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Chapter

The Role of the Aryl Hydrocarbon 
Receptor (AhR) in the Immune 
Response against Microbial 
Infections
Lixing Huang, Rongchao He, Youyu Zhang and Qingpi Yan

Abstract

Aryl hydrocarbon receptor (AhR), an important nuclear receptor, regulates the 
cellular response to environmental stressors. It is well known for its critical func-
tions in toxicology, but is currently considered an essential regulator of diseases, 
with specific modulatory effects on immune, antimicrobial and inflammatory 
responses. The present chapter discusses AhR’s function and mechanism in the 
immune response against microbial infections.

Keywords: aryl hydrocarbon receptor (AhR), functional mechanism, antimicrobial, 
immunity, gut immunity

1. Introduction

The ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is 
structurally similar to other members of Pern-Arnt-Sim (PAS) superfamily [1, 2], 
which consists of a conserved signaling network that regulates signal exchange 
between host and environment [3, 4]. It was originally found to play a role in 
regulating the reactions of exogenous chemicals such as 2,3,7,8-Tetrachlorodibenzo-
p-dioxin (TCDD). However, AhR has been recently recognized as an essential 
regulator of host-pathogen interactions [5–9], especially affecting immunity, 
inflammatory response and antibacterial activity [5, 9–15]. The current chapter 
focuses on AhR’s function in regulating immunity, inflammatory response and 
antibacterial activity.

2. Mechanism of AhR action

As a highly conserved nuclear receptor [10], AhR can regulate gene expression 
after binding to a ligand. AhR binds to its co-chaperones and maintains cytoplasmic 
localization [16, 17]. Ligand binding by AhR results in its release by co-chaperones and 
translocation into the nucleus, where it forms a heterodimer with the aryl hydrocarbon 
receptor nuclear translocator (ARNT) [18, 19]. Via binding to the genomic DNA—
usually interacting with AhR response elements (AhREs, 5’-GCGTG-3′) [20, 21], 
also referred to as dioxin (DREs) or xenobiotic (XREs) response elements [9, 10], 
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the AhR-ARNT heterodimer regulates multiple target genes such as Cytochrome 
P450 Family 1 Subfamily A Member 1 (CYP1A1), CYP1A2, CYP1B1, TCDD Inducible 
Poly (ADP-Ribose) Polymerase (TIP ARP), and aryl hydrocarbon receptor repres-
sor (AhRR), which can inhibit AhR via a negative feedback circuit [22]. Target gene 
regulation is considered to be ligand  dependent [21].

As a highly heterogeneous nuclear receptor, AhR binds to many ligands, 
including exogenous synthetic aromatic hydrocarbons [10, 23], exogenous natu-
ral chemicals [5, 6, 10, 14, 24] and endogenous ligands [25–29]. Tryptophan, an 
essential amino acid in humans, constitutes the precursor of many important 
components in the human body. Interestingly, the tryptophan (TRP) pathway has a 
critical function in immune and inflammatory responses through providing many 
ligands for AhR. In addition, AhR controls the expression and activation of trypto-
phan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenase (IDO), kynureninase 
(KYNU) and kynurenine 3-monooxygenase (KMO). The aforementioned enzymes 
catalyze the synthesis of kynurenine (KYN), which is a product of TRP metabolism, 
thus enabling feedback inhibition because KYN and AhR are agonists [30, 31].

3. AhR expression modulation

The interactions of AhR and its ligands, including polycyclic aromatic hydrocar-
bons (PAHs), can be used as a cytoplasmic signal sensor. The conformation of AhR 
changes, and it is transferred from the cytoplasm to the nucleus. The high-affinity 
ligand TCDD can exert toxic effects by binding with and activating AhR [32, 33]. 
Structural analysis of AhR revealed three domains: 1) The amino-terminal DNA 
binding domain (DBD) comprises the basic helix–loop–helix (bHLH) region and 
the nuclear localization signal (NLS); 2) The central PAS region encompasses two 
degenerate repeats; 3) The carboxy-terminal region features the transactivation 
domain (TAD) [34]. In addition, phylogenetic data showed that AhR constitutes 
an ancient protein whose functional orthologues are found in reptiles, amphib-
ians, birds and mammals. However, there are many structural differences between 
human and murine AhR genes. Sequence analysis revealed approximately 85% 
structural similarity in the amino-terminal sequence, while the C-terminal region 
shows a low homology. The TAD or N-terminal domain is the least conservative 
[34]. The C-terminal domain is a highly unstructured sequence containing a tran-
scriptionally active region and contributes to receptor transformation [35, 36].

AhR, heat shock protein 90 and X-associated protein 2 form multiple protein 
complexes in the cytoplasm. In the presence of ligands or agonists, AhR complexes 
undergo nuclear translocation and form heterodimers with ARNT. With a core 
sequence of 5′-GCGTG-3′, the AhR/ARNT complex interacts with DREs in the 
proximal site of promoters of target genes. Both AhR and ARNT recruit additional 
transcription co-activators for gene regulation, e.g., CYP and AhRR. Once trans-
ferred into the nucleus, AhR undergoes proteasome-induced degradation [37]. AhR 
function is modulated and weakened by AhRR, another member of the PAS family. 
After AhR activation, the level of AhRR increases rapidly [38]. Meanwhile, AhRR 
has a transcriptional repressor domain and can dimerize with ARNT even without 
an agonist, to fulfill its function [39].

4. AhR response to bacterial pathogens

It is known that AhR has a critical function in controlling responses to a 
variety of microbial pathogens. For example, it is required to effectively clear the 
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Gram-positive pathogenic bacteria Listeria monocytogenes (LM). In mice, AhR 
inhibits LM by inducing ROS production via upregulation of the anti-inflammatory 
cytokine IL-10 and macrophage apoptosis inhibitor, resulting in suppressed macro-
phage apoptosis, reduced amounts of pro-inflammatory cytokines (e.g., Interleukin 
6 (IL-6) and Tumor Necrosis Factor alpha (TNF-α)), and decreased the nuclear fac-
tor kappaB (NF-κB) activation. In addition, AhR ligands can enhance the response 
of AhR WT mice to LM, but not of AhR−/−mice [27].

When inoculated with log-phase LM intravenously, AhR deficient C57BL/6 J 
mice (AhR−/−) showed higher susceptibility compared with AhR heterozygous 
(AhR+/−) littermates. In comparison with AhR+/− animals, AhR−/− counterparts 
showed more colony forming units (CFUs) of LM in the spleen and liver, and more 
pronounced alterations in liver histopathology. Serum monocyte chemotactic 
protein 1 (MCP-1), IL-6, TNF-α and Interferon γ (IFN-γ) amounts were similar 
in AhR−/−and AhR+/−mice infected with LM. Elevated IL-12 and IL-10 amounts 
were detected in AhR−/−mice infected with LM. In terms of capacity of uptake and 
inhibition of intracellular growth of LM, AhR+/−and AhR−/−macrophages were com-
parable in vitro. In addition, T cell-dependent response was similar in AhR−/−and 
AhR+/−mice, as determined by intracellularly labelling cluster of differentiation 4 
and 8 (CD4+ and CD8+) splenocytes for IFN-γ and TNF-α. AhR−/−and AhR+/−mice 
with prior infection showed increased resistance to re-infection by LM. The above 
evidence suggests that AhR is necessary to build an effective resistance, but not 
required for adaptive immune reactions following LM infection [40].

Streptococcus pneumonia, a common respiratory pathogen, represents a major 
cause of morbidity and death in humans, especially the elderly and children. The 
immune response after S. pneumoniae infection begins quickly in the lung, and the 
innate immune response can contain bacterial colonization in the ideal situation. 
Death, and bacterial load, cytokine/chemokine amounts, and immune cell infiltra-
tion in the lung have been assessed at different times in TCDD treated mice after 
S. pneumoniae infection. The survival rate of mice administered TCDD was signifi-
cantly increased, while bacterial load in the lung was reduced. However, intrigu-
ingly, no evidence suggested that the protective effect was caused by increased 
inflammatory response. In fact, neutrophil amounts and inflammatory chemokine/
cytokine levels in TCDD treated mice were lower than those of control animals. 
These findings suggest that AhR induction does not protect the animals by immune 
modulation, but likely by directly affecting lung cells upon infection [41].

Pseudomonas plecoglossicida represents the bacterial pathogen of fish visceral 
white spot disease with temperature dependent virulence [42]. AhR is also required 
for resistance to P. plecoglossicida. It was shown that ahr1a, ahr1b, ahr2 and cyp1a 
amounts in various organs of Danio rerio and Epinephelus coioides infected with 
P. plecoglossicida have similar trends. It should be noted that the intestine, liver, 
heart and spleen are the most affected organs, while ahr2 specifically shows a sharp 
increase in the spleen. After P. plecoglossicida infection, ahr1a amounts in macro-
phages are markedly reduced, while ahr1b, ahr2 and cyp1a are overtly upregulated. 
The cell viability and immune escape rates of P. plecoglossicida were significantly 
increased in macrophages with ahr1b and ahr2 knockdown. In conclusion, ahr1a, 
ahr1b, ahr2 and cyp1a are involved in immune reactions to P. plecoglossicida in vari-
ous fish organs, while ahr1b and ahr2 might play a key role in splenic and macro-
phage immune reactions [43].

Huang et al. described the first pathogenic Aeromonas salmonicida (SRW-OG1) 
obtained from the warm water fish E. coioides, and studied AhR’s role in the immune 
response to SRW-OG1 infection [44]. They found that AhR is induced by unknown 
ligands in the intestine, spleen and macrophages. At the same time, ahr1a and 
ahr1b amounts were markedly elevated in the intestine, spleen and macrophages, 
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while ahr2 only showed an increase in the intestine, suggesting ahr2 may contribute 
less to immune reactions compared with ahr1a and ahr1b. In SRW-OG1 infected 
E. coioides, major genes contributing to bacterial recognition, macrophage inflam-
matory response and gut immunity were overtly upregulated. However, decreased 
ROS amounts and the downregulation of other associated genes were equally 
detected, which indicated that SRW-OG1 could prevent ROS production by mac-
rophages through its virulence mechanism. In addition, repression of AhR with 
an inhibitor or by gene silencing rescued the increases of IL-1 β and IL-8 associ-
ated with SRW-OG1 infection, clearly demonstrating that induction of E. coioides 
macrophages by IL-1 β and IL-8 is controlled by AhR. Nevertheless, AhR exerted no 
effects on bactericidal permeability-increasing protein/lipopolysaccharide-binding 
protein (BPI/LBP), reactive oxygen species (ROS) biosynthesis and associated 
genes. Compared with wild-type macrophages, survival and immune escape rates 
after SRW-OG1 infection were significantly increased in ahr1a/ahr1b-knockdown 
and 3′, 4’-DMF treated macrophages. Taken together, ahr1a and ahr1b are necessary 
for the immune response to SRW-OG1 [44].

Lipopolysaccharide (LPS) stimulation is often utilized to model Gram-negative 
bacteria-induced sepsis for assessing AhR’s functions in infection resistance and 
septic shock regulation. AhR and TDO2 are required for survival after the initial 
exposure to LPS [14, 20], while subsequent exposures are dependent on AhR and 
IDO1/2. LPS up-regulates TDO2 and IDO1/2, the rate-limiting enzymes of TRP 
transformation into KYN, and further induces AhR, thus downregulating pro-
inflammatory cytokines and regulating long-term systemic inflammation [20]. 
In addition, compared with AhR wild type mice or immune cells, LPS challenged 
AhR−/−mice or immune cells produce higher concentrations of pro-inflammatory 
cytokines, including IL-1 β, IL-6, IL-18, IL-12, TNF-α and IFN-γ, as well as NLR 
Family Pyrin Domain Containing 3 (NLRP3) that regulates multiple pro-inflamma-
tory cytokines. The AhR agonists 3-methylcholine (3-Mc), 6-Formylindolo[3,2-b]
carbazole (FICZ), KYN and TCDD could protect AhR WT mice, but conferred no 
protection to AhR−/− animals, from extremely high amounts of pro-inflammatory 
cytokines and septic shock [45]. Thus, the immune response to bacterial patho-
gens requires AhR, and the underlying mechanisms are vital in identifying novel 
 therapeutic agents to combat bacterial pathogens.

5. AhR response to viral pathogens

AhR is also associated with response to viral pathogens. For example, herpes 
simplex virus (HSV)-associated eye infection can lead to chronic immune-inflam-
matory response, causing blindness. However, in a mouse model, a single dose of 
TCDD could alleviate herpetic keratitis lesions, reduce viral load and decrease 
pro-inflammatory cytokine levels. However, similar effects were not obtained 
with FICZ, thus indicating a difference between both AhR ligands [46]. Therefore, 
response to viral pathogens requires AhR, and nontoxic AhR agonists could be used 
in the treatment of HSV-induced eye infections.

In influenza virus infection, activation of AhR doubles the number of neutro-
phils in the airway and interstitium of the lung, which reduces the survival rate 
from an otherwise sub-lethal infection [47, 48]. Interestingly, no increase in neutro-
phil inflammation or decreased survival was observed in AhR deficient mice treated 
with TCDD and influenza virus [37]. Innate immune reactions, including excessive 
pulmonary neutrophilia, can lead to severer pathological conditions and poor clini-
cal outcomes after influenza virus infection [49–51]. Meanwhile, epidemiological 
reports have shown that exposure to environmental AhR ligands is associated with 
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elevated respiratory tract infection, pulmonary congestion and exacerbation of 
inflammatory lung disease [52–54]. Therefore, there is parallel evidence in rodent 
animal models and humans that AhR regulates neutrophil inflow during infection. 
Overall, these data suggest that AhR regulates a new pathway to regulate neutrophil 
migration during influenza virus infection. A possible new target gene of AhR is 
inducible nitric oxide synthase (iNOS). Meanwhile, activation of AhR can increase 
the expression of iNOS in the mouse lung upon infection with influenza virus [55].

6. AhR response to parasitic pathogens

The immune response to parasites also requires AhR. For example, immune 
response to Toxoplasma gondii, a pathogenic parasite causing toxoplasmosis, 
requires increased AhR-dependent production of IL-10. Indeed, AhR−/− mice have 
reduced response to T. gondii and a less pronounced IL-10 increase [56].

After intraperitoneal infection with T. gondii, the death rate of AhR−/− mice was 
significantly higher than that of WT mice. Moreover, AhR−/− mice showed greater 
liver injury, and higher levels of NO, IgE and TNF-α, but lower IL-10 secretion 
in the serum. Interestingly, fewer cysts were found in the brain. The increased 
mortality was related to reduced IL-10, 5-LOX and GATA-3 expression levels, but 
increased IFN-γ expression in the spleen. In addition, AhR−/− mice had increased 
IL-12 and IFN-γ amounts, but decreased TLR2 levels compared with wild-type mice 
in peritoneal exudate cells. These findings suggest that AhR is vital for limiting 
inflammation during toxoplasmosis [57].

Therefore, AhR is necessary for parasitic pathogen response. This provides 
information on a response pathway and can be used to design new treatments.

7. AhR and the intestinal microbiota

AhR is found at high levels in the epithelial barrier [58], and the intestinal bar-
rier of AhR−/−mice is inadequate, suggesting AhR might be important in maintain-
ing or generating a healthy intestinal barrier [19]. In addition, low levels of AhR and 
AhR’s target genes are found in sterile mice [9], and AhR is needed for maintaining 
the RORγt+ innate lymphoblastoid cell (ILC) balance in the intestine [18]. In addi-
tion, the TRP metabolizing indole biosynthesized by select bacterial components of 
the intestinal microbiota is an AhR ligand [59, 60]. Diet without indole or antibiotic 
treatment can lead to the differentiation of mononuclear phagocytes, dependent on 
AhR, into dendritic cells (DCs) [48], which are more susceptible to gut pathogens 
in mice [17]. Overall, the above findings suggest AhR might be important in host 
gut-microbiota interactions.

AhR also plays a role in the reciprocal relationship among intestinal bacteria, 
bacterial metabolites and the intestinal immune system. AhR-deficient RORγt+ ILCs 
(the main producers of gut IL-22) with lower IL-22 amounts make mice easily die 
upon Citrobacter rodentium infection. It was pointed out that treatment with FICZ 
markedly enhances RORγt+ ILC accumulation in AhR+/− and AhR+/+ mice, but not in 
AhR−/− animals [61]. Lactobacillus species (nonpathogenic intestinal bacteria) are 
capable of producing AhR ligands, including indole-3-aldehydes, from tryptophan 
in the gut, thus enhancing the production of AhR dependent IL-22 [62]. Indole-3-
aldehydes induces AhR-associated transcription, but exclusively at elevated con-
centrations, indicating its low affinity. However, indole-3-acetaldehyde (a product 
of indole-3-aldehydes) produces the high-affinity ligand FICZ [63], which may 
be related to the effect reported by Zelante et al. IL-22 affects epithelial cells and 
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causes them to produce antimicrobial peptides, such as type III Reg (regenerating 
gene product) gamma (RegIIIg), and to stimulate tissue regeneration. Meanwhile, 
symbiotic bacteria may outperform bacterial pathogens and inhibit Candida 
albicans colonization [51]. Similar to keratinocyte and skin immune cell levels, AhR 
amounts are high in IECs and intestinal immune system cells [64].

In AhR-null mice, the number of intraepithelial lymphocytes (IELs) in the small 
intestine is significantly reduced [6, 64, 65], which is related to lower IL-22 amounts, 
and therefore to downregulated ileal antimicrobial peptides, including RegIIIb and 
RegIIIg. The microbial loads of the small and large intestines are also elevated. Loss 
of IELs is cell-intrinsic since AhR-deficient bone marrow cells do not reconstruct the 
gut in Rag−/− mice [51]. Over time after birth, intestinal Group 3 Innate Lymphoid 
Cells (ILC3s) [66], ILC22 and CD32NKp46+ lymphoid tissue inducer cells are lost 
in AhR-deficient mice. Similarly, ILC3’s inability to multiply in AhR-deficient mice 
constitutes an intrinsic function since AhR is required for the transcription of the 
cell-specific proliferator c-kit [67, 68]. As a result, secondary lymphoid structures, 
including cryptopatches and innate lymphoid follicles, are absent from the gut of 
AhR-deficient mice, which show susceptibility to C. rodentium. ILC3s feature the 
secretion of IL-17 and IL-22 [69]. AhR-deficient mice have elevated susceptibility to 
infection by C. rodentium, as well as dextran sulfate sodium (DSS)-associated colitis. 
DSS can damage the intestinal epithelium and induce inflammatory reactions and 
microbial dissemination. AhR-deficient mice containing wild-type IELs are resistant 
to DSS colitis, indicating IEL role in injury reduction.

AhR-deficient mice have lower amounts of skin and intestinal IELs and intes-
tinal ILCs, thereby increasing susceptibility to C. rodentium infection. These cell 
types, and the generation of normal gut lymphoid follicles, are regulated by AhR 
ligands in the diet. In addition, activation of AhR by microbial products equally 
regulates the production of DP IELs, which constitute another critical group that 
controls intestinal immunity [70]. It may also be due to the lack of IL-22 that affects 
the commensal flora [71]. In fact, ID2, a transcription factor, regulates the expres-
sion of IL-22 in ILCs via AhR- and IL-23-dependent mechanisms, thereby modulat-
ing the intestinal colonization of C. rodentium [72]. In addition, AhR also controls 
the production of IL-22 by Th22 cells, which protect against intestinal pathogens 
[73, 74]. All these data suggest AhR has a critical function in controlling the inter-
action at environmental interfaces with microorganisms by regulating IL-22 and 
other cellular factors. Interestingly, cyp1a1 overexpression leads to the exhaustion 
of physiological AhR ligands and also increases susceptibility to intestinal bacte-
rial infections [75], highlighting that AhR ligand availability and metabolism are 
important in controlling AhR-dependent immune effects.

8. AhR and T cells

AhR plays an important role in controlling adaptive immunity, and regulating T 
cell differentiation and direct or indirect functions by affecting antigen presenting 
cells. It was found that TCDD-activated AhR could inhibit the immune response 
[76], which is subsequently associated with CD4+ T cell induction [77–79]. In addi-
tion, the role of AhR in Th17 function and T cell-induced IL-22 biosynthesis have 
also been determined [74, 80–83].

8.1 AhR and regulatory T cells (Tregs)

AhR shows high expression in Th17 cells, undetectable amounts in Th1 and Th2 
cells, and low expression in Tregs. Tregs constitute a T cell subgroup, which helps 
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maintain tolerance to autoantigens, preventing autoimmune pathologies. FoxP3+ 
Tregs [84, 85] and IL-10-producing type 1 regulatory T cells (Tr1 cells) [86] are the 
most typical Treg entities. Foxp3+ Tregs and Tr1 cells are associated with AhR.

TCDD, ITE, KYN and laquinimod derivatives activate AhR, thus increasing 
FoxP3+ Treg amounts via various mechanisms, e.g., by directly activating epigenetic 
modifications that regulate Foxp3 transcriptionally and via DC regulation [80, 87–92]. 
In the presence of TGF - β 1, activating AhR with TCDD can also upregulate SMAD1 
in human Tregs, resulting in stable expression of FoxP3 [93]. It was shown in mice 
with AhR-deficient T cells that AhR could also inhibit the activation of STAT1, which 
in turn inhibits FoxP3+ Treg differentiation [94]. In addition, AhR regulates the 
epigenetic modifier Aiolos, which downregulates genes associated with T cell’s effec-
tor function, such as IL-2 [87]. However, the effect of AhR on FoxP3+ Tregs may be 
affected by the applied experimental model, which may reflect the different effects of 
tissue-specific action and/or AhR agonist provided by the symbiotic flora [95].

Tr1 cells participate in controlling tissue inflammation via IL-10 secretion. IL-27 
promotes the differentiation of Tr1 cells [96–98], while IL-21 plays an autocrine role 
in their stabilization [98, 99]. IL-27 upregulates AhR in Tr1 cells via STAT3. Then, 
AhR amounts are maintained by transactivation of the AhR promoter by AhR itself 
[100–102]. The important role of AhR in Tr1 cells in vivo is reflected by insufficient Tr1 
cell differentiation induced by long-term anti-CD3 treatment of AhR-mutant mice.

AhR triggered CD39 equally affects Tr1 cell differentiation. After induction, T 
cells secrete eATP [103], which then interferes with the differentiation of Tr1 cells 
through hypoxia inducible factor-1α (HIF1-α). HIF1-α binding is superior to the 
interaction between AhR and ARNT, and promotes the degradation of AhR through 
the immune proteasome, thus inhibiting the differentiation of AhR dependent Tr1 
cells [101]. The expression of CD39 driven by AhR can deplete eATP and promote 
the differentiation of Tr1 cells. Therefore, AhR regulates central genes in the Tr1 
cell transcription program, while limiting the inhibitory effect of eATP-dependent 
HIF1-α induction on Tr1 cell differentiation. Overall, the above findings confirm 
AhR as a potential therapeutic target for immunomodulation.

8.2 AhR and T helper 17 (Th17) cells

Th17 cells, forming a unique CD4+ T cell subgroup, can biosynthesize Th17 
cytokines and play key roles in the pathogenetic mechanisms of multiple inflamma-
tory ailments. Their differentiation is triggered by IL-6 and transforming growth 
factor-beta (TGF-β). AhR can modulate Th17 cells by binding to the DRE site in the 
IL-17 promoter. In addition, AhR and STAT3 can synergistically upregulate Aiolos 
(IKZF3), an Ikaros family member, which can decrease the expression of IL-2, thus 
increasing Th17 cell amounts [64].

Th17 cells, producing IL-17A and expressing ROR-γt, are involved in immune 
responses to extracellular bacterial and fungal pathogens, and participate in the 
pathological mechanisms of multiple autoimmune diseases [104, 105]. Their dif-
ferentiation involves joint effects of TGF-β and IL-6 or IL-21 [106–108]. AhR shows 
high expression in Th17 cells and is activated by FICZ, which can enhance Th17 cell 
differentiation and promote IL-22 expression. On the contrary, AhR deficiency can 
cause Th17 cells to produce IL-22, which may reflect AhR’s function in promoting 
RORγt recruitment to the IL-22 promoter.

8.3 AhR and other T cells

Th22 cells are a CD4+ T cell subpopulation. They produce IL-22 without IL-17’s 
intervention and their differentiation is induced by IL-6, IL-21 or IL-23. AhR 
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controls the production of IL-22 in Th22 cells, and other cellular factors are essen-
tial for their mucosal immune functions [73, 109–111].

The AhR pathway also significantly affects CD8+ T cells. Activation of AhR by 
TCDD indirectly inhibits the primary response of CD8+ T cells to influenza virus 
through the regulatory mechanism of DC function [112]. In addition, CD8+ T cells 
of mouse models administered the AhR agonist TCDD in the developmental stage 
show a weak response to influenza virus infection later in life [113]. The above 
data indicate epigenetic alterations that can lead to prolonged functional defects in 
CD8+ T cells detectable after viral attack. Compared with other CD8+ T cell subsets, 
AhR expression is much higher in tissue resident CD8+ memory cells (TRMs). 
Taken together, these findings indicate that, similar to previously reported CD4+ 
T cell data, the AhR pathway plays a major role in regulating specific CD8+ T cell 
 subgroups, such as TRMs and DP IELs.

AhR equally regulates γδ T cells, which are tissue resident lymphocytes. It regu-
lates first-line immune response at epithelial sites and controls tissue homeostasis 
[114]. Despite AhR expression in the totality of γδ T-cell subgroups, AhR-deficiency 
significantly reduces the amounts of skin intraepithelial lymphocytes, mostly 
composed of Vγ3 and Vγ5 γδ T cells in the intestine and CD8αα αβ T cells [115]. AhR 
also regulates IL-22 expression by γδ T cells that produce IL-17 [116, 117]. The above 
data indicate that AhR has a significant effect on T cells residing in tissues, which 
supports further investigation of AhR’s function in non-CD4+ T cells.

In conclusion, AhR controls T cell responses at many levels and regulates 
transcription factors, enzymes, epigenetic modifiers and effector molecules that 
modulate T cell stability and metabolism. Lineage-specific responses to AhR induc-
tion may lead to ligand-specific effects, which are combined with cytokine-driven 
activities on the genome, thereby regulating AhR-interacting chaperones and 
controlling the accessibility of AhR’s direct and indirect transcription targets [118]. 
Comprehensive studies of these interactions should provide insights into the design 
of immune-modulators against AhR.

9. AhR and B cells

The B lymphocyte is an important part of humoral immunity, which has high 
specificity against a variety of pathogens. After stimulation via an antigen recep-
tor, activation of immature B cells leads to clonal expansion, antibody isotype 
conversion and differentiation into antibody-secreting plasma cells, thus producing 
strong immune reactions [119]. In the process of infection, mature B cells in the 
lymph nodes and secondary lymphoid organs undergo somatic hypermutation 
and produce plasma cells featuring elevated antigen affinity and unique effector 
 function [120].

It seems that all B cells produce AhR, but specific subsets, e.g., marginal B 
cell and B1 B cell subsets, have higher levels than the others. Li and collaborators 
demonstrated that AhR contributes to the development of B lymphocytes, based on 
cord blood CD34 and feeder cells, which promote B cell development. Meanwhile, 
AhR induction inhibits the formation of early B cells and pro-B cells. AhR controls 
B cell differentiation by transcriptionally suppressing the early B cell genes EBF1 
and PAX5 [121].

AhR, overtly induced after activation of B cells, has a critical function in regu-
lating the fate of activated cells. Vaidyanathan and colleagues revealed AhR sup-
presses switch-like recombination by changing the amounts of activated cytidine 
deaminase. These authors showed that AhR suppresses B cell transformation into 
plasmablasts and plasma cells that secrete antibodies [122]. In addition, Villa et al. 
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provided evidence of a role for AhR in B cells, revealing that AhR expression 
is increased after administration of IL-4 as well as B cell receptor engagement. 
Nevertheless, the proliferation of AhR-deficient B cells is decreased, and cells could 
not progress to the S-phase. Furthermore, AhR-deficient B cells could not compete 
with the decreased AhR+/+ B cell capability of reconstructing the empty host, and 
could not induce antigen-dependent proliferation in mice. Gene expression profile 
analysis showed that AhR excision downregulates cyclin O, an important gene 
controlling the cell cycle [123].

10. AhR and dendritic cells (DCs)

DCs are essential in controlling T cell response and regulating immune tolerance 
[124]. AhR regulates DC differentiation and function, thereby profoundly affecting 
T cell-dependent immune reactions. AhR also affects antigen presentation by DCs. 
Bone marrow derived DCs (BMDCs) exposed to TCDD show decreased CD11c 
amounts, but increased production of MHC-II, CD86, IL6 and TNFα [125]. Similar 
findings were reported in TCDD treated splenic DCs [126]. However, different 
results were observed by using the AhR agonist ITE. The expression of MHC-II and 
co-stimulatory molecules and the production of Th1 and Th17 polarization cyto-
kines in splenic DCs were decreased by ITE stimulation of AhR.

Recent experiments in ovalbumin-induced asthma models provide additional 
evidence for the physiological regulation of AhR in DCs, with AhR-deficient mice 
exhibiting enhanced inflammatory reactions, elevated Th2 differentiation and 
higher DC MHC-II and CD86 amounts [127]. In addition, AhR signaling has been 
reported to regulate the activity of CD103+/CD11b+ DCs during influenza virus 
infection, thereby reducing induction in protective CD8+ T cells [128]. Overall, this 
evidence confirms that AhR is a potential therapeutic target for regulating T cell 
responses in DC.

Multiple mechanisms are involved in AhR-associated regulation of DC function. 
AhR upregulates IDO 1 and 2 [129, 130], which catalyze the production of KYN, 
thus promoting the differentiation of FoxP3+ Tregs [131]. Indeed, AhR-deficient 
DCs could not induce Treg differentiation and Th17 cell proliferation in culture. It 
is consistent with the immunosuppressive effect of AhR in DCs. Recently, it was 
reported that IDO expression is maintained by an autocrine loop involving AhR 
and KYN in tumor infiltrating tolerogenic DCs [132]. Additionally, AhR induction 
in DCs induces a retinoic acid-dependent enzymatic mechanism, thus promoting 
FoxP3+ Treg differentiation and inhibiting effector T cells [133–137].

11. Conclusions

Studies evaluating AhR’s functions in immune cell development, immune 
response modulation and immune tolerance have aroused great interest. Originally, 
AhR was considered a protein sensing environmental substances and regulating 
drug metabolism. Recently, the role of AhR in regulating normal physiological 
processes has attracted increasing attention. The organism must perceive and 
mount substantial responses to environmental changes. Indeed, AhR senses bio-
chemical, chemical and physical environments. Combined with a small amount of 
high-affinity physiological ligands, including FICZ and ICZ, AhR plays a role in cell 
proliferation, differentiation and function.

Current evidence indicates that AhR has a critical function in host response 
to bacterial pathogens. It also overtly influences resistance to infections by 
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extracellular and intracellular bacteria. AhR is considered the best resistance factor 
for LM. It may have a new function in the innate immunity of LM infection, and 
AhR-deficient mice have increased sensitivity to LM. Activation of AhR can protect 
mice from the deadly attack of S. pneumoniae, inhibit bacterial growth and fight 
infection. AhR can also react with viral pathogens and parasitic infections. After 
infection by viruses and parasites, lack of AhR aggravates the host’s inflammatory 
response. AhR regulates host’s immune cells, confirming that AhR is a regulatory 
molecule with essential functions in the activation and induction of immune cells, 
e.g., T cells and inflammatory factors. Barrier organs are critical in immunity; 
specifically, large amounts of ahr are expressed in the intestine, which has a high 
potential for preventive and treatment interventions. AhR has a critical function in 
controlling the degree of inflammation in response to symbiotic microbiota and tis-
sue destruction. Progress is being made in determining the molecular mechanisms 
by which AhR affects different cell types. To understand the complex process of 
AhR in immunity and antibacterial, to mitigate risks, and to develop novel treat-
ment and prevention tools, more research is needed.
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