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Chapter

HIF Pathways in Clear Cell Renal 
Cancer
Olivia Lombardi and David Robert Mole

Abstract

Clear cell renal cancers (ccRCC) are characterized by inactivation of the VHL 
(von Hippel–Lindau) tumor suppressor. Work leading to the 2019 Nobel Prize for 
Physiology or Medicine has shown that this is central to cellular oxygen-sensing, 
orchestrated by the HIF (hypoxia-inducible factor) transcription factors. These 
regulate hundreds of genes that underpin many hallmarks of cancer, including 
angiogenesis, cellular energetics, cell proliferation, resisting cell death, and avoid-
ing immune destruction. However, HIF also promotes processes that are detrimen-
tal to cancer cells. Therefore, the overall consequence of HIF pathway activation is 
a balance of these influences. We explore how variations in the HIF pathway during 
tumorigenesis alter this balance to promote ccRCC formation.

Keywords: cancer, kidney, renal, clear cell, von Hippel Lindau, VHL, hypoxic, 
hypoxia-inducible factor, HIF

1. Introduction

Kidney cancer is the seventh most common malignancy in the Western world. In 
2018, there were approximately 400,000 new kidney cancer cases and 180,000  
kidney cancer-associated deaths worldwide [1]. The underlying causes of kidney 
cancer are complex and incompletely understood, although genetic factors 
(both inherited and somatic genetic mutations) are known to drive the disease. 
Additionally, certain lifestyle choices (such as smoking and a high protein diet) 
increase the risk of developing kidney cancer, consistent with its prevalence in the 
Western world. Unless surgically resectable, kidney cancer is largely incurable, 
and the 5-year survival rate for those with metastatic disease is only about 10% [2]. 
Systemic anti-cancer therapies, including those that inhibit the vascular response 
or enhance patients’ immune response to the malignancy, have offered some hope 
[3]. However, these treatments confer limited efficacy and a considerable burden 
of toxicity. Therefore, there is a pressing need to better understand the drivers of 
kidney cancer in order to identify novel therapeutic strategies.

2. Histological subtypes of renal cancers

The most common form of kidney cancer is clear cell renal cell carcinoma 
(ccRCC), which arises from the adult renal tubular epithelium and accounts for 
approximately 75% of all kidney cancer cases. This subtype is termed as such due to 
the characteristic ‘clear’ cytoplasm of malignant cells observed histologically. This is 
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caused by accumulation of excess glycogen and lipid in the cytoplasm (due to highly 
dysregulated metabolic pathways), which are dissolved by the tissue fixation pro-
cess [4]. Other less common subtypes of adult renal cancers that also arise from the 
tubular epithelium include papillary RCC (types 1 and 2); chromophobe RCC; and 
oncocytoma. Each subtype is associated with different histological features, genetic 
drivers, and clinical behaviors. Rarely, cancers can arise from other cell types in the 
adult kidney, including transitional epithelial cells of the ureter and renal pelvis 
(giving rise to transitional cell carcinoma) and various mesenchymal cell types (e.g. 
interstitial cells, giving rise to renomedullary interstitial cell tumors). Although 
childhood kidney cancer is generally rare, the most common form is Wilms tumor, 
which originates in developing tubular cells during fetal development [5].

It should be noted that even within a specific renal cancer histological subtype 
there is evidence for substantial heterogeneity, which has initiated efforts to further 
refine subtype classification based on additional features. Recent studies have 
found that ccRCC can be further stratified based on architectural, cytological and 
microenvironmental features, and that these features can predict patient outcome 
and response to therapy [6]. The underlying cause of this variation remains to be 
determined but could be due to certain genetic or epigenetic differences between 
ccRCC tumors. Consolidation of histological and molecular heterogeneity in ccRCC 
will be important for disease subclassification, as well as better understanding 
ccRCC biology, going forward.

3. VHL syndrome

Each kidney cancer subtype is associated with its own monogenic cancer  
syndrome [7]. Studying these rare family kindreds has provided unique insight into 
the genetic mechanisms underlying both inherited and sporadic cancers. In particu-
lar, clear cell renal cancer is associated with VHL syndrome, which is an autosomal 
dominant disorder, affecting 1 in 32,000 individuals, caused by heterozygous 
germline mutations of the VHL gene [8, 9]. As well as ccRCC, VHL syndrome is 
associated with a limited number of other tumors types, including hemangioblasto-
mas of the retina and the central nervous system; pheochromocytomas; pancreatic 
lesions; endolymphatic sac tumors and epidydimal cysts [8, 9]. VHL syndrome can 
be further sub-divided according to which of these different tumor types develop in 
individuals within the kindred [10, 11]. Four distinct patterns have been identified: 
type 1 VHL disease, which is associated with hemangioblastoma and ccRCC; type 
2A, which is associated with hemangioblastoma and pheochromocytoma; type 2B, 
which is associated with hemangioblastoma, pheochromocytoma and ccRCC; and 
type 2C, which is associated with pheochromocytoma alone. Each of these subtypes 
is linked to particular types of VHL mutation, which have been shown to have  
different downstream biological effects [12–17].

4. The VHL gene

The human VHL gene was first identified following classical linkage analysis of 
families with VHL syndrome and was cloned in 1993 [18]. In humans it is located on 
the short arm of chromosome 3 (3p25) and has three exons that encode a protein of 
213 amino acids, with a molecular weight of around 30 kDa (termed p30). However, 
the gene also contains a second translation start site at codon 53, leading to the gen-
eration of a shorter protein of approximately 19 kDa (termed p19), which appears 
to retain canonical activity [19]. As a consequence, oncogenic mutations, most 



3

HIF Pathways in Clear Cell Renal Cancer
DOI: http://dx.doi.org/10.5772/intechopen.96539

typically single-nucleotide variants (SNVs) or short insertion/deletions (indels), are 
restricted to codons 53–213 in exons two and three.

VHL acts as a tumor suppressor gene [20, 21]. ccRCC and other cancer types are 
associated with inactivating mutations of VHL, which lead to loss-of-function of 
the gene product (termed pVHL). Although autosomal dominant at the level of the 
individual, both alleles of the VHL gene must be inactivated in a cell for cancer to 
develop, in line with Knudson’s two-hit hypothesis [22, 23]. Since VHL syndrome 
is caused by germline VHL mutation, all cells of the affected individual harbor this 
mutation. The remaining wild-type (WT) allele is somatically inactivated in the 
tumor progenitor cell, which then multiplies to form the cancer [20, 21]. Typically, 
somatic inactivation of the WT allele occurs as a result of an arm-level loss of 
chromosome 3p (Figure 1), although promoter hypermethylation or a second SNV/
indel may also cause complete loss of functional VHL in the cell. Furthermore, 
since the cells of patients with VHL syndrome only require one somatic mutation to 
become functionally deficient in VHL, it is a relatively common event, accounting 
for the high tumor penetrance in these individuals. Indeed, over the course of their 
lifetime, these individuals often develop multiple tumors and close examination of 
their organs often reveals the presence of numerous synchronous tumors. However, 
VHL mutation is only associated with the very limited range of cancers outlined 
above, despite it being ubiquitously expressed. Therefore, VHL only appears to 
act as a tumor suppressor gene in very few tissues. Indeed, even within the kidney, 
ccRCCs appear to develop from a subset of proximal tubular cells [24]. It is assumed 
that somatic mutations in the wild-type copy of VHL do occur in other cell types, 
but it is not known whether these cells are eliminated by other tumor suppressor 
mechanisms, or simply fail to progress to overt cancer.

Importantly, VHL is also inactivated in the vast majority (approximately 90%) 
of sporadic ccRCC tumors, which occur in patients without a germline mutation in 
the VHL gene [25]. In order to develop cancer, these individuals require two somatic 

Figure 1. 
VHL inactivation in ccRCC. Individuals with VHL syndrome are predisposed to ccRCC (termed hereditary 
ccRCC) as a result of a heterozygous germline VHL mutation. The second, wild-type allele is subsequently 
inactivated by somatic loss of chromosome 3p, resulting in biallelic VHL inactivation. On the other hand, in 
sporadic ccRCC, two somatic events are required for biallelic inactivation. Typically, one copy of chromosome 
3p is lost followed by inactivation of the second VHL allele through mutation or promoter hypermethylation. 
Although the ordering is reversed, the same genetic aberrations are observed in both sporadic and hereditary 
ccRCC. However, because only one somatic event is required for biallelic VHL inactivation in patients with 
VHL syndrome, this is a much more likely event and occurs in multiple cells within the kidney, causing many 
pre-malignant lesions and multiple ccRCC tumors. chr= chromosome; CNAs= chromosomal copy number 
alterations; mut= mutation; WT= wild-type.
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events affecting both copies of the VHL gene in the same cell (Figure 1). As a result, 
this occurs much less frequently, accounting for the much lower overall prevalence 
of ccRCC in the general population of about 1%. However, in contrast to VHL 
syndrome, the order of events is typically reversed, with loss of chromosome 3p 
frequently occurring first and the remaining copy then being inactivated by single-
nucleotide substitution (SNV) or small insertions or deletions (indels) [26].

Of note, although biallelic VHL inactivation is required for ccRCC (and other 
tumors) to develop, it does not appear to be sufficient on its own (Figure 1). 
Mitchell et al. have estimated that in sporadic ccRCC, VHL inactivation predates 
tumor formation by a number of years or even decades [26]. Consistent with this, 
examination of the kidneys from patients with VHL syndrome has identified 
multiple isolated VHL-defective cells, which may be present as single cells or small 
non-invasive cysts [27, 28]. Furthermore, in vitro, inactivation of VHL leads to cellu-
lar senescence rather than unrestricted proliferation [29, 30]. Therefore, it is thought 
that additional gene mutations are required for these early VHL-defective lesions to 
develop into mature ccRCC. Indeed, more recently, additional somatic mutations 
have been identified in ccRCC [25, 31–33]. Most notable among these are inactivat-
ing mutations in the PBRM1 (polybromo 1), SETD2 (SET domain-containing 2) 
and BAP1 (BRCA-associated protein 1) tumor suppressor genes, mutation of which 
typically follows loss of VHL. Importantly, these three genes also reside on the short 
arm of chromosome 3. As a result, the loss of chromosome 3p frequently observed 
in both familial and sporadic ccRCC can simultaneously result in copy loss of all 4 of 
these ccRCC-associated tumor suppressor genes; VHL, PBRM1, SETD2 and BAP1.

5. Function of pVHL

Following identification and cloning of the VHL tumor suppressor gene, its 
sequence did not immediately suggest a function for the protein. However, early 
immunoprecipitation experiments indicated that pVHL forms a complex with 
elongin B and elongin C [34]; cullin 2, a member of the Cdc53 family of proteins 
[35]; and the RING-box protein Rbx1 [36, 37]. Importantly, the binding of pVHL 
to elongins B and C could be blocked by specific ccRCC-associated mutations in 
the VHL gene, strongly suggesting that these two proteins contribute to the tumor 
suppressor activity of VHL [34]. The subsequent identification of mutations in the 
TCEB1 gene, which encodes elongin C, in ccRCC tumors that have wild-type VHL 
further emphasizes the importance of this complex in ccRCC formation [25, 32, 38].

Elongins B and C, cullin 2 and Rbx1 are all components of an E3-ligase com-
plex that adds polyubiquitin chains to specific proteins and thus targets them for 
degradation by the proteasome [39, 40]. This suggested that pVHL might act as 
the recognition component of a pVHL ligase complex. In a separate line of work, 
dysregulation of the hypoxia-inducible factor (HIF) transcription factors had been 
identified in VHL-defective ccRCC cells [41]. It was subsequently shown that pVHL 
directly interacted with HIF, leading to polyubiquitination and subsequent protea-
somal degradation of its alpha-subunits [42, 43]. Again, the pVHL-HIF interac-
tion could be blocked by specific ccRCC-associated mutations in VHL, leading to 
overexpression of HIF and underlining the importance of HIF in the development 
of ccRCC [42]. Importantly, this interaction was not only altered by pathogenic 
VHL mutations but was also regulated in an oxygen-dependent manner [44, 45]. 
This indicated that the pVHL-HIF interaction was integral to the mechanism of 
cellular oxygen-sensing.

The central role of HIF in ccRCC biology has been further underscored in 
numerous studies. In particular, in xenograft and transgenic mouse models of 
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VHL-defective ccRCC, tumor growth is dependent upon the presence of HIF 
[46–51]. Specifically, tumor growth is dependent on the DNA binding activity of 
HIF, which is required for it to transactivate its target genes [48]. Thus, HIF and its 
associated transcriptional response are key mediators of tumorigenesis in ccRCC.

In addition to HIF, pVHL can interact with a number of other proteins, 
although the biological significance of these interactions is incompletely under-
stood [52]. Some of these interactions can lead to ubiquitination of other proteins 
aside from HIF. For example, pVHL has been reported to interact with and ubiqui-
tinate two de-ubiquitinase enzymes (VDU1 and VDU2) leading to their degrada-
tion [53, 54]. In turn, VDU2 but not VDU1 may de-ubiquitinate HIF-1α, potentially 
providing another level of control to the HIF pathway [55]. In addition, pVHL can 
bind to and ubiquitinate two subunits of the RNA polymerase 2 complex, POL2RA 
(RPB1) and POL2RG (RPB7) [56–58]. Importantly, the pVHL-RPB1 interac-
tion was shown to be oxygen-dependent, involving a mechanism similar to that 
regulating pVHL interaction with HIF [58]. Similarly, the erythropoietin receptor 
(EPOR), which lies downstream of the canonical HIF-target gene, erythropoietin 
(EPO), may also be bound and ubiquinated by pVHL in response to oxygen [59]. 
pVHL can also interact with and ubiquitinate the regulatory domain of atypical 
protein kinase C (PKC), a serine–threonine kinase that has roles in cell polarity 
and cell growth, leading to its degradation [60–62]. Again, this interaction may 
be regulated by oxygen [62]. Similarly, an oxygen-dependent interaction between 
pVHL and sprouty homolog 2 (SPRY2), which modulates the action of receptor 
tyrosine kinases, has been reported [63]. Taken together, these findings indicate 
that pVHL may contribute to oxygen signaling more extensively than simply 
through regulation of HIF.

pVHL may also play a non-canonical role in extra-cellular matrix assembly, 
independently of HIF. Specifically, pVHL can interact directly with the alpha-chain 
of collagen 4 and is important in maintaining the collagen 4 network [64, 65]. This 
molecule is heavily hydroxylated, and as will be explained below, hydroxylation 
is important in the recognition of HIF-alpha (as well as collagen 4) by pVHL. 
Importantly, this interaction can be dissociated by ccRCC-associated VHL muta-
tions. Similarly, fibronectin co-immunoprecipitates with pVHL, and consistently 
the extracellular fibronectin matrix produced by VHL-defective ccRCC cells is also 
disrupted [66]. However, the contribution of this phenomenon to cellular oxygen 
sensing and ccRCC tumorigenesis is still unclear.

6. Oxygen-dependent regulation of HIF by pVHL

The importance of pVHL in the regulation of the HIF transcription factors, 
and the cellular transcriptional response to altered levels of oxygen, has provided 
tremendous insights into the mechanisms of cellular oxygen sensing. HIF was first 
discovered in the quest for transcriptional regulators of the erythropoietin gene 
(EPO), encoding the master regulator of red blood cell production [67]. It later 
emerged there were three HIF isoforms, HIF-1, HIF-2 [68, 69], and HIF-3 [70], each 
composed of a common, constitutive β-subunit (HIF-1β, also known as ARNT – aryl 
hydrocarbon receptor nuclear translocator) and a regulated alpha-subunit (HIF-1α, 
HIF-2α and HIF-3α respectively). HIF-1α is ubiquitously expressed at the mRNA 
level, thus HIF-1α protein is capable of being stabilized in all tissue types. HIF-1α is 
thought to drive core, canonical cellular responses to low oxygen levels (hypoxia) 
[71], including the metabolic switch to anaerobic glycolysis. The expression of HIF-2α 
mRNA and HIF-3α mRNA is more cell-type-specific and thus these transcription 
factors are thought to drive more specialized responses to hypoxia [69, 70, 72]. 
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HIF-2α expression is generally more restricted to particular mesenchymal cell types, 
including endothelial cells in which it was first identified, hence its alias endothelial 
PAS domain-containing protein 1 (EPAS1) [69]. However, HIF-2α is also expressed 
in some epithelial malignancies, including ccRCC. HIF-3α expression is restricted to 
a select few cell types and can be alternatively spliced to yield several transcript vari-
ants [70]. The biological functions of HIF-3α have not been well-explored, although it 
is thought to antagonize the transcriptional responses of HIF-1α and HIF-2α [73–75].

HIF isoforms are all basic helix–loop–helix/Per-ARNT-SIM (bHLH–PAS) 
transcription factors, belonging to a much larger family that includes the onco-
genic MYC proteins [76]. Each possess an N-terminal bHLH DNA-binding domain 
and two protein–protein interaction PAS domains responsible for dimerization. 
In addition, the three HIF-α isoforms each contain oxygen-dependent degrada-
tion domains (ODDDs), responsible for regulating protein abundance [77]. 
However, only HIF-1α and HIF-2α possess the C-terminal transactivation domains 
(C-TAD) [78].

In the presence of oxygen, HIF-α subunits are hydroxylated on two residues 
in the ODDD domains by a family of prolyl hydroxylase enzymes (PHD1, PHD2 
and PHD3) [44, 45, 79]. These hydroxylated residues are recognized and bound 
by pVHL (in a complex with elongin B, elongin C and cullin 2) leading to its rapid 
ubiquitination and proteasomal degradation (Figure 2). Thus, when oxygen is 
abundant, HIF-α levels are low. However, since oxygen is a rate-limiting substrate 
for this reaction, HIF-α is stabilized in hypoxia. Inactivation of VHL in ccRCC cells 
will also block HIF from being degraded, leading to constitutive activation of HIF 
and its target genes, even in cells that are well-oxygenated. Accordingly, activation 
of both HIF and HIF target genes are hallmarks of ccRCC.

Figure 2. 
Regulation of HIF by PHD enzymes and pVHL E3 ligase. (A) In normal oxygen conditions (normoxia), 
the oxygen-dependent PHD enzymes (PHD1, PHD2 and PHD3) hydroxylate both HIF-1α and HIF-2α 
transcription factor isoforms. This causes HIF proteins to be recognized and ubiquitinated by the pVHL E3 
ubiquitin ligase complex, which targets them for rapid degradation via the proteasome. (B) In low oxygen 
conditions (hypoxia), PHD enzymes are inactive due to the lack of their oxygen substrate. Therefore, HIF-1α 
and HIF-2α are not hydroxylated and are not targeted for degradation by pVHL. Due to their stabilization, 
they are able to dimerize with their obligate binding partner HIF-1β. This allows them to bind to DNA and 
upregulate their target genes. (C) When the VHL gene is inactivated (as is the case in ccRCC and some other 
cancers), pVHL is either not expressed or is dysfunctional. Therefore, pVHL is unable to recognize HIF-1α 
and HIF-2α, even in the presence of oxygen when they are hydroxylated by PHD enzymes. This causes 
inappropriate stabilization of HIF-1α and HIF-2α, which then dimerize with HIF-1β and upregulate their 
target genes, regardless of oxygen levels.
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In addition, HIF-1α and HIF-2α can be further modified at an additional site in 
the C-terminal TAD by an asparaginyl hydroxylase, termed factor inhibiting HIF 1 
(FIH-1) [80, 81]. Similar to the PHD enzymes, FIH-1 activity is oxygen-dependent, 
but asparagine hydroxylation does not prompt recognition by pVHL. Instead, aspa-
raginyl hydroxylated HIF is unable to bind to the transcriptional co-factor, CREB 
binding protein (CBP)/p300, which facilitates transcriptional activation at a subset 
of HIF-target genes [80–82]. Therefore, two distinct mechanisms act to control HIF 
activity and expression in an oxygen-dependent manner, one of which is blocked by 
VHL inactivation. In the context of ccRCC, this has two consequences. Firstly, FIH-1 
may facilitate residual hypoxic regulation of HIF despite constitutive HIF stabiliza-
tion [83]. Secondly, the transcriptional response to VHL inactivation in normoxic 
cells may not precisely mimic the transcriptional response to hypoxia.

7. The HIF transcriptional response

Once stabilized, both HIF-1α and HIF-2α, in complex with HIF-1β, are able to 
bind chromatin at either gene promoters or promoter-distant enhancers that contain 
one or more 5′-RCGTG-3′ recognition motifs, termed hypoxia response elements 
(HREs) [84, 85]. These short motifs are highly numerous across the genome and 
only a small proportion of accessible motifs are occupied by HIF, indicating that 
additional factors are involved in HIF DNA-binding [85]. HIF-binding sites may lie 
several hundreds of kilobases from the target promoter, interacting with it through 
chromatin looping, which can make it difficult to identify the transcriptional target 
of any given binding site. Therefore, much effort has been directed at determin-
ing both direct and indirect targets of the HIF transcriptional pathway in multiple 
settings, including in VHL-defective ccRCC cells, using both transcriptomic assays 
such as RNA-seq and assays of chromatin binding such as ChIP-seq [85–89].

These sequencing studies indicate that HIF acts as a gene activator rather than a 
repressor; causing the induction of hundreds to thousands of genes and triggering 
massive pathway activation [90–93]. These genes mediate diverse cellular functions 
including angiogenesis, erythropoiesis, glycolysis and the cell cycle [77, 94, 95]. 
This triggers a physiological response that enables cells to survive in low oxygen 
conditions. For example, HIF-dependent angiogenesis increases blood supply to 
oxygen-starved tissue; HIF-dependent erythropoiesis improves systemic oxygen 
delivery; HIF-dependent glycolysis allows cells to generate ATP in the absence of 
oxygen; and HIF-dependent cell cycle arrest can allow cells to conserve energy and 
reduce oxygen consumption.

Importantly, HIF-binding sites and HIF-regulated genes are highly cell-type 
specific. Thus, whilst HIF may regulate many hundreds of genes in any given cell 
type, only a small, core set of well-described genes are regulated in the major-
ity of tissues [90, 93]. Furthermore, although both HIF-1α and HIF-2α share the 
same binding motif and their binding sites often overlap, HIF-1α tends to be more 
prevalent at gene promoters whereas HIF-2α is more prevalent at promoter-distant 
enhancers [90, 92]. In addition to this binding site specificity, post-DNA-binding 
mechanisms likely contribute to transcriptional selectivity between the two isoforms 
[96], such that specific genes may be regulated by either HIF-1α or HIF-2α only, 
even when both isoforms are bound [50, 97] For example, cyclin D1 (CCND1), 
transforming growth factor alpha (TGFA), vascular endothelial growth factor A 
(VEGFA), glucose uptake transporter 1 (SLC2A1/GLUT1), the MYC oncogene, and 
the stemness-related transcription factor OCT4/POU5F1 are specifically induced by 
HIF-2, whilst BCL2-interacting protein 3 (BNIP3) and carbonic anhydrase 9 (CA9) 
are positively regulated by HIF-1 [97–102].
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Although primarily a physiological response, the HIF pathway is also relevant 
to the pathophysiology of cancer and many HIF target genes are central to the 
hallmarks of cancer described by Hanahan and Weinberg [103]. These include genes 
with prominent roles in angiogenesis, glycolysis, cell proliferation, cell invasion 
and immune evasion among other oncogenic processes (Figure 3). Indeed, HIF is 
activated in many types of solid tumor, largely as a result of intra-tumor hypoxia 
and is almost universally associated with a poor prognosis [104].

In particular, HIF promotes the metabolic switch from oxidative phosphoryla-
tion to anaerobic glycolysis by inducing a range of target genes, including those 
encoding transmembrane proteins that import glucose into the cell (SLC2A1/
GLUT-1 and SLC2A3/GLUT-3) as well as multiple catalytic enzymes in the gly-
colytic pathway [71]. Oxidative phosphorylation is oxygen-dependent, therefore 
switching to oxygen-independent glycolysis allows hypoxic cancer cells to generate 
energy. However, glycolysis causes accumulation of byproducts in the form of acidic 
metabolites, which can be toxic to cancer cells. Therefore, HIF also upregulates 
genes encoding transmembrane proteins that rebalance intracellular pH to promote 
cancer cell survival. For example, the HIF target genes CA9 and CA12, encoding 
carbonic anhydrases, generate alkaline sodium bicarbonate ions in the extracellular 
space [105]. Sodium bicarbonate can then be imported into cells by ion channels 
to counteract intracellular acidity. Furthermore, once a tumor outgrows its blood 
supply and becomes hypoxic, HIF induces genes encoding pro-angiogenic secreted 
factors, such as VEGFA and placental growth factor (PGF), that serve to transmit 
extracellular signals and stimulate blood vessel production [106]. This increases 
delivery of nutrients and oxygen to cancer cells, enabling the tumor to further 
expand. Furthermore, HIF has recently been found to upregulate genes that help 
cancer cells evade destruction by the immune system. One such example is CD274, 

Figure 3. 
HIF target genes that promote or restrict tumorigenesis. HIF regulates hundreds to thousands of target genes, 
which mediate diverse and sometimes conflicting cellular processes. For example, such processes can either 
promote or restrict tumor growth. Those that are typically considered tumor-promoting processes are depicted 
in red, whereas those that are typically considered tumor-suppressive are depicted in green. Cellular processes 
that can be either tumor-promoting or -suppressive (depending on the context) are depicted in red and green. 
Exemplar HIF target genes involved in each process are listed. Note that whilst some HIF target genes appear to 
be consistent across cell types and conditions, others are context-dependent.
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encoding the transmembrane protein termed programed death ligand 1 (PD-L1), 
which is expressed in cancer cells [107]. PD-L1 interacts with its receptor termed 
programed cell death protein 1 (PD-1), which is expressed on the cell surface of 
T cells. The PD-L1/PD-1 interaction prevents T cell-mediated killing of cancer cells, 
therefore HIF may exacerbate this oncogenic mechanism.

However, since HIF evolved to mediate physiological responses to hypoxia, not 
all HIF target genes are advantageous in a cancer setting. Paradoxically, although 
HIF activates many pro-tumorigenic target genes, there are also anti-tumorigenic 
HIF targets (Figure 3). These may represent in-built tumor suppressor mechanisms 
that counterbalance oncogenic target genes when HIF is activated in response to 
physiological hypoxia. Tumor suppressive HIF target genes include BNIP3 and 
BNIP3L, which are pro-apoptotic proteins. BNIP3 and BNIP3L can promote either 
cell death or autophagy in response to hypoxia, depending on the context [108]. 
Furthermore, some HIF target genes may not influence cancer pathogenesis what-
soever and may represent genes that are only important in other contexts. This is 
epitomized by VHL loss in the earliest stages of ccRCC formation, which causes HIF 
activation in an inappropriate context (i.e. causing a cellular response to hypoxia 
when the cell is not hypoxic). In this setting, HIF causes a change in cell state that 
is unwarranted since the cell is exposed to normal oxygen levels. Therefore, many 
activated HIF target genes may confer no survival advantage or may even result in a 
“fitness penalty” to the cell in this context. Taken together, the overall consequences 
of massive HIF pathway activation in ccRCC will be a balance of many positive, neu-
tral and negative effects [109]. The contribution of each effect may change during 
cancer pathogenesis as a result of subsequent somatic mutation, epigenetic events 
or changes in the tumor microenvironment allowing cancer cells to escape the long 
prodromal dormancy that occurs following VHL inactivation. Alternatively, the 
poise of the HIF transcriptional pathway may be partially pre-set prior to VHL inac-
tivation due to cell-type specific differences in HIF target genes. In turn, this could 
render specific cell types particularly susceptible to VHL inactivation. Furthermore, 
genetic differences between individuals might alter specific HIF target genes, thus 
making that individual more or less susceptible to developing kidney cancer.

Activation of contrasting and aberrant pathways as part of large transcriptional 
programs is an emerging theme in cancer biology. For example, MYC, like HIF, 
has transcriptional targets with both oncogenic and tumor suppressive properties 
[110, 111]. Therefore, HIF activation in ccRCC serves as a model for studying large 
transcriptional cascades in cancer more generally.

8. Modulation of the HIF response during the pathogenesis of ccRCC

Early evidence to support the pleiotropic nature of the HIF pathway in kidney 
cancer came from the observation that HIF-1α and HIF-2α have opposing actions 
on tumor growth in ccRCC xenograft models. Whilst HIF-2α promotes tumor 
growth, HIF-1α has the opposite effect and restricts tumor growth [46, 48, 50, 51]. 
Furthermore, expression of HIF-2α target genes in ccRCC tumors correlates with 
poor patient prognosis, whereas HIF-1α targets genes are associated with improved 
survival [91].

Commensurate with this, HIF isoform expression appears to switch from HIF-1α 
to HIF-2α during the development of kidney cancer [28, 112]. In renal tubule epithelial 
cells, including proximal tubular cells from which ccRCC is derived, HIF-1α mRNA 
is highly expressed, whereas HIF-2α mRNA is undetectable [28]. Conversely, HIF-2α 
mRNA (and protein) is highly expressed in ccRCC, possibly as a result of downregula-
tion of DNMT3a and resultant promoter demethylation of the EPAS1 gene that encodes 
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HIF-2α [113]. Furthermore, ccRCCs often downregulate HIF-1α through loss of copy 
number, deletion, truncation or transcript downregulation [25, 31, 32, 112, 114]. Given 
the tumor-suppressive function of HIF-1 and the oncogenic function of HIF-2, the shift 
from HIF-1α in the ccRCC cell of origin to dominant HIF-2α expression in overt ccRCC 
would favor a more oncogenic phenotype. However, even within the transcriptional rep-
ertoire of each isoform there are genes with heterogenous associations with prognosis, 
suggesting that other selective pressures, effective at the level of individual HIF target 
genes, may also be operating [91].

Indeed, suppression of individual HIF target genes with anti-tumorigenic 
properties has been reported in ccRCC. The pro-apoptotic gene BNIP3 is a canoni-
cal HIF target gene in many cell types. However, rather than being increased by 
constitutive HIF in ccRCC cells, its expression was found to be lower than in normal 
kidney cells. This is most likely as a result of epigenetic modification of the BNIP3 
gene locus involving histone deacetylation [115].

In this respect, it is notable that of the many somatic mutations that co-occur with 
VHL inactivation in ccRCC, very few occur within HIF-target genes. However, to 
date, the majority of ccRCC sequencing efforts have focused on the coding genome 
or have targeted genomic regions of interest. Therefore, the majority of HIF binding 
sites (which are usually intergenic) have not been extensively examined and further 
studies may reveal somatic mutation of these sites in the future. However, epigenetic 
modifiers such as PBRM1, SETD2 and BAP1 are recurrently mutated in these tumors 
[25, 31, 32, 116–120]. PBRM1 encodes a subunit of the chromatin remodeling PBAF 
SWI/SNF complex; SETD2 encodes a histone methyltransferase; and BAP1 encodes 
a histone deubiquitinase. Interestingly, parallel evolution has been reported with 
respect to these mutations, whereby multiple mutations in the same gene are pres-
ent in different cells of the same tumor [32]. This emphasizes their importance in 
driving ccRCC, as well as illustrating their temporal occurrence (i.e. subsequent to 
VHL mutation). Although the interaction between these ccRCC-associated somatic 
mutations and the HIF pathway remains unclear, PBRM1 inactivation enhances 
some aspects of the HIF response [121] and reduces the tumor-suppressor activity 
of HIF-1α, although the mechanisms are unknown [122]. Recurrent mutations are 
also found in genes within the PI3K/AKT/mTOR pathway, which is a master regula-
tor of RNA translation. Expression of both HIF-1α and HIF-2α protein are differ-
entially dependent on mTOR, with HIF-1α being regulated by both the mTORC1 
and mTORC2 complexes, whilst HIF-2α is dependent solely on mTORC2 [123]. 
Therefore, HIF isoforms may be differentially affected by mutations in this pathway.

In addition, other oncogenic transcription factors activated in ccRCC may modu-
late the HIF response. For example, MYC activity is enhanced in ccRCC [124, 125] 
and synergizes preferentially with HIF-2, whilst antagonizing HIF-1 [102, 126]. In 
this way, MYC augments the switch from HIF-1 to the more oncogenic HIF-2 iso-
form. Importantly, MYC itself is a transcriptional target of HIF in ccRCC cells [127], 
providing a mechanism whereby stabilization of HIF following inactivation of VHL 
preferentially amplifies the HIF-2 transcriptional pathway in these cells.

9. Variation in the HIF pathway pre-disposes to renal cancer

As discussed above, genetic and epigenetic events occur somatically in ccRCC 
following VHL inactivation, allowing the HIF transcriptional output to adapt to a 
more oncogenic phenotype, thereby promoting tumor formation. However, dif-
ferences in the HIF pathway that exist prior to VHL inactivation can also affect the 
ability of cells to form cancer. Indeed, it is highly likely that cell-type differences in 
the HIF pathway contribute to the tight tissue-specificity of VHL-associated cancer, 
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despite the almost universal operation of the VHL-HIF pathway in different mam-
malian cell types. Potentially, cell-type-specific components of the HIF pathway 
might favor tumorigenesis in permissive cell types, inhibit tumorigenesis in non-
permissive cell types, or a combination of both (Figure 4). The exact mechanism 
underlying this tissue specificity remains to be determined, although elucidation of 
HIF target genes in cells permissive to VHL-associated cancers (compared to that in 
non-permissive cells) will be key in future studies. Of note, the G1/S-phase cell-
cycle regulator cyclin D1 (CCND1) has been found to be a HIF-2 responsive gene, 
which is not regulated by HIF-1 and is unique to ccRCC cells [50]. Furthermore, 
CCND1 is required for ccRCC cell growth in mice [128]. This indicates that CCND1 
and likely other tissue-specific HIF target genes may render certain cell types recep-
tive to tumorigenesis upon VHL inactivation.

As well as being affected by somatic alterations and cell-type-specific features, 
the HIF pathway can also be modified by inherited genetic variants. Polymorphisms 
that predispose individuals to kidney cancer have been studied, and several of these 
have been shown to affect HIF target genes. Such variants have been identified by 
genome wide-association studies (GWAS), which compare the genome sequence 
of renal cancer patients with healthy control individuals [129–135]. Although these 
variants likely only account for about 5% of kidney cancer heritability [129], a 
disproportionately high number of these susceptibility loci overlap with cis-acting 
components of the HIF pathway [136]. This indicates that specific aspects of the 
HIF pathway are under genetic selection during the development of kidney cancer.

Many of these RCC-susceptibility loci lie in intergenic regions and so the 
functional target of these polymorphisms is not immediately apparent. However, 
several susceptibility loci overlap with, or lie adjacent to, HIF-binding sites [136]. 
In-depth analysis of chromatin looping and HIF-dependent gene regulation has 
identified a number of HIF target genes associated with these loci [127, 136–138]. 
At each locus, the renal cancer susceptibility polymorphism affects both HIF 
binding and expression of the HIF-target gene, either by generating a second HRE 

Figure 4. 
Rebalancing the HIF pathway to favor tumorigenesis. HIF target genes include those that promote tumor growth 
(depicted in red), restrict tumor growth (depicted in green) and those that do not influence tumor growth 
(depicted in gray). Depending on the context (i.e. in a permissive or non-permissive context), activation of the 
HIF pathway may or may not be conducive to tumorigenesis. Features that could ‘tip the balance’ in a HIF-
activated cell include genetic mutations, epigenetic features and the cell state (e.g. the underlying gene expression 
program).
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motif or by altering chromatin accessibility. Most notable are polymorphisms at 
the 11q13.3 locus, which affect HIF-2-dependent expression of cyclin D1 (CCND1) 
[137]; polymorphisms at the 8q24.21 locus, which affect HIF binding and expres-
sion of the oncogenic transcription factor MYC [127]; and polymorphisms at the 
12p12.1 locus, which alter HIF-1 dependent expression of the basic helix–loop–
helix transcription factor BHLHE41 (also known as DEC2) [138]. Furthermore, 
RCC-susceptibility polymorphisms have been identified at the 2p21 locus, lying 
in the first intron of the EPAS1 gene that encodes HIF-2α, although whether these 
affect HIF-2α expression remains unclear [130, 139]. Importantly, each renal 
cancer susceptibility locus affects a single component of the HIF pathway. This 
directly implicates these genes in the pathogenesis of kidney cancer. Furthermore, 
it helps distinguish them from HIF target genes with neutral effects on RCC sus-
ceptibility that might be simply co-activated as part of large pathway upregulation. 
Therefore, these analyses have highlighted specific ‘driver’ genes that may provide 
attractive targets for future therapeutic approaches or as biomarkers that might 
predict tumor behavior.

10. Therapeutic implications of HIF pathway activation in ccRCC

In the absence of a surgical cure, the outlook for patients with clear cell renal 
cancer is poor, with a median survival of just 2 years. However, over recent years 
a number of systemic anti-cancer therapeutic strategies have emerged, which are 
beginning to alter the outcome for some of these patients.

10.1 Anti-angiogenic therapies

One strategy has focused on angiogenesis inhibitors to treat metastatic ccRCC. 
Whilst all tumors require a blood supply to obtain sufficient oxygen and nutrients 
to grow, ccRCC (and other VHL-dependent cancers such as hemangioblastoma) are 
particularly rich in blood vessels. Indeed, VEGFA, a master regulator of angiogene-
sis, [98, 99] is a direct transcriptional target of HIF and is highly expressed in ccRCC 
cells [41, 140]. Early anti-angiogenic strategies targeted VEGFA using the mono-
clonal antibody bevacizumab, with limited efficacy [141]. However, several other 
HIF target genes also encode pro-angiogenic factors, such as PGF, adrenomedullin 
(ADM) and plasminogen activator 1 (PAI-1), as well as the VEGF receptor, FLT1. 
These likely act in concert with VEGFA to orchestrate a robust angiogenic pheno-
type in the context of HIF activation. Therefore, rather than targeting individual 
factors, more recent strategies have used small-molecule receptor tyrosine kinase 
inhibitors (TKIs) to block the overarching angiogenic pathways [142]. However, 
while effective in some individuals, other tumors may fail to respond, likely reflect-
ing heterogeneity in gene expression between tumors. Furthermore, the duration 
of response may be limited, possibly reflecting intra-tumor heterogeneity and the 
growth of resistant subclones.

10.2 Immunotherapy

In recent years, immune checkpoint inhibition via targeting PD-L1 and CTLA-4 
has emerged as an effective treatment for advanced ccRCC. This is despite the 
relatively low mutational burden seen in this type of cancer, which often correlates 
with sensitivity to immunomodulatory therapy in other cancer types. Whilst HIF has 
multiple effects on the immune response [143], it is of particular interest that PD-L1 
has been found to be transcriptionally regulated by HIF in ccRCC cells [107, 144, 145].  
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Therefore, it is possible that HIF-mediated activation of PD-L1 may underlie the 
sensitivity of ccRCC to inhibition of this pathway.

10.3 mTOR inhibitors

Historically, mTOR inhibitors have been used in the treatment of metastatic kid-
ney cancer and remain part of the modern armamentarium [146, 147]. Inhibition of 
mTOR will negatively impact translation of HIF-alpha subunits, while preferential 
blockade of mTORC1 or mTORC2 may alter the balance of the two isoforms. Given 
the oncogenic role of HIF-2α in ccRCC and the selective regulation of HIF-2α by 
mTORC2, mTORC2 inhibition may provide a more targeted therapeutic approach 
in the future.

10.4 HIF-2 inhibitors

The finding that HIF-1α and HIF-2α have opposing effects on the pathogenesis 
of ccRCC initiated efforts to generate isoform-specific inhibitors. This led to the 
development of small molecule inhibitors that specifically prevent HIF-2α dimer-
izing with HIF-1β, thereby blocking HIF-2α -dependent transcription without 
affecting HIF-1α activity [148]. These inhibitors would be predicted to have greater 
efficacy compared to targeting both isoforms simultaneously, whilst reducing 
off-target side-effects. Indeed, investigation of these compounds as potential ccRCC 
treatments, both in animal models of ccRCC and early clinical trials, have yielded 
promising results [149–151]. Therefore, these compounds could provide another 
strategy for treating metastatic ccRCC.

11. Conclusions

Inactivation of the VHL tumor suppressor gene is the hallmark of clear cell renal 
cancer and leads to the upregulation of wide-spread hypoxia pathways, orchestrated 
by the transcription factor HIF. Whilst HIF proteins activate many genes that are 
central to the “hallmarks of cancer”, other HIF-target genes may restrict cancer pro-
gression and the overall consequence of HIF pathway activation is a balance of these 
effects (Figure 4). Both genetic and epigenetic genetic events, occurring before or 
after VHL loss and HIF activation, can alter this balance to promote tumorigenesis.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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