control 
(myoblasts only); (B) myoblasts treated with MSQDs (200 ng/μL) for 18 h; (C) myoblasts treated with 
MSQDs (200 ng/μL)-BaltPLA2 (100 ng/μL) for 18 h. scale 50 μm.



11

Fluorescent Markers: Proteins and Nanocrystals
DOI: http://dx.doi.org/10.5772/intechopen.96675

Acknowledgements

This work was supported by grants of CNPq, CAPES, FAPEAL, and FAPEMIG.

Conflict of interest

The authors declare no conflict of interest.



Bioluminescence - Technology and Biology

12

Author details

Anielle Christine Almeida Silva1,2*, Jerusa Maria de Oliveira3,  
Kelen Talita Romão da Silva1,3, Francisco Rubens Alves dos Santos1,3, 
João Paulo Santos de Carvalho1, Rose Kethelyn Souza Avelino3,  
Eurípedes Alves da Silva Filho4, Marcelo Duzzioni5, Edigar Henrique Vaz Dias6, 
Fábio de Oliveira7, Juliana Rodrigues Machado8, Malu Mateus Santos9,  
Marcos Vinícius da Silva9, Carlo José Freire de Oliveira9, Virmondes Rodrigues Junior9, 
Lucas Anhezini3 and Noelio Oliveira Dantas1*

1 Laboratory of New Nanostructured and Functional Materials, Physics Institute, 
Federal University of Alagoas, Maceió, Alagoas Brazil

2 Programa de Pós-Graduação da Rede Nordeste de Biotecnologia (RENORBIO), 
Federal University of Alagoas, Maceió, Alagoas Brazil

3 Laboratory for in vivo Toxicity, Institute of Biological Sciences and Health, 
Federal University of Alagoas, Maceió, Alagoas, Brazil

4 Laboratory of Genetic and Applied Microbiology, Institute of Biological Sciences 
and Health, Federal University of Alagoas, Maceió, Alagoas, Brazil

5 Laboratory of Pharmacological Innovation, Institute of Biological Sciences and 
Health, Federal University of Alagoas, Maceió, Alagoas, Brazil

6 State University of Minas Gerais, Ituiutaba, MG, Brazil

7 Institute of Biomedical Sciences, Federal University of Uberlândia, 
Uberlândia, MG, Brazil

8 Department of Pathology, Genetics and Evolution, Federal University of 
Triângulo Mineiro, Uberaba, Minas Gerais, Brazil

9 Department of Microbiology, Immunology, and Parasitology, Institute of 
Biological and Natural Sciences, Federal University of Triângulo Mineiro, 
Uberaba, MG, Brazil

*Address all correspondence to: aniellechristineas@gmail.com  
and noelio@fisufal.br

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



13

Fluorescent Markers: Proteins and Nanocrystals
DOI: http://dx.doi.org/10.5772/intechopen.96675

References

[1] Albrecht, S.C.; Barata, A.G.; 
Großhans, J.; Teleman, A.A.; Dick, T.P. 
In vivo mapping of hydrogen peroxide 
and oxidized glutathione reveals 
chemical and regional specificity of 
redox homeostasis. Cell Metab. 2011, 14, 
819-829, doi:10.1016/j.cmet.2011.10.010.

[2] Chudakov, D.M.; Matz, M. 
V.; Lukyanov, S.; Lukyanov, K.A. 
Fluorescent proteins and their 
applications in imaging living cells and 
tissues. Physiol. Rev. 2010, 90, 1103-1163, 
doi:10.1152/physrev.00038.2009.

[3] VanEngelenburg, S.B.; Palmer, 
A.E. Fluorescent biosensors of 
protein function. Curr. Opin. Chem. 
Biol. 2008, 12, 60-65, doi:10.1016/j.
cbpa.2008.01.020.

[4] Ong, C.; Yung, L.Y.L.; Cai, Y.; 
Bay, B.H.; Baeg, G.H. Drosophila 
melanogaster as a model organism to 
study nanotoxicity. Nanotoxicology 2015, 
9, 396-403, doi:10.3109/17435390.20
14.940405.

[5] Pandey, U.B.; Nichols, C.D. 
Human disease models in Drosophila 
melanogaster and the role of the fly in 
therapeutic drug discovery. Pharmacol. 
Rev. 2011, 63, 411-436, doi:10.1124/
pr.110.003293.

[6] Hales, K.G.; Korey, C.A.; 
Larracuente, A.M.; Roberts, D.M. 
Genetics on the fly: A primer on the 
drosophila model system. Genetics 
2015, 201, 815-842, doi:10.1534/
genetics.115.183392.

[7] Devorkin, L.; Gorski, S.M. 
Monitoring autophagy in drosophila 
using fluorescent reporters in the UAS-
GAL4 system. Cold Spring Harb. Protoc. 
2014, 2014, 967-972, doi:10.1101/pdb.
prot080341.

[8] Kim, Y.Y.; Um, J.H.; Yoon, J.H.; 
Kim, H.; Lee, D.Y.; Lee, Y.J.; Jee, H.J.; 

Kim, Y.M.; Jang, J.S.; Jang, Y.G.; et al. 
Assessment of mitophagy in mt-Keima 
Drosophila revealed an essential role of 
the PINK1-Parkin pathway in mitophagy 
induction in vivo. FASEB J. 2019, 33, 
9742-9751, doi:10.1096/fj.201900073R.

[9] Jovanović, B.; Jovanović, N.; 
Cvetković, V.J.; Matić, S.; Stanić, S.; 
Whitley, E.M.; Mitrović, T.L. The 
effects of a human food additive, 
titanium dioxide nanoparticles E171, 
on Drosophila melanogaster - a 20 
generation dietary exposure experiment. 
Sci. Rep. 2018, 8, 1-12, doi:10.1038/
s41598-018-36174-w.

[10] Chen, X.; Mao, S.S. Titanium 
dioxide nanomaterials: Synthesis, 
properties, modifications and 
applications. Chem. Rev. 2007, 107, 
2891-2959.

[11] Kamat, P. V. Journal of Physical 
Chemistry C. 2012, pp. 11849-11851.

[12] Fleiss, A.; Sarkisyan, K.S. A brief 
review of bioluminescent systems 
(2019). Curr. Genet. 2019, 65, 877-882, 
doi:10.1007/s00294-019-00951-5.

[13] Duarte, C.A.; Goulart, L.R.; 
Filice, letícia de S.C.; De Lima, I.L.; 
Campos-Fernándes, E.; Dantas, 
N.O.; Silva, A.C.A.; Soares, M.B.P.; 
Santos, R.R.; CArdoso, C.M.A.; et al. 
Characterization of Crystalline Phase of 
TiO 2. Materials (Basel). 2020, 13, 4071.

[14] Barkalina, N.; Charalambous, C.; 
Jones, C.; Coward, K. Nanotechnology 
in reproductive medicine: Emerging 
applications of nanomaterials. 
Nanomedicine Nanotechnology, Biol. 
Med. 2014, 10, e921–e938, doi:10.1016/j.
nano.2014.01.001.

[15] Padmanabhan, P.; Kumar, A.; 
Kumar, S.; Chaudhary, R.K.; Gulyás, B. 
Nanoparticles in practice for molecular-
imaging applications: An overview. Acta 



Bioluminescence - Technology and Biology

14

Biomater. 2016, 41, 1-16, doi:10.1016/j.
actbio.2016.06.003.

[16] Bharat, T.C.; Shubham; Mondal, 
S.; Gupta, H.S.; Singh, P.K.; Das, 
A.K. Synthesis of doped zinc oxide 
nanoparticles: A review. In Proceedings 
of the Materials Today: Proceedings; 
Elsevier Ltd, 2019; Vol. 11, pp. 767-775.

[17] Sandoval, S.; Yang, J.; Alfaro, J.G.; 
Liberman, A.; Makale, M.; Chiang, 
C.E.; Schuller, I.K.; Kummel, A.C.; 
Trogler, W.C. Europium-doped TiO 2 
hollow nanoshells: Two-photon imaging 
of cell binding. Chem. Mater. 2012, 24, 
4222-4230, doi:10.1021/cm302642g.

[18] Ghaderi, S.; Ramesh, B.; Seifalian, 
A.M. Fluorescence nanoparticles 
“quantum dots” as drug delivery system 
and their toxicity: A review. J. Drug 
Target. 2011, 19, 475-486, doi:10.3109/10
61186X.2010.526227.

[19] Vollrath, A.; Schubert, S.; Schubert, 
U.S. Fluorescence imaging of cancer 
tissue based on metal-free polymeric 
nanoparticles-a review. J. Mater. Chem. 
B 2013, 1, 1994-2007, doi:10.1039/
c3tb20089b.

[20] Alivisatos, P. The use of 
nanocrystals in biological detection. 
Nat. Biotechnol. 2004, 22, 47-52, 
doi:10.1038/nbt927.

[21] Resch-Genger, U.; Grabolle, M.; 
Cavaliere-Jaricot, S.; Nitschke, R.; 
Nann, T. Quantum dots versus organic 
dyes as fluorescent labels. Nat Methods. 
2008, 5, 763-75.

[22] Deerinck, T.J. The application of 
fluorescent quantum dots to confocal, 
multiphoton, and electron microscopic 
imaging. Toxicol. Pathol. 2008, 36, 112-6, 
doi:10.1177/0192623307310950.

[23] Wu, X.; Liu, H.; Liu, J.; Haley, 
K.N.; Treadway, J.A.; Larson, J.P.; 
Ge, N.; Peale, F.; Bruchez, M.P. 
Immunofluorescent labeling of cancer 
marker Her2 and other cellular targets 

with semiconductor quantum dots. Nat. 
Biotechnol. 2002, 21, 41-46.

[24] Dai, Q.; Li, D.; Chang, J.; 
Song, Y.; Kan, S.; Chen, H.; Zou, 
B.; Xu, W.; Xu, S.; Liu, B.; et al. 
Facile synthesis of magic-sized 
CdSe and CdTe nanocrystals 
with tunable existence periods. 
Nanotechnology 2007, 18, 405603, 
doi:10.1088/0957-4484/18/40/405603.

[25] Murray, C.B.; Kagan, C.R.; Bawendi, 
M.G. Synthesis and Characterization of 
Monodisperse Nanocrystals and Close-
Packed Nanocrystal Assemblies. Annu. 
Rev.Mater 2000, 30, 545.

[26] Chen, X.; Samia, A.C.S.; Lou, 
Y.; Burda, C. Investigation of the 
crystallization process in 2 nm CdSe 
quantum dots. J. Am. Chem. Soc. 
2005, 127, 4372-4375, doi:10.1021/
ja0458219.

[27] Riehle, F.S.; Bienert, R.; Thomann, 
R.; Urban, G.A. Blue Luminescence 
and Superstructures from Magic Size 
Clusters of CdSe. Nano Lett. 2009, 9, 
514-518, doi:10.1021/nl080150o.

[28] McBride, J.R.; Dukes, A.D.; 
Schreuder, M. a; Rosenthal, S.J. On 
Ultrasmall Nanocrystals. Chem. Phys. 
Lett. 2010, 498, 1-9, doi:10.1016/j.
cplett.2010.08.052.

[29] Dukes, A.D.; McBride, J.R.; 
Rosenthal, S.J. Synthesis of Magic-Sized 
CdSe and CdTe Nanocrystals with 
Diisooctylphosphinic Acid. Chem. 
Mater. 2010, 22, 6402-6408, doi:10.1021/
cm102370a.

[30] Bowers, M.J.; McBride, J.R.; 
Rosenthal, S.J. White-light emission 
from magic-sized cadmium selenide 
nanocrystals. J Am Chem Soc 2005, 127, 
15378-15379.

[31] Harrell, S.M.; McBride, J.R.; 
Rosenthal, S.J. Synthesis of ultrasmall 
and magic-sized CdSe nanocrystals. 
Chem. Mater. 2013, 25, 1199-1210.



15

Fluorescent Markers: Proteins and Nanocrystals
DOI: http://dx.doi.org/10.5772/intechopen.96675

[32] Nguyen, K.A.; Day, P.N.; Pachter, 
R. Understanding structural and 
optical properties of nanoscale CdSe 
magic-size quantum dots: Insight from 
computational prediction. J. Phys. Chem. 
C 2010, 114, 16197-16209, doi:10.1021/
jp103763d.

[33] Shashkova, S.; Leake, M.C. 
Single-molecule fluorescence 
microscopy review: Shedding new 
light on old problems. Biosci. Rep. 
2017, 37, BSR20170031, doi:10.1042/
BSR20170031.

[34] Martynov, V.I.; Pakhomov, A.A.; 
Popova, N. V.; Deyev, I.E.; Petrenko, 
A.G. Synthetic Fluorophores for 
Visualizing Biomolecules in Living 
Systems. Acta Naturae 2016, 8, 33-46, 
doi:10.32607/20758251-2016-8-4-33-46.

[35] Yan, F.; Fan, K.; Bai, Z.; Zhang, 
R.; Zu, F.; Xu, J.; Li, X. Fluorescein 
applications as fluorescent probes 
for the detection of analytes. TrAC 
- Trends Anal. Chem. 2017, 97, 15-35, 
doi:10.1016/j.trac.2017.08.013.

[36] Almeida Silva, A.; Silva, M.J.; da 
Luz, F.A.; Silva, D.; de Deus, S.; Dantas, 
N. Controlling the Cytotoxicity of 
CdSe Magic-Sized Quantum Dots as 
a Function of Surface Defect Density. 
Nano Lett. 14, 5452-5457, doi:10.1021/
nl5028028.

[37] Silva, A.C.A.; Deus, S.L.V. De; 
Silva, M.J.B.; Dantas, N.O. Highly stable 
luminescence of CdSe magic-sized 
quantum dots in HeLa cells. Sensors 
Actuators, B Chem. 2014, 191, 108-114, 
doi:10.1016/j.snb.2013.09.063.

[38] Silva, A.C.A.; Dantas, N.O.; Silva, 
M.J.B.; Spanó, A.M.; Goulart, ; Luiz 
Ricardo Functional Nanocrystals : 
Towards Biocompatibility , Nontoxicity 
and. In Advances in Biochemistry & 
Applications in Medicine; 2017; pp. 1-27.

[39] Dias, E.H.V.; Pereira, D.F.C.; 
de Sousa, B.B.; Matias, M.S.; de 

Queiroz, M.R.; Santiago, F.M.; Silva, 
A.C.A.; Dantas, N.O.; Santos-Filho, 
N.A.; de Oliveira, F. In vitro tracking 
of phospholipase A 2 from snake 
venom conjugated with magic-sized 
quantum dots. Int. J. Biol. Macromol. 
2019, 122, 461-468, doi:10.1016/j.
ijbiomac.2018.10.185.

[40] Silva, A.C.A.; Correia, L.I.V.; Silva, 
M.J.B.; Zóia, M.A.P.; Azevedo, F.V.P.V.; 
Rodrigues, Jéssica Peixoto Goulart, 
L.R.; Ávila, Veridiana de Melo Dantas, 
N.O. Biocompatible Magic Sized 
Quantum Dots: Luminescent Markers 
and Probes. In; Correia, L.I.V., Ed.; 
IntechOpen: Rijeka, 2018; p. Ch. 6 ISBN 
978-1-78923-295-0.

[41] Silva, A.C.A.; Azevedo, F.V.P.V.; 
Zóia, M.A.P.; Rodrigues, J.P.; Dantas, 
N.O.; Melo, V.R.Á.; Goulart, L.R. Magic 
Sized Quantum Dots as a Theranostic 
Tool for Breast Cancer. In Recent Studies 
& Advances in Breast Cancer; Open 
Access eBooks: Wilmington, 2017; pp. 
1-10 ISBN 978-81-935757-2-7.

[42] Silva, A.C.A.; Neto, E.S.F.; Da 
Silva, S.W.; Morais, P.C.; Dantas, 
N.O. Modified phonon confinement 
model and its application to CdSe/
CdS core-shell magic-sized quantum 
dots synthesized in aqueous solution 
by a new route. J. Phys. Chem. C 2013, 
doi:10.1021/jp308500r.

[43] de França, C.C.L.; Meneses, 
D.; Silva, A.C.A.; Dantas, N.O.; de 
Abreu, F.C.; Petroni, J.M.; Lucca, B.G. 
Development of novel paper-based 
electrochemical device modified with 
CdSe/CdS magic-sized quantum 
dots and application for the sensing 
of dopamine. Electrochim. Acta 
2021, 367, 137486, doi:10.1016/j.
electacta.2020.137486.

[44] de Lima França, C.C.; da Silva 
Terto, E.G.; Dias-Vermelho, M. V.; 
Silva, A.C.A.; Dantas, N.O.; de Abreu, 
F.C. The electrochemical behavior 
of core-shell CdSe/CdS magic-sized 



Bioluminescence - Technology and Biology

16

quantum dots linked to cyclodextrin for 
studies of the encapsulation of bioactive 
compounds. J. Solid State Electrochem. 
2016, 20, 2533-2540, doi:10.1007/
s10008-016-3221-8.

[45] Dooley, C.T.; Dore, T.M.; Hanson, 
G.T.; Jackson, W.C.; Remington, S.J.; 
Tsien, R.Y. Imaging dynamic redox 
changes in mammalian cells with 
green fluorescent protein indicators. 
J. Biol. Chem. 2004, 279, 22284-22293, 
doi:10.1074/jbc.M312847200.

[46] Gutscher, M.; Pauleau, A.L.; Marty, 
L.; Brach, T.; Wabnitz, G.H.; Samstag, 
Y.; Meyer, A.J.; Dick, T.P. Real-time 
imaging of the intracellular glutathione 
redox potential. Nat. Methods 2008, 5, 
553-559, doi:10.1038/nmeth.1212.

[47] Hanson, G.T.; Aggeler, R.; Oglesbee, 
D.; Cannon, M.; Capaldi, R.A.; Tsien, 
R.Y.; Remington, S.J. Investigating 
Mitochondrial Redox Potential with 
Redox-sensitive Green Fluorescent 
Protein Indicators. J. Biol. Chem. 2004, 
279, 13044-13053, doi:10.1074/jbc.
M312846200.

[48] Silva, A.C.A.; Correia, L.I.V.; 
Silva, M.J.B.; Zóia, M.A.P.; Azevedo, 
F.V.P.V.; Rodrigues, J.P.; Goulart, L.R.; 
Ávila, Veridiana de Melo Dantas, N.O. 
Biocompatible Magic Sized Quantum 
Dots: Luminescent Markers and Probes. 
In State of the Art in Nano-Bioimaging; 
2017; Vol. 1, pp. 95-104 ISBN 
9789537619992.

[49] Silva, A.C.A.; Azevedo, F.V.P.V.; 
Zóia, M.A.P.; Rodrigues, J.P.; Dantas, 
N.O.; Melo, V.R.Á.; Goulart, L.R. Magic 
Sized Quantum Dots as a Theranostic 
Tool for Breast Cancer. In Recent Studies 
& Advances in Breast Cancer; 2017 ISBN 
978-81-935757-2-7.

[50] Silva, A.C.A.; Freschi, A.P.P.; 
Rodrigues, C.M.; Matias, B.F.; Maia, 
L.P.; Goulart, L.R.; Dantas, N.O. 
Biological analysis and imaging 
applications of CdSe/CdSxSe1−x/CdS 
core–shell magic-sized quantum dot. 

Nanomedicine Nanotechnology, Biol. 
Med. 2016, 12, 1421-1430, doi:10.1016/j.
nano.2016.01.001.

[51] Vlasceanu, G.; Grumezescu, A.M.; 
Gheorghe, I.; Chifiriuc, M.C.; Holban, 
A.M. Quantum dots for bioimaging 
and therapeutic applications. In 
Nanostructures for Novel Therapy: 
Synthesis, Characterization and 
Applications; Elsevier Inc., 2017;  
pp. 497-515 ISBN 9780323461481.

[52] Li, J.; Wu, D.; Miao, Z.; Zhang, 
Y. Preparation of Quantum Dot 
Bioconjugates and their Applications 
in Bio-Imaging. Curr. Pharm. 
Biotechnol. 2010, 11, 662-671, 
doi:10.2174/138920110792246582.

[53] Gondim, B.L.C.; da Silva Catarino, 
J.; de Sousa, M.A.D.; de Oliveira Silva, 
M.; Lemes, M.R.; de Carvalho-Costa, 
T.M.; de Lima Nascimento, T.R.; 
Machado, J.R.; Rodrigues, V.; Oliveira, 
C.J.F.; et al. Nanoparticle-Mediated 
Drug Delivery: Blood-Brain Barrier as 
the Main Obstacle to Treating Infectious 
Diseases in CNS. Curr. Pharm. Des. 2019, 
25, 3983-3996, doi:10.2174/13816128256
66191014171354.

[54] Makride, S.C.; Gasbarro, C.; Bello, 
J.M. Bioconjugation of quantum dot 
luminescent probes for Western blot 
analysis. Biotechniques 2005, 39, 501-
506, doi:10.2144/000112004.

[55] Field, L.D.; Walper, S.A.; Susumu, 
K.; Lasarte-Aragones, G.; Oh, E.; 
Medintz, I.L.; Delehanty, J.B. A 
Quantum Dot-Protein Bioconjugate 
That Provides for Extracellular Control 
of Intracellular Drug Release. Bioconjug. 
Chem. 2018, 29, 2455-2467, doi:10.1021/
acs.bioconjchem.8b00357.

[56] Kwon, J.; Jun, S.W.; Choi, S.I.; Mao, 
X.; Kim, J.; Koh, E.K.; Kim, Y.H.; Kim, 
S.K.; Hwang, D.Y.; Kim, C.S.; et al. FeSe 
quantum dots for in vivo multiphoton 
biomedical imaging. Sci. Adv. 2019, 5, 
doi:10.1126/sciadv.aay0044.


