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Chapter

Approaches for Handling 
Immunopathological and Clinical 
Data Using Deep Learning 
Methodology: Multiplex IHC/IF 
Data as a Paradigm
Siting Goh, Yueda Chua, Justina Lee, Joe Yeong and Yiyu Cai

Abstract

Recent advancements in deep learning based artificial intelligence have enabled 
us to analyse complex data in order to provide patients with improved cancer 
prognosis, which is an important goal in precision health medicine. In this chapter, 
we would be discussing how deep learning could be applied to clinical data and 
immunopathological images to accurately determine survival rate prediction for 
patients. Multiplex immunohistochemistry/immunofluorescence (mIHC/IF) is a 
relatively new technology for simultaneous detection of multiple specific proteins 
from a single tissue section. To adopt deep learning, we collected and pre-processed 
the clinical and mIHC/IF data from a group of patients into three branches of data. 
These data were subsequently used to train and validate a neural network. The 
specific process and our recommendations will be further discussed in this chapter. 
We believe that our work will help the community to better handle their data for AI 
implementation while improving its performance and accuracy.

Keywords: immunopathology, deep learning, multiplex IHC/IF

1. Introduction

Improved cancer prognosis is a vital goal of precision health medicine. 
Advancements in Deep Learning (DL) based Artificial Intelligence (AI) technolo-
gies enable modelling of complex data providing deeper insights and patients with 
more reliable results. Machine Learning (ML) is the process of enabling machines to 
make predictions from data that is fed into it. This includes DL, a type of approach 
created from the development of artificial neural networks [1]. The DL network 
consists of multiple layers of artificial neural networks including an input, an 
output and multiple hidden layers [2, 3]. Predictions are made after datasets are gen-
erated from and trained against these hidden layers. Recent advancements in com-
putational processing power has sparked interest in tapping into the vast research on 
DL and applying it to digital pathology. Digital pathology is the process of digitizing 
Whole-Slide Images (WSI) using advanced slide-scanning techniques and AI-based 
methods for detecting, segmenting, diagnosing and analysing digitized images [4].
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DL is the engine of advancement in artificial learning in both computer and clini-
cal sciences. It is a collection of computer learning algorithm layers that uses the raw 
data input to first generate generalise features that are subsequently used to progres-
sively extract higher level features such as tumour stroma count, and assign them 
class labels. Eventually, the system will distinguish different interest categories via the 
identified ideal data features. The DL approaches are widely accepted due to the abil-
ity of discovering patterns and signals from data too large for human comprehension. 
Furthermore, the multiple layers allow modelling of highly complex non-linear prob-
lems. On top of having higher accuracy, the DL approaches are also easily applied.

1.1 The importance of deep learning in digital pathology and mIHC

In current clinical practice, pathologists base their medical diagnosis on the quan-
tification and visual recognition of the analysed sample details, which could lead to 
diagnostic discrepancies and potential suboptimal patient care [5]. The increased 
adoption of non-invasive clinical procedures to acquire diagnostic samples has also 
severely reduced the quantity and quality of samples obtained, which compounds 
the workload of pathologists. In view of the inter-variabilities in analysing samples 
manually and the limitations of available samples, the use of DL analysis has thus 
been researched on and progressively applied in the clinical practice.

DL in digital pathology aims to improve the workload of pathologists by auto-
mating time-consuming tasks, hence allowing additional time to be spent on disease 
presentations with complex features. AI applications in digital pathology can also be 
applied to develop prognostic assays that evaluate the severity of diseases and make 
an accurate prognosis in response to therapy. This could be applied to various image 
processing and classification tasks, such as low-level jobs revolving around image 
recognition issues including detection and segmentation, as well as high-level tasks 
such as prognosis of response to therapy based on patterns of images [6, 7]. Such AI 
approaches are designed to extract relevant image renditions to train machines to be 
used as specific segmentation, diagnostic or prognostic tools.

One of the most extensively used DL models in pathology image analysis is the 
Convolutional Neural Networks (CNN). The CNN is a class of deep, feedforward 
networks, comprising several layers which extrapolate an output from an input and 
contains multiple convolutional sheets. These convolution sheets are the foundation 
of a CNN in which the network learns and extrapolates feature maps from images 
using filters between the input and output layers [4]. These layers in CNN are not 
connected as the neurons in one layer only interact with a specific region of the pre-
vious layer instead of all its neurons. The CNN also contains pooling layers which 
primarily function to scale down or reduce the dimensionalities of the features. 
CNN DL-based approaches are used for image-based detection and segmentation 
tasks to distinguish and quantify cells, histological features or highlight regions of 
interest [4]. CNN DL-based approaches have also been developed to automatically 
distinguish and segment blurry areas in digitised WSIs with high accuracy.

Another type of DL approach is the Fully Convolutional Network (FCN) which 
learns representations from every pixel and makes a potential feature detection 
that may occur sparsely in the entire pathology image [4]. FCNs uses co-registered 
Haemotoxylin and Eosin (H&E) images with multimodal microscopy techniques 
to classify WSIs into 4 classes: cancer, non-malignant epithelium, background and 
other tissues. When FCN was used to detect invasive breast cancer regions on WSIs, 
it had a diagnostic accuracy of 71% (Sørensen-Dice coefficient) when compared to 
an expert breast pathologist’s assessment [8]. With better technologies and further 
research, FCNs can potentially automate these tasks with a higher accuracy, reduc-
ing the workload of pathologists.
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AI-based approaches such as Generative Adversarial Network (GAN)-based 
approaches can be used for training to automatically score tumoral programmed 
cell death 1 ligand 1 (PD-L1) expression in biopsy sample images [4]. They reduce 
the number of inputs required from pathologists and make up for lack of tissue 
samples available in biopsy specimens. Novel GAN-based approaches propose 
converting H&E staining of WSIs to virtual immunohistochemistry staining, thus 
eliminating the need for destructive IHC tissue testing.

Many have also trialled DL in the field of immunohistochemistry (IHC). 
Traditional IHC is a common diagnostic tool used in pathology, but its application is 
significantly limited by its ability of only allowing single marker labelling per tissue 
section [9]. Alternatively, multiplex immunohistochemistry/immunofluorescence 
(mIHC/IF) technologies permit simultaneous detection of several markers on a 
single tissue section [9]. However, analysing large samples with multiple markers in 
conventional and manual ways by pathologists are highly time-consuming, labori-
ous and susceptible to human error. By combining mIHC/IF with DL to analyse 
digitized WSIs, this will overcome the limitations.

In conclusion, the research and diagnostic fields have come a long way since the 
introduction of IHC. With the introduction of Al-based approaches in the applica-
tion of IHC, higher accuracy and productivity could be achieved not just in the 
diagnostic level but also providing us with a platform to further venture into areas 
of medical knowledge yet to be fully understood.

1.2 mIHC/IF Technologies

To-date, our understanding of cancer immunotherapy has evolved and led to 
multiple studies investigating and refining strategies targeting negative regula-
tors. Many have studied the use of checkpoint blockade immunotherapy such as 
programmed cell death receptor 1 (PD-1), PD-L1 and cytotoxic T-lymphocyte–
associated protein 4 (CTLA-4) in a variety of cancers. The subsequent success 
of checkpoint blockade inhibition in clinical trials has led to the Food and 
Drug Administration’s approval of various drugs such as Ipillimumab and 
Prembrolizumab for melanoma treatment of non-small cell lung cancer (NSCLC) 
respectively [10]. Furthermore, trial of combination immunotherapy has shown 
clinical efficacy in various cancers [11, 12]. However, other studies have also sug-
gested that efficacy of these immunotherapy in various cancers may depend on the 
expression of biomarkers. For example, PD-L1 is suggested as a useful predictive 
marker in patients with NSCLC receiving Prembrolizumab [13]. However, this is 
not the case in patients with stage III melanoma [14]. To further discover potential 
biomarkers that could determine the efficacy of immunotherapy in various cancers, 
IHC has been introduced as a platform for these clinical studies.

Since its introduction in the 1940s [15], conventional IHC has been widely 
used in field of pathology and research. It involves the process of staining tis-
sues samples using antibodies specific to antigens present within the samples. 
This specificity allows microscopic visualisation for diagnosis of neoplasm and 
obtaining valuable prognostic information. Despite this, it does have several 
limitations. The inability of labelling more than one marker per tissue sample 
has resulted in loss of potential information for analysis. For instance, the 
prediction of prognosis to an immunotherapy such as PD-L1/PD-1 checkpoint 
blockade may depend on the expression of an individual biomarker or in com-
bination with other biomarkers [16–18]. Furthermore, the immune system can 
potentially be better understood, if the analysis of various biomarkers’ expres-
sion patterns are done simultaneously, or cellular interactions within the tumour 
microenvironment can be visualised [19].
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Moreover, IHC involves many critical steps which have high inter-user variabil-
ity. For instance, antigens such as Ki-67 are more vulnerable to ischemia. As such, 
over fixation could result in irreversible damage to these antigens [20]. The concern 
of IHC’s reproducibility such as for Ki-67 and its implications was also mentioned 
in the 2017 St. Gallen International Expert Consensus Conference [21]. However, 
multiple studies have since demonstrated that analytical variability can be negated 
with the use of digital analysis to calculate biomarkers index [22, 23].

Although conventional IHC is a cost-effective diagnostic and prognostic tool, it 
has been replaced with the introduction of mIHC. mIHC has been used to overcome 
the shortcoming of single biomarker labelling in conventional IHC. The use of 
mIHC has proven to provide an even more accurate analysis as seen in the study 
by Yeong et al., where the simultaneous quantification of three different PD-L1 
antibodies (22C3, SP142 and SP263) by mIHC scoring had moderate-to-strong 
correlation (with 67%–100% individual concordance rates and Spearman’s rank 
correlation coefficient values up to 0.88 [24]) when compared with manual scoring 
from four different pathologists.. This demonstrated the use of mIHC as a promis-
ing tool for an even more accurate analysis.

The use of mIHC has played a significant role in both research and clinical studies 
of cancer immunotherapy. mIHC is a relatively new tool to study the spatial tumour 
microenvironment especially those of limited tissue specimens. It has great potential in 
clinical and translational application. This was demonstrated by Halse et al., who used 
mIHC to reveal a close relationship between the presence of CD8+ T cells within the 
tumour and the expression of PD-L1 in melanoma [25]. A systemic review and meta-
analysis of studies also reported that mIHC improved results in predicting responses to 
PD-1/PD-L1 checkpoint blockade immunotherapy in various solid tumour types when 
compared to using conventional IHC analysis [26]. Several studies have also used 
various types of mIHC to obtain data for analysis. For instance, TSA-based mIHC was 
used to profile PD-1 to PD-L1 proximity in 166 metastatic melanoma samples and 42 
Merkel cell carcinoma samples in two respective studies [27, 28]. As aforementioned, 
understanding the tumour microenvironment could potentially provide a foundation 
upon which interpretation of immunotherapy response could be made.

1.3 Use of mIHC in combination with digital pathology

mIHC can be powered by digital pathology analysis software, such as inForm 
(Akoya Biosciences, California, USA) [29–31] and HALO TM (Indica Labs) [28, 32]. 

Digital pathology software

InForm HALO Oncotopix

Developer Akoya 

Biosciences

Indica 

Labs

Visiopharm

Compatibility with multiplex IHC 

platforms

Yes Yes Yes

Co-localisation of markers Yes Yes Yes

Tissue segmentation Yes Yes Yes

Spatial analysis No Yes Yes

Ready solution for interrogation of breast 

cancer markers

No No Yes (Ki-67, HER2, ER, 

PR)

Use in breast cancer research Yes Yes Yes

Table 1. 
Digital pathology softwares, InForm, HALO, and Oncotopix and their software features for multiplex IHC/IF.
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These software resolve the restrictions of labeling a single marker per tissue section 
by precisely evaluating the unique localization of multiple simultaneously detected 
biomarkers and their co-expressions or interactions between cells [33].

For example, although Ki-67/PD-L1 labeling is useful by itself, a multiplex 
approach enables several markers to be interrogated simultaneously [34–36]. However, 
only analytical digital pathology solutions for Ki67 and PD-L1 scoring are currently 
commercially available as listed in Table 1 [33, 37]. The involvement of digital pathol-
ogy has also decreased intra- and inter-observer variability seen in manual scoring as 
previously highlighted. Consequently, using mIHC in conjunction with digital analysis 
software will resolve the restrictions of conventional IHC, thus providing us with an 
accurate and powerful tool in the interpretation of immune response in various fields.

2.  Proposed deep learning framework for analysing immunopathological 
and clinical data

This section presents a holistic guiding framework to select and develop a DL 
architecture for multi-dimensional analysis. The entire pipeline can be broken 
down into 3 parts: [1] data pre-processing, [2] feature engineering and [3] model 
selection, validation, and evaluation (Figure 1). This includes treating the data 
input, selecting the appropriate model for the type of data and using the preferable 
method to validate the selected model.

To demonstrate the clinical application of the framework, a total of 107 clinical 
as well as mIHC/IF data from patients with breast cancer (BC) previously published 
[37]. The clinical data consists of parameters such as age and tumour grade as stated 
in Table 2 Row 1, while the mIHC data comprised of antibody-based spectral unmix-
ing result obtained from stained mIHC image of tumour section labeling markers 
such as cytokeratin, CD68, CD8, CD20, FOXP3, PD-L1, and CK/EpCAM (Figure 2).

2.1 Data pre-processing

The first step in data pre-processing involves analysis of the dataset. This process 
consists of four main components: [1] one-hot encoding, [2] data normalization, [3] 
data enhancement and [4] data shape conformity.

2.1.1 One-hot encoding

One-hot encoding is the process of converting any non-numerical data existing 
in the clinical dataset to a categorical numerical representation that is readable by 

Figure 1. 
General overview of the DL framework.



Pathology - From Classics to Innovations

6

the computer. Any non-numerical data within each category is split into the number 
of categories it has and encoded with a binary 0/1. For example, in the case of our 
clinical data, the columns, “Lymphovascular Invasion” contains 3 possible values: 
positive, possible, negative (Table 3). This represents 3 categories and is the prime 
candidate to be one-hot encoded. The input column is subsequently expended to 3 
columns, one for each category in this input as shown in Tables 3 and 4.

2.1.2 Data normalisation

Most CNN research and models are developed with the intention for applica-
tion in Computer Vision, where an entire input image data points are all pixels 
with ranges from zero to 255. Non-imaging datasets are more complicated as each 
input parameters have different units of measurements that might range from ones 

Figure 2. 
Representative images of breast tissue stained using multiplex immunohistochemistry/immunofluorescence 
(mIHC/IF) [DAPI (blue), CD8 (red), CD20 (white), CD68 (green), FOXP3 (cyan), PD-L1 (yellow), CK/
EpCAM (magenta)]. (Magnification, 200X).

Lymphovascular Invasion

Absent

Present

Absent

Absent

Possible

Table 3. 
Lymphovascular invasion data before One-hot encoding.

Age at 

Diagnosis

Tumour 

Grade

Tumour 

Size

Lymphovascular 

Invasion

Lymph 

Node 

Positive

Lymph 

Node 

Stage

Disease 

Free 

(month)

Overall 

Survival 

(month)

Integer Ordinal 

Integer

Integer Categorical (positive/

possible/negative)

Integer Ordinal 

Integer

Integer Integer

Table 2. 
Data of Clinical Dataset.
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to hundreds of thousands. Using such models with disparate values meant that a 
model with a large input parameter could easily outweigh another with a smaller 
value range. Therefore, data normalisation is needed to ensure that the dataset has 
comparable values across the data inputs while still maintaining their distribution 
within each data input. Data normalisation was done by scaling each input column 
to carry a mean of 0 and a standard deviation, by applying the following formula:

 New

X
X

−
=

µ
σ

 

An example of a segment of clinical dataset following one-hot encoding is as shown 
in Table 5. A notable feature of the clinical dataset is the disparate values across the col-
umns which arose due to the different units of measurements used across the columns, 
such as categorical numbers, months, and millimetres. As such, these numbers could 
not be directly compared. To obtain a more comparable data, normalisation of these 
values was done, while maintaining the distribution within each column (Table 6).

2.1.3 Data enhancements

When working with a medical dataset, it will be advantageous to have medical 
insights augment the data, as it can improve the result. The use of medical insights is 
however dependent on the context of the problem and is subjective to the augmenta-
tion or removal of features and/or any dataset. In this study, clinically relevant data 
was augmented to the cell dataset to count the number of stroma and cancer cells of 
each patient. Subsequently this was evaluated with a simple 12-layer dense neural net-
work and the obtained results were compared with and without data enhancements 
on 10000 epochs. It was discovered that there was a marked improvement in the 
reduction of mean absolute error by 14.8% when the clinical dataset was enhanced 
with more relevant information. However, the reduction in mean absolute error was 
highly dependent on clinical dataset used and thus varies with its application.

2.1.4 Ensuring data conformity

The CNN requires the dataset to be homogeneous in its shape, which is achiev-
able in the classical Computer Vision problems where images could be resized to a 
uniform rectangular shape. However, in the case of medical dataset, the dimensions 
are mostly dependent on the source of the data, which is usually 3-dimensional or 
more. There are two ways to homogenise medical dataset, either by appending non-
meaningful data to the clinical dataset, or selectively removed data until the shape 
is uniform. This process requires a higher dimensional visualisation which is best 
explained using a tangible example as follows:

Lymphovascular Invasion 

Absent

Lymphovascular Invasion 

Possible

Lymphovascular Invasion 

Present

1 0 0

0 0 1

1 0 0

1 0 0

0 1 0

Table 4. 
Lymphovascular invasion data after One-hot encoding.
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Age at 

Diagnosis

Tumour 

Grade

Tumour 

Size (mm)

Lympho-vascular 

Invasion (Present)

Lymph Node 

Positive

Lymph 

Node Stage

tumour 

count

stroma 

count

Disease Free 

Survival (month)

Overall Survival 

(month)

54 3 25 0 0 0 1550 667 39.90322581 48.5483871

43 3 30 1 0 0 4236 1144 27.5483871 32.12903226

47 3 30 0 1 1 3132 1715 140.8666667 140.8666667

36 3 50 0 0 0 6264 777 139.3225806 139.3225806

49 3 24 1 0 0 3404 1504 139.1 139.1

65 2 32 0 0 0 3338 5237 50.6 139.2666667

Table 5. 
Original Sample Cell Data Before Normalisation.
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Age at 

Diagnosis

Tumour 

Grade

Tumour Size 

(mm)

Lymphovascular 

Invasion (Present)

Lymph Node 

Positive

Lymph 

Node Stage

tumour 

count

stroma 

count

Disease Free 

Survival 

(month)

Overall 

Survival 

(month)

0.01679224 0.35540932 0.32887951 0.69721667 0.09712858 0.37974281 0.65319726 0.83253395 0.85909418 0.75847927

0.91517705 0.35540932 0.15397838 1.4342743 0.09712858 0.37974281 0.65319726 0.93975876 0.37551795 1.00897651

0.58849167 0.35540932 0.15397838 0.69721667 0.09712858 0.21114331 0.43886691 0.21131083 0.20335423 1.28857808

1.48687648 0.35540932 0.54562614 0.69721667 0.09712858 0.37974281 0.65319726 2.27788594 0.74757765 1.25727138

0.42514897 0.35540932 0.36385973 1.4342743 0.09712858 0.37974281 0.65319726 0.39078351 0.01055475 1.25275851

0.88159257 2.81365708 0.08401793 0.69721667 0.09712858 0.37974281 0.65319726 0.34723499 3.77391084 0.54159967

Table 6. 
Sample Cell Data After Normalisation.
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In this study, the cell dataset has the attributes of a 3D feature shape, where 
each patient has a list of cell inputs. This gives it a general 3D shape consisting of 
(Patients x No of Cells x Cell Parameters x 1). However, as each patient has a differ-
ent number of cells, this results in a non-uniform dataset shape of (104 patients x χ 
cells x 144 Cell Parameters x 1), whereχ denotes the patient dependent number of 
cells in the dataset which ranges from 991 cell inputs to 10720 cell inputs.

Two strategies were evaluated to assess for the best approach of ensuring data 
conformity. The first method involves keeping the model and parameters constant. 
A dataset (Complete Cell Data) of “ghost cells” with value 0 were appended to the 
data to ensure regular shape of (107 x 10720 x 144). Alternatively, a dataset (Random 
Sampled Cell Data) with cells that were sampled randomly are pegged to the patient 
with the least number of markers to create a shape of (107 x 991 x 10720) (Table 7). 
Random sampled cell data are also employed for the training and evaluation of the 
DL model in this study. Following evaluation, no difference in the accuracy between 
both sets of data were observed. However, it was found that the smaller dataset 
required a smaller DL network that requires less computational power.

2.2 Feature engineering

In retrospect, there is no definitive answer when selecting a DL model. However, 
there is a wide array of models including the basic dense layers or CNN that could 
be applied. In view of multi-dimensional datasets, CNN is the most versatile in 
its ability to accommodate multi-dimensionality and has a strong community of 
research & development from Academics to Corporations. Despite so, CNN may be 
unsuitable for a non-imaging problem, as most CNN research is based on imaging 
problems where many of its tools such as max pooling may only work for spatial 
data. However, if harnessed correctly, CNN offers a highly flexible and advanced 
architecture that works for many types of data.

To understand the limitations of CNN on non-imaging dataset, it is essential 
to understand the fundamental difference between a spatial and non-spatial data. 
In spatial data like an image, a data point in one position is highly related to its 
surrounding pixels. Whereas for purely numerical data, one data point may not be 
related to its surrounding data points. It could instead be related to another data 
that is located at a different position, or more succinctly, is position independent.

2.2.1 Model selection and parameters

Most CNN tools assume that data points are position dependent. In this study, 
we looked at the dataset at hand to select a suitable CNN model and to adapt a 
powerful CNN tool called Pooling Layer to the non-spatial data. To select a suitable 
model that best fits the dataset and problem at hand, one should consider the gen-
eral dimensions of the dataset which dictates the type of CNN to be used as listed 
in Table 8. For models that involve interaction with the environment, agent-based 

Name Size [patients*cell 

entries*markers]

Description

Base 

Dataset

107 x 12347 x 144 Full patient cell data, where patients with lacking cell entries are 

appended with “ghost cells” to form a regular shaped dataset

Random 

Row

107 x 991 x 144 Patients cell entries randomly selected via algorithm based on the 

patient with the least cell entries

Table 7. 
Overview of Cell Data Size of Both Approaches.
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models may be used. Furthermore, one should consider if the problem is a predic-
tion or classification problem and if additional correlational features are necessary. 
As for a complex problem, the use of a deeper model may be more appropriate. 
Nevertheless, using a deeper model could lead to additional problems that require 
new architecture to overcome. Lastly, the objective of the problem and if it is a 
scalar prediction or classification problem must also be deduced (Table 9).

In this study, 2D CNN is used as the dataset is 3D and image-like. The problem 
type is a prediction model thus a plain 2D CNN with no agent-based is used. Given 
that the problem is complex, a Wide Residual Neural Network (WRN) identity 
mapping may help with modelling its complexity. Lastly, as this is a scalar predic-
tion problem, the model should end with 1 sigmoid function and mean absolute 
error (MAE) objective function (Table 9).

The model selection process must be carefully chosen as it dictates the basis of 
the model and its result. To illustrate, an early stage proof-of-concept of applica-
tion of DL on this dataset, a categorical approach was taken, where the patients 
were split into categories based on their survival rate in years. In designing it this 
way, the aim was to apply categorisation as the objective function [38]. However, 
this approach introduced an unintended consequence, a fixed error of the range of 
each category that could not be rid of regardless of how accurate the model is. This 
was because of framing a scalar problem as a categorical problem. Even though the 
resulting model achieved an accuracy of 90% [38], it did not show the in-built error 
of the prediction that was hidden by the range of each category.

Pooling layers progressively achieve spatial invariance by reducing the resolution 
of the feature maps, which reduces the number of parameters and computation in 
the network. This presents one with the ability to create a much deeper network 
with limited computational cost and overfitting. In a pooling layer, a simple func-
tion could be applied. The two conventional functions available are [1] maximiza-
tion function, which find the maximum value of the region as a representation, 
and [2] average pooling function that aims to find an average representation of the 
region, where p is the resultant value of the pooling operation (Figure 3).

Dimension Probable Features (In imaging terms) Best CNN Type

1D - Vector (sample x features) —

2D – Time Series/ sequence (samples x timestamp x feature) 1D CNN

3D – Image Data (samples x height x width x channels) 2D CNN

4D – Video Data (samples x frames x channels x height x width) 3D CNN

Table 8. 
Overview of Different Data Dimension and Suitable CNN Type.

Problem Type Output Node 

Configuration

Objective 

Function

Equation

Scalar Regression 1 Node - Sigmoid 

Function

Mean Squared 

Error/ Mean 

Absolute Error

1
MAE y y

n
= −∑쭽 쭽

Binary 

Classification

1 Node - Sigmoid 

Function

Cross Entropy ( )( ) ( )

( )
1

1
log 1

log 1

N

i i ii

i

BCE y p y y
N

y

=
= ∗ + −

∗ −

∑

Multi-Class 

Classification

1 Node for each 

class - SoftMax

Cross Entropy
( )( )log

N

i ii N
CE y f s

=
= −∑

Table 9. 
Overview of Objective Function of Different Problems.
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However, conventional form of a rectangular pooling layer is not applicable in 
datasets with only vertical relations. Pooling is mainly done in the context where all 
data in a 2D array are spatial, where any integers within the array size are related spa-
tially. Such techniques help to compact representations, which could greatly influence 
the model’s performance. With regards to this study, a 2D non-spatial cell dataset, each 
row has a different unit such as size (mm) or standard deviations. Pooling together 
variables of different types would result in an invalid representation. Thus, a different 
form of a pooling layer for non-spatial data could be created instead. Such rectangular 
pooling seeks to pool between data of the same type to create a representative value of 
the region, while reducing data noise, and the parameter size of the network.

Furthermore, the operation of the study aims to take a sample of group of nine 
cell markers of the BC dataset and to obtain the maximum value of each set. A 
graphical representation of the operation of max rectangular pooling layer (RPL) is 
shown in Figure 4.

Figure 3. 
Pooling Layer Computation & Representation- Pooling provides a form of abstraction of our data by down-
sampling an input representation. There are two common rules for downsampling. Max-Pooling- which picks the 
input with the largest value. Average-Pooling – which averages out the input in the region. This prevents over-
fitting by reducing noise in the data, also to reduce computational cost by reducing the number of parameters to 
learn. In the figure, a 4 x 4 matrix with 16 parameters is down-sampled to a 2 x 2 matrix of 4 parameters.
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In another experiment comparing a plain vanilla 2D CNN with RPL of 9 x 1 
dimension and a conventional square pooling layer (SPL) of 3 x 3 dimension, it 
showed both having the same max function (Table 10). Comparing the training 
record of both pooling shapes, the RPL generalised at a much faster rate, of about 
500 epochs ahead of SPL to achieve the same MAE. The former also achieved a 
lower MAE at the end of the training. In the context of a large dataset and DL 
network, using RPL in a non-spatial 2D dataset could achieve significant reduction 
in computational time.

2.2.2 Validation and evaluation

2.2.2.1 Validation

In the context of medical dataset, one common hampering factor is having a 
small dataset. This results in a validation process that is not robust enough as there 
may be an uneven distribution of data across the dataset. Traditional holdout 
validation is not rigorous enough to negate this effect and may result in an unfair 
representation of the efficacy of the model. This could be overcome with the use of 
K-Fold cross validation (K-cv), which is done by splitting the dataset by k iteratively 
holding out the sections of the data and evaluating the model with an average 
prediction error of all k evaluations (Figure 5).

Figure 4. 
Max Rectangular Pooling Layer Operation Representation – This shows a sample of how Rectangular Pooling 
Layer affects our input dataset. With a rectangular pool matrix, we ensure that non-related columns are not pooled 
together, unlike in a conventional square pooling layer. The transformation is a smaller dataset, with no loss in 
representation. This reduction in data size, results in faster learning generalisation and computation of the model.

Epochs Rectangular Max 

Pooling MAE 

(months)

Square Max 

Pooling MAE 

(months)

Difference between Square Max Pooling 

and Rectangular Max Pooling (% Base 

using Rectangular Max Pooling)

500 81.341 81.869 0.65

1000 73.678 76.340 3.61

1500 67.018 71.577 6.80

2000 60.403 65.921 9.14

2500 53.717 58.351 8.63

3000 48.375 52.431 8.38

3500 45.761 49.085 7.26

Table 10. 
Result of Rectangular Pooling Layer (RPL) vs. Square Pooling Layer (SQL).
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K-cv provides a more robust way of validating a model by validating a model 
with the entire data set. A study by Rodriguez et al. confirmed that K-cv reduces 
variance in prediction error and recommends implementing a K-cv whenever 
computationally possible [39]. In this study, the BC dataset was split into four 
groups of 23 patients and the standard deviation σ of each group is evaluated. It was 
discovered that the σ across all four groups was 8.43 months, which is a substantial 
amount in its ability to misrepresent the efficacy of the dataset.

2.2.2.2 Evaluation

The evaluation step acts as a feedback loop to the development of the CNN 
model. An iterative approach must be taken to analyse these results from a DL and 
a medical point of view to understand how further improvements could be made 
to the CNN model. Firstly, a model was built to evaluate clinical dataset followed 
by another model to evaluate the cell dataset. In an experiment with 107 patients, 
an adaptation of Dense ResNet [40] to the clinical data was used. A 2D CNN Wide 
Residual Network (WRN) [41] was also adapted for the cell data (Figure 6). A 
benchmark was developed on the dataset as a starting point for comparison, as 
this was a greenfield application. A simple vanilla dense network was used as a 
starting point to benchmark the results for the clinical dataset containing patients’ 
information such as age, ethnicity, and tumour size. For the immunopathologi-
cal dataset, we use a benchmark CNN model from the imaging domain as our 
starting point. MobileNet50 V2 [42] was chosen for the starting benchmark for 

Figure 5. 
K - Fold Cross Validation – By splitting our dataset into k folds, we can evaluate our model across the entire 
dataset independently. This is especially critical for small datasets (as is the case in medical context).

Figure 6. 
Proposed Network Layout – Two independent model first learn representation from their respective dataset, 
which will have their weights combined together to create a unified model to create a single prediction from 
both datasets.
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immunopathological dataset due to its accuracy, and training speed secondary to 
its small size (Table 11).

A sample k-fold training record as shown in Figure 7, shows the overfitting ten-
dencies as the training error is minimised, but the validation error is not minimised. 
This could be attributed to the unsuitability of the models in the imaging domain 
without adaptation, which emphasises the importance of using the framework to 
adapt available CNN models to specific needs. In this study, a more suitable model 
was developed to clean up, augment, and enhance our dataset following the steps of 
the framework.

As shown in Table 12, the clinical dataset results were augmented from ±15.69 to 
±8.24 by the immunopathological data from mIHC/IF with two additional informa-
tion: number of stromal immune cells and cancer cells of each patients quantitated 
from the cell dataset. The results were subsequently normalised and iteratively 
developed to form a new Dense Neural Network based on the ResNet architecture 
that was better suited to the dataset. With regards to the cell dataset, the results 

Clinical Vanilla MAE (months) Cell MobileNet50 V2 MAE (months) Unified Model MAE (months)

± 15.69 ± 81.66 ± 97.34

Table 11. 
Benchmark Results for Both Dataset.

Figure 7. 
Training History of MobileNet V2 – Benchmarking using a conventional general CNN model. Without 
adapting the model from imaging domain to our specific use case, we see a tendency to overfit by the divergence 
decreasing training error (Blue line) and the constant validation error (red line). This shows that there is no 
generalisation in the model, which serves as a good starting point, and a reminder of the need to adapt CNN to 
our specific use case.

Clinical ResNet MAE (months) Cell WRN MAE (months) Unified Model MAE (months)

± 8.24 ± 40.23 ± 55.23

Table 12. 
Result for Both Dataset and Unified Model Using Adapted Models which factored in immunopathological data 
from mIHC/IF.
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were normalised to develop a more suitable CNN using WRN with RPL. Significant 
improvements in both the cell and clinical dataset were seen, which is appended 
with immunopathological data. The results were further improved by including a 
threshold based on the patients’ survival rate.

A filter of patients with lower survival rate was experimented where the dataset 
was split with an arbitrary cut-off of ≥12 months, ≥16 months, and ≥ 20 months. 
Evaluating using the same unified model, Table 13 showed the following MAE on 
5-fold K-cv for each cut-off, where comparison of the combined clinical dataset and 
cell dataset were made after applying cut-off filter. The clinical dataset augmented 
with the stroma and tumour count from the cell dataset is also reflected in Table 13 
for reference. The increased in cut-off threshold meant that the model had a smaller 
dataset. Therefore, an increased in MAE of the model was expected, which was in 
line with the results shown in Table 13.

3. Limitations

Some limitations of this study should be noted. Firstly, this study uses a small 
dataset, which meant that the results could be less robust and of a lower confi-
dence level. Although, this was minimised with the use of k-fold cross validation, 
more advanced techniques such as semi-supervised learning could be explored to 
augment the dataset. Secondly, there is currently no medical evidence to support 
using a cut-off to segregate patients as a valid approach. The approach used in 
this study is solely from a DL standpoint and therefore requires more medical 
based research to prove its validity. Moreover, given the novelty of the proposed 
framework, there is currently limited literature to support its application in other 
medical domains.

4. Conclusions

The adaptation of DL technology with the use of mIHC in the analysis of 
complex data is in the upcoming alternative approach of analysis in the field of 
immunopatholgy. However, given its novelty, further studies are needed to opti-
mised the framework to enable application in varies medical field. Nevertheless, 
the framework proposed in this chapter serves to provide a starting foundation for 
application in clinical studies.
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Survival Rate Cut-Off 

(Months)

No. of 

Patients

Combined MAE 

(Months)

Clinical + immunopathological 

data

Full Dataset (Benchmark) 107 ± 55.23 ± 8.24

≥12 96 ± 52.17 ± 8.78

≥16 92 ± 35.11 ± 10.67

≥20 88 ± 25.86 ± 11.42

Table 13. 
MAE of dataset of Cut-Off Survival Rate.
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