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Chapter

Nitrogen Management in 
Conservation Agriculture
Anthony Imoudu Oyeogbe

Abstract

Transitioning to conservation ‘sustainable’ agriculture (CA) from the conventional 
‘industrial’ agriculture often increase nitrogen (N) limitation, particularly in the first 
few years. Inadequate N availability is associated with the permanent crop residues 
on the soil surface. The soil available N for crop uptake is immobilized by microbial 
sources of organic residues mineralization. The increase in N immobilization con-
tributes to yield declines, and thus, researchers are advocating for the inclusion of N 
management as the fourth principle in CA. The challenge for CA under optimized N 
fertilization is how to reduce environmentally-damaging greenhouse gases (GHG) 
emissions from yield-related productivity. This paper focuses on efficient N manage-
ment under CA system. Here, we showed the impacts of adaptive N management 
on crop yields increase, soil health enhancement, and greenhouse gases mitigation. 
We conclude that efficient N management using innovative technologies and good 
agronomic practice can scale-up the adoption of CA. An adaptive N management in 
CA can maintain environmental benefits while contributing to improved soil health 
and crop productivity. Moreover, the implementation of adaptive N management 
must be tailored to crop and soil types and location-specific.

Keywords: N immobilization, adaptive N fertilization, crop N demands,  
soil N test value, sensor-N guidance

1. Introduction

Conservation agriculture (CA) is a resource-efficient system that is capable of 
increased soil quality, crop productivity, and environmental sustainability [1]. CA 
system provides multiple ecosystem services and promotes agrobiodiversity ([2], 
Montpellier [3]). It is characterized and quantified by three principles practised 
simultaneously, namely; zero/minimum tillage; permanent soil cover; and diversi-
fied crop rotation:

• Continuous zero or minimum soil tillage: direct seeding or planting into undis-
turbed or untilled soil, to maintain or improve soil organic matter content, soil 
structure, and soil health. The disturbance area must be less than 15 cm or 25% 
of the cropped area, in addition to no interrupting tillage.

• Permanent organic matter soil cover with cover crops or crop residues: this 
shields the soil surface, conserves nutrients and water, promotes soil biological 
activity, and contributes to weed management. Soil cover should be preferably 
100%, however, surface soil cover of 30% is seen as adequate.
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• Diversified crop rotation: both annuals and perennials as inter-and sequential- 
cropping, contributing to dietary diversity, human and livestock nutrition, and 
enhanced cropping system resilience. Mono-cropping is allowed provided no 
productivity limitation is envisaged in the cropping area.

The synergy of CA principles contributes to on-farm resource use efficiency, 
sufficiency and sustainability [4]. However, N immobilization under CA-based 
cropping systems is a major trade-off between resource use efficiency and sus-
tainability. In promoting CA as a productivity-enhancing, resource-saving and 
eco-friendly paradigm of sustainable intensification, there is the need to address 
the challenges of increased limitation of soil available N [5, 6]. The inclusion 
of adaptive N management in CA can contribute to increased crop yields dur-
ing the early (first three) years of transition from the conventional production 
system to CA.

2. Conservation agriculture: sustainable agriculture and food security

Feeding the projected 9+ billion people come 2050 call for the implementation 
of sustainable production systems globally [7]. Conventional agriculture disrupts 
agroecosystem sustainability, and are a major source (19–29%) of anthropogenic 
greenhouse gas emissions [8]. Thus, the quest for sustainable crop production 
intensification has dominated both the scientific and policy thinking space in the 
last two decades with regards to food security [5]. CA is a paradigm of sustain-
able intensification with numerous agricultural and environmental benefits 
(Montpellier [3]). It promotes on-farm biodiversity and ensures ecosystem sustain-
ability [2, 9].

Currently, CA is practised on 155 million hectares of land [10], equivalent to 
9% of global arable land [11]. Research studies on CA have highlighted the numer-
ous agricultural and environmental benefits, which includes increased crop yields 
[12, 13], soil carbon sequestration [14, 15], microbial diversity [16, 17], soil-water 
retention capacity [18, 19], GHG emissions mitigation [20, 21], early planting time, 
labour, and energy savings [22, 23], and dietary diversity for human and livestock 
nutrition [1].

Nevertheless, the multiple benefits of CA have not provided the impetus for 
robust implementation across scales. Several on-farm research under CA manage-
ment has reported a reduction in crop yields, particularly in the early phase of 
transition [11, 24–27]. The decrease in crop yield is ascribed to the increased N 
immobilization by organic residues, which limits soil available N uptake for crop 
growth. Researchers have advocated the need for the inclusion of N management 
[6, 28]. Tailoring N management in CA-based cropping systems can improve the 
soil organic matter efficiency while contributing to crop yield increase.

3. Nitrogen immobilization: a tradeoff in conservation agriculture

N immobilization is one of the major tradeoffs in CA, which is associated with 
the permanent organic residues soil cover. Increased N immobilization affect crop 
yields, particularly in the early stages (1–3 years) of CA implementation [29]. Other 
trade-offs in CA includes soil compaction, incompatible machinery, and technical 
know-how. These trade-offs in CA have affected widespread adoption [24]. Thus, 
the need for a soil-based approach in managing N fertilizers [30], including locally-
adapted N management can contribute to yield increase in CA [6, 28].
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The significance of CA is the improvement in soil quality, crop productivity, 
and environmental sustainability [9]. CA practices applied together are of critical 
importance to soil processes and ecosystem functioning. More specifically, the 
synergies of minimal soil disturbance, permanent soil cover and crop diversifica-
tion create an optimal soil environment that stimulates the organic matter effi-
ciency. Increased soil organic matter influences the microbial communities, which 
are responsible for improving the soil and crop productive capacity. However, N 
availability in CA is negatively affected by the permanent crop residues on the soil 
surface. The diverse microbial communities in soil utilize the available soil N for 
residue-C decomposition, which is detrimental to the crop N uptake in a short time.

Based on a global data set and across a broad range of crops, Lundy et al. [25]; 
Pittelkow et al. [11, 26] and Rusinamhodzi et al. [31] reported the impact of N 
fertilization in CA. These authors showed that adequate N fertilization can offset 
yield declines in CA systems, particularly in tropical regions. Furthermore, they 
reported that the effects of implementing CA with and without N fertilizer, residue 
management, and crop rotation in various crops and climates showed yield declines 
under CA by 12% without inorganic N fertilizer and 4% with N fertilizer addition. 
For instance, the addition of inorganic N fertilizer (80–120 kg N ha−1) reduced yield 
by 4% under CA. Also, the inclusion of legumes in CA-based cropping systems 
produced comparable yield to that of conventional tillage without N addition.

4. Nitrogen management and availability in conservation agriculture

Dynamics of N availability is the net amount of inorganic and organic inputs in 
soil undergoing decomposition, mineralization and immobilization [32]. Also, the 
quantity and quality of organic residues influence the N availability [33, 34]. The 
mineralization of organic residues increases with N fertilization [35], and this off-
sets the temporary immobilization of available N [34, 36]. Adequate N fertilization 
during the transition from conventional to CA would contribute to the rapid miner-
alization of organic residues, which in turn minimizes microbial N immobilization 
and increases N availability for crop uptake [37, 38]. Therefore, ensuring adequate 
N fertilization is an immediate strategy of alleviating N limitations in residue-laden 
soils under CA. However, increasing inorganic N fertilization might hasten organic 
residues N mineralization, which is associated with the potent greenhouse nitrous 
oxide (N2O) emissions [39].

The appropriateness of N fertilizer application is a recommended management 
practice in minimizing crop yield declines in CA [11, 13, 25, 26, 35]. Increasing 
N fertilizer rate in CA is more important in the tropics than the temperate region 
[25]. For instance, decreases in crop yields were observed at low N fertilization in 
the first 2 years of adoption under tropical conditions compared to the temperate. 
However, the addition of N (75–100 kg N ha−1 yr.−1) fertilizer improved yields by up 
to 12% under tropical environment [25, 26]. In the Indo-Gangetic Plains, Oyeogbe 
et al. [4, 13] showed that optimizing N fertilizer dose in maize and wheat to 180 
and 150 kg N ha−1, respectively, increased the grain yield by 20 and 14%. Also in 
northwest India, wheat grain yields under precision N management increased by 
14% compared to farmers fertilization practice [21]. In Germany, adjusting the N 
input from 65 to 105 kg N ha−1 in maize produced significant yield increases up to 
16% under conservation tillage system [23].

Adaptive N management using good agronomic practices and novel technolo-
gies can optimize N availability in CA. Oyeogbe et al. [13] and Sapkota et al. [21] 
demonstrated that N fertilizer management by soil N test assessment and optical 
sensor (GreenSeeker™) technology increased the grain yields of maize and wheat 
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compared to farmers practice under CA of the Indo-Gangetic Plains. Yadvinder-
Singh et al. [35] reported that split N fertilizer applications following the optical 
sensor guidance improved the yields of wheat under CA. In-season N fertilization 
guided by the optical sensor ensures that adequate N is available for organic residues 
mineralization and crop uptake [35, 40, 41].

Also, organic amendments can influence N availability in a CA-based system. 
To reduce soil N immobilization in cereal-based CA cropping systems, Flower 
et al. [42] included high biomass oat cover crop to reduce soil N immobilization. 
Pittelkow et al. [26] and Lundy et al. [25] reported that crop yields response 
with inorganic N additions were similar to that of conventional tillage system. 
Combining organic and inorganic N fertilizers can contribute to a more efficient 
soil available N under long-term CA system [43]. In the Indo-Gangetic Plains, 
brown manuring is becoming an effective organic N strategy under CA [12]. 
Oyeogbe et al. [4, 13] showed that the inclusion of brown manuring had a positive 
effect on yields of maize and wheat by supplying additional N.

5.  Nitrogen fertilizer and nitrous oxide emissions in conservation 
agriculture

Agricultural soils are the largest source of N2O emissions, and N fertilizer use 
is a major contributor to N2O emissions [44]. N2O is mostly produced by microbial 
transformations of N in soils and is often enhanced where available N exceeds crop 
demand [45]. Under the CA system, N2O emissions are influenced by increased 
organic residues mineralization. Moreover, optimized N fertilizer in CA would 
contribute to larger N2O emissions. Thus, the challenge for CA is how to effectively 
manage the permanent organic residues and optimized N fertilization, and reduce 
environmentally-damaging GHG emissions from yield-related productivity. CA 
is an eco-friendly ‘greener’ production system, which is capable of alleviating the 
GHG emissions compared to conventional ‘industrial’ production system [46]. It 
emphasizes on the efficient use of fertilizer, pesticides, and farm machinery are 
important strategies to mitigate GHG emissions while improving crop productivity 
[23, 47]. However, there are negating views about the positive impacts of CA prac-
tices on GHG emissions. Several research findings reported increased N2O emis-
sions from the organic residues decomposition under CA [20, 48, 49]. Retaining 
crop residues on the soil surface is susceptible to increased microbial N transforma-
tions and associated N2O emissions.

Several factors such as high temperature and N fertilization can influence larger 
emissions of GHG in CA. High temperature and N fertilizer application increase the 
decomposition and mineralization of organic residues [49, 50]. However, organic N 
mineralization and associated N2O emissions decrease in CA due to the absence of 
soil tillage [51]. Ito et al. [52] indicated that tillage exerted stronger effects on nema-
tode community structure than organic residue management. And thus, it can be 
argued that the mineralization of organic residues is lower in CA due to less contact 
between the organic residues and soil organisms compared to conventional tilled 
system associated with greater N mineralization [49]. Del Grosso et al. [53] simu-
lated the N2O emission rates from conventional tilled and no-till soil, larger emis-
sions rate were found in the conventional system compared to CA soil. Oyeogbe 
et al. [4] demonstrated that tailoring N fertilizer application to crop demands can 
reduce N2O emissions under CA. Adaptive N-rate (i.e. 155 and 133 kg ha−1 for maize 
and wheat, respectively) influenced yield gains of about 20 and 14%, respectively, 
while reducing N2O emissions in the first two years of implementation [4, 13]. 
Furthermore, Oyeogbe et al. [13] demonstrated that N2O emissions based on 
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the global warming potential (conversion to CO2-eq) was decarbonized through 
increased soil carbon sequestration efficiency under adaptive N fertilizer manage-
ment in CA. Therefore, efficient N fertilization in CA can improve crop productiv-
ity, enhance nutrient use efficiency [35], reduce N leaching losses [54, 55], and 
deactivate N2O emissions [4, 21].

6. Conclusion

Increased N limitation in CA contributes to crop yield declines, particularly 
in the first few years of implementation. In promoting CA both as a productivity-
enhancing and resource-saving paradigm, there is a need to tailor N availability 
to crop demands. Adaptive N management in CA can alleviate N limitation of 
microbial origin and contribute to yield increase, soil quality and environmental 
sustainability. More importantly, adaptive N management in CA should align with 
the crop and soil types in diverse agroecological conditions. Therefore, integrating 
good agronomic practices and innovative technologies in CA such as N management 
could lead to wide-spread adoption.
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