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Chapter

Using the Boundary Element
Method to Simulate Visco-Elastic
Deformations of Rough Fractures
Hao Kang

Abstract

In many engineering applications, such as tribology and rock mechanics, it is
very important to understand the deformation of rough fractures to evaluate the
safety and profitability of the project. Since a lot of materials can be characterized as
visco-elastic materials, it is very significant to simulate the visco-elastic deforma-
tion of rough fractures. This chapter focuses on using the boundary element method
to simulate visco-elastic deformations of rough fractures. First, the principles and
procedures of the above-mentioned method will be introduced. Then, one example
will be given in detail. This example investigates the effect of surface geometry on
visco-elastic deformations of rough rock fractures under normal compressive
stresses. The rock fracture surfaces are assumed to be self-affine, and synthetic
rough surfaces are generated by systematically changing three surface roughness
parameters: the Hurst exponent, root mean square roughness, and mismatch length.
The results indicate that by decreasing the Hurst exponent or increasing the root
mean square roughness or increasing the mismatch length, the fracture mean aper-
ture increases, and the contact ratio (the number of contacting cells/total number of
cells) increases slower with time. Finally, the limitations and possible future
research directions will be briefly discussed.

Keywords: visco-elastic deformation, fast Fourier transform, Boussinesq’s solution,
linear viscoelasticity, rough fracture, self-affine

1. Introduction

A lot of natural and engineering materials can be categorized as visco-elastic
materials, such as rock, elastomers, and rubbers. In engineering applications, it is
very important to understand and simulate the visco-elastic deformation of rough
fractures. For example, in hydrocarbon extraction, we need to accurately simulate
the visco-elastic deformation of rock fractures to predict production rates. In bio-
medical devices, we need to simulate the visco-elastic deformation of artificial joints
to evaluate safety and effectiveness. Due to the geometrical complexity of rough
fractures and the time-dependent properties of engineering materials, it is
extremely difficult to obtain closed-form mathematical solutions. Thus, numerical
models are required to simulate the time-dependent behavior of rough fractures.

The boundary element method (BEM) has been extensively used in solving
rough surface contacting problems for distinct advantages compared with the
traditional finite element method (FEM). First, it only requires discretization and
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calculation on the boundaries of the calculation domain, which is two-dimensional.
On the contrary, FEM requires discretization and calculation for the whole calcula-
tion domain. As a result, to achieve the same stress calculation resolution, BEM
requires much fewer numbers of elements and therefore, much less calculation
time. In addition, since all the approximations are limited to the boundary, BEM has
better stress calculation accuracy compared with FEM.

In recent years, researchers have been combining the BEM and fast numerical
algorithms to achieve more efficient numerical simulations for contact problems.
Stanley and Kato [1] published the first paper using the fast Fourier Transform
(FFT) method to calculate the elastic deformation of rough surfaces under normal
stresses. The FFT method makes the BEM simulation more efficient because FFT
turns complicated convolution into simple matrix multiplication. Later, Polonsky
and Keer [2] proposed the conjugate gradient (CG) method and combined it with
the FFT method to further improve the efficiency. Liu et al. [3] improved the
drawbacks of the FFT method proposed by Stanley and Kato [1]. Then, the CG and
FFT methods have been applied to simulate plastic and visco-elastic deformations
of rough fractures. Jacq et al. [4] and Sahlin et al. [5] considered perfect plasticity to
simulate deformations of rough metal surfaces; and Wang et al. [6] considered
strain-hardening plasticity.

For visco-elasticity, Chen et al. [7] first used the CG and FFT method to simulate
visco-elastic deformations of rough fracture surfaces. They simulated three load-
driven scenarios: rigid sphere indenting into PMMA surface, contact area evolution
under constant load, and contact area evolution under harmonic cyclic load. Spinu
and Cerlinca [8] applied different cut-off values for contact pressure to account for
the plastic deformation of contacting asperities.

However, it appears that there is not much work that systematically simulates
the visco-elastic deformation of rock fracture surfaces. Kang et al. [9] reported that
for Musandam limestone fractures, the effect of mechanical compression on rock
fracture time-dependent deformation is non-negligible, and should be systemati-
cally investigated. In addition, previous articles suggest that the fracture surface
geometry has a significant effect on fracture time-dependent deformation. There-
fore, we should systematically study the effect of surface geometry on rock fracture
visco-elastic deformations.

Brown [10] proposed a simple probabilistic model to describe rock fracture sur-
face geometry. In his model, the rock fracture surface geometry can be completely
described by three key parameters: the Hurst exponent, the root mean square (RMS)
roughness, and the mismatch length scale. In this research, his model will be used to
generate synthetic fracture surface pairs, and the three key parameters will be
changed systematically. The numerical method proposed by Chen et al. [7] will be
used to simulate the visco-elastic deformation of synthetic fracture surfaces.

This chapter is organized as follows. Section 2 introduces and explains the princi-
ples and procedures of the numerical method. Section 3 provides a detailed example.
The method for generating synthetic rough surfaces is introduced, and the effect of
surface geometry parameters on the creep deformation is shown and discussed.
Section 4 mentions the limitations of this method. Section 5 summarizes the findings.

2. BEM solution for visco-elastic deformations of rough fractures

2.1 Method for calculating fracture elastic deformation

Before explaining the method for visco-elastic deformation calculation, it is
essential to introduce the method for elastic deformation calculation. The author
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has developed an in-house numerical code, which is similar to the algorithm pro-
posed by Polonsky and Keer [2]. In this section, only the key mathematical concepts
will be shown; the details can be found in their work [2]. It is worth noting that only
the compressive stress (stress normal to the fracture surface) is considered; the
shear stress (stress parallel to the fracture surface) is not considered.

First, the aperture (surface gap between two rough surfaces) distribution h (x,y)
needs to be defined:

h x, y
� �

¼ h0 x, yð Þ � ue x, yð Þ � δ (1)

where h0(x,y) is the initial aperture distribution, ue(x,y) is the elastic deforma-
tion of fracture surfaces, and δ is the rigid body displacement between two surfaces
under applied normal stress. Here, compressive stress and fracture closure are
defined as positive.

The boundary conditions are expressed as:

p x, y
� �

¼ 0 and h x, yð Þ>0 (2)

p x, y
� �

>0 and h x, yð Þ ¼ 0 (3)

where p(x,y) is the contacting stress (normal to the surface) acting on location
(x,y). Eqs. (2) and (3) indicate that the contacting stress is larger than zero at
contacting regions, and is zero at non-contacting regions.

Boussinesq and Cerrutti [11] stated that the vertical displacement ue (x,y) can be
calculated as:

ue x, yð Þ ¼
ð

þ∞

�∞

ð

þ∞

�∞

K x, y, x0, y0ð Þp x0, y0ð Þdx0dy0 (4)

where p(x0, y0) is the normal pressure acting on location (x0, y0), K is the
influence matrix, which represents the normal displacement at location (x, y)
caused by unit normal pressure acting on location (x0, y0), and ue (x,y) is the elastic
displacement at location (x, y). The influence matrix K can be expressed as:

K x, y, x0, y0ð Þ ¼ 1� ν

2πG

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2 þ y� y0ð Þ2
q (5)

where G is the shear modulus, and v is the Poisson’s ratio.
As mentioned in the introduction section, it is difficult to obtain the analytical

solution for rough surface deformation under normal stress. However, the numeri-
cal solution can be obtained. To obtain the numerical solution, the fracture surface
area needs to be discretized into rectangular grids:

xi ¼ iΔx, i ¼ 1, 2, … ,N (6)

y j ¼ jΔy, j ¼ 1, 2, … ,M (7)

where xi, yj are x and y coordinates, respectively; N and M are total number of
grids in x- and y-direction, respectively; and Δx and Δy are the grid dimensions in
x- and y-direction, respectively. After discretization, the aperture distribution
function and boundary conditions can be expressed as:

hi,j ¼ h0ð Þi,j þ ueð Þi,j � δ (8)
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pi,j ¼ 0 if hi,j >0 (9)

pi,j >0 if hi,j ¼ 0 (10)

Love [12] first discretized Eqs. (4) and (5) as:

ueð Þi,j ¼
X

M

l¼1

X

N

k¼1

Ki,k,j,l � pk,l (11)

Ki,k,j,l ¼
1� ν

2πG
a ln

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2
p

dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ d2
p þ b ln

dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ d2
p

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ c2
p þ c ln

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2
p

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ c2
p þ d ln

bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ d2
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ d2
p

 !

(12)

where

a ¼ xi � xk þ ∆x=2, b ¼ xi � xk � ∆x=2, c ¼ y j � yl þ ∆y=2, d ¼ y j � yl � ∆y=2 (13)

As mentioned before, Stanley and Kato [1] first the FFT method to solve Eq. (11)
to make the calculation more efficient. The FFT method turns complicated convo-
lution into simple matrix multiplication. By using the FFT method, Eq. (11)
becomes:

ueð Þi,j ¼ IFFT FFT Ki,k,j,l

� �

� FFT pk,l

� �h i

(14)

where IFFT represents the inverse of Fourier transform. The FFT method
reduces the number of operations from N2 * M2 to N*M*log(N*M) [1]. Therefore,
when N and M are large, the FFT method can greatly reduce the calculation time.

The force balance over the entire fracture surface needs to be satisfied:

Ftotal ¼
X

N

k¼1

X

M

l¼1

pk,l (15)

Eqs. (8)–(10), (14), and (15) are solved iteratively using the CG method
proposed by Polonsky and Keer [2].

2.2 Method for calculating fracture visco-elastic deformation

As described before, Chen et al. [7] first combined the FFT and CG method to
simulate visco-elastic deformations of rough fractures. The author has developed an
in-house numerical code, which is similar to the algorithm described by Chen et al.
[7]. In this section, only the key mathematical aspects will be introduced; the rest
can be found in their work [7].

In this simulation, the rock materials are assumed to be linear viscoelastic.
Therefore, is it essential to introduce the concept of linear viscoelasticity first. For
linear viscoelastic materials, the stress/strain response scales linearly with the
strain/stress input, and the behavior follows the rule of linear superposition. Math-
ematically, the stress/strain at time t can be expressed as:

σ tð Þ ¼
ðt

0
E t� τð Þ dε τð Þ

dt
dτ (16)

ε tð Þ ¼
ðt

0
J t� τð Þ dσ τð Þ

dt
dτ (17)
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where J(t) and E(t) are the creep compliance function and the relaxation mod-
ulus function, respectively. J(t) represents the time-dependent strain change with a
step change in stress, and E(t) represents the time-dependent stress change with a
step change in strain. Based on Eq. (17), the Boussinesq and Cerrutti equation can
be modified to represent linear viscoelasticity by adding the creep compliance
function:

ue x, y, tð Þ ¼
ðt

0
J t� τð Þ ∂

∂τ

ðþ∞

�∞

ðþ∞

�∞

p x0, y0, τð Þ 1� νð Þ

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2 þ y� y0ð Þ2
q dx0dy0

2

6

4

3

7

5
dτ (18)

In Eq. (18), the creep compliance function J(t-τ) replaces the term 1/2G.
Rearranging Eq. (18) gives:

ue x, y, tð Þ ¼
ðt

0

ðþ∞

�∞

ðþ∞

�∞

J t� τð Þ 1� νð Þ

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2 þ y� y0ð Þ2
q

∂p x0, y0, τð Þ
∂τ

dx0dy0dτ (19)

Eq. (19) cannot be solved analytically for rough fracture surfaces. However, if
the time integration term can be de-coupled with the pressure integration term,
Eq. (19) will become a linear equation system, and can therefore be solved numer-
ically. To de-couple the time integration term, the time duration t is discretized into
Nt time steps. The time interval is uniform, and is termed as Δt. The time interval is
assumed to be sufficiently small that the pressure distribution field within each time
interval does not change. In addition, based on the fundamental theorem of calcu-
lus, the term ∂p(x0, y0, τ) dτ/ ∂τ can be substituted by a finite difference p(x0, y0,
τ + dτ) – p(x0, y0, τ). Therefore, Eq. (19) becomes:

ue x, y, α∆tð Þ ¼
X

α

α0¼1

ðþ∞

�∞

ðþ∞

�∞

J α∆t� α0∆tð Þ 1� νð Þ

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2 þ y� y0ð Þ2
q p x0, y0, α0ð Þ � p x0, y0, α0 � 1ð Þ½ �dx0dy0

8

>

<

>

:

9

>

=

>

;

(20)

where α = 1, 2, … , Nt.
In addition, within each time interval, the pressure distribution field does not

change. Therefore, the pressure distribution field can be removed from the inte-
gration term:

ue x, y, α∆tð Þ ¼
X

α

α0¼1

p x0, y0, α0ð Þ � p x0, y0,α0 � 1ð Þ½ �
ðþ∞

�∞

ðþ∞

�∞

J α∆t� α0∆tð Þ 1� νð Þ

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2 þ y� y0ð Þ2
q dx0dy0

8

>

<

>

:

9

>

=

>

;

(21)

Eq. (21) indicates that the time integration term is de-coupled with the pres-
sure integration term. The pressure integration term can then be discretized,
similar to Eq. (11). From Eqs. (4), (5), and (11), the Boussinesq equation can be
discretized as:

ðþ∞

�∞

ðþ∞

�∞

1� νð Þ

2πG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2 þ y� y0ð Þ2
q dx0dy0 !DiscretizeX

M

l¼1

X

N

k¼1

Ki,k,j,l (22)

Based on Eq. (22), the integration part of Eq. (21) can then be discretized:
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ðþ∞

�∞

ðþ∞

�∞

J α∆t� α0∆tð Þ 1� νð Þ

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ð Þ2 þ y� y0ð Þ2
q dx0dy0 !DiscretizeX

M

l¼1

X

N

k¼1

2GJ α� α0ð Þ∆tð ÞKi,k,j,l (23)

Therefore, Eq. (21) can be discretized as:

ue i, j, α∆tð Þ ¼
X

α

α0¼1

X

M

l¼1

X

N

k¼1

2GJ α� α0ð Þ∆tð ÞKi,k,j,l pk,l,α0 � pk,l,α0�1

� �

(24)

To implement FFT, Eq. (24) can be decoupled into two equations:

ue i, j, α∆tð Þ ¼
X

α

α0¼1

ueð Þα0 (25)

and

ueð Þα0 ¼
X

M

l¼1

X

N

k¼1

2GJ α� α0ð Þ∆tð ÞKi,k,j,l pk,l,α0 � pk,l,α0�1

� �

(26)

Eq. (26) can be solved by the FFT method, similar to Eqs. (13) and (14):

ueð Þα0 ¼ IFFT FFT 2GJ α� α0ð Þ∆tð ÞKi,k,j,l

� �

� FFT pk,l,α0 � pk,l,α0�1

� �h i

(27)

Within each time step, Eqs. (8)–(10), (15), (25), and (27) are solved using the
CGmethod. The pressure distribution field is obtained and stored. Then, a new time
step will be added (α will be increased by one), and the new deformation and
pressure fields will be solved based on the historical pressure fields. Figure 1 sum-
marizes the main calculation algorithm based on the above mathematical concepts.

2.3 Model validation

Before simulating visco-elastic deformations of rough rock fractures, it is essen-
tial to validate the numerical code against analytical solutions. In this research, the
analytical solutions provided by Radok and Lee [14] will be used for validation. In
their solutions, a rigid spherical indenter is indented into a flat visco-elastic surface;
and the visco-elastic models for the flat surface are the Maxwell and Standard
Linear Solid (SLS) model. Figure 2 illustrates the geometry setup for the analytical
solution, and Figure 3 shows the concepts of the Maxwell and SLS model.

The Maxwell model consists of a dashpot and a spring. The dashpot represents
viscosity, with a viscosity of η; the spring represents elasticity, with a shear modulus
of G. Under constant stress σ0, the strain can be obtained:

ε tð Þ ¼ σ0
1

G
þ t

η

� �

(28)

Eq. (28) implies that under constant stress, the strain rate does not change with
time. The creep compliance can be expressed as:

J tð Þ ¼ 1

G
þ t

η
(29)
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Figure 2.
Geometry setup for the analytical solution (Kang et al. [13]). R is the radius of the spherical rigid indenter, P is
the total load, δ is the indentation depth, t is the time duration, and a(t) is the radius of the contacting region.

Figure 1.
Summary of the calculation algorithm (Kang et al. [13]).

Figure 3.
Concepts of the Maxwell and SLS model (Kang et al. [13]). (a): Schematic of the Maxwell model; (b):
Schematic of the SLS model.
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Another parameter, the relaxation time T, is defined as:

T ¼ η=G (30)

In the numerical simulation, Eq. (29) will be implemented into Eq. (27), and the
displacement and pressure field will be solved as described in Sections 2.1 and 2.2.
For the geometry setup shown in Figure 2, the analytical solution for the contacting
region radius and pressure field can be obtained:

p t, rð Þ ¼ 2

πR 1� υð Þ

ðt

0
Ge� t�t0ð ÞG=η d

dt0
a2 t0ð Þ � r2
	 
1=2

dt0 (31)

and

a tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 1� νð ÞRP
4

1

G
þ t

η

� �

3

s

(32)

where p is the pressure field, t is the total time duration, υ is the Poisson’s ratio,
and r is the distance from the center of the contacting region.

The SLS model consists of one dashpot and two springs. The dashpot represents
viscosity, with a viscosity η; the two springs represent elasticity, with a shear modulus
of G1 and G2, respectively. Under constant stress σ0, the strain can be obtained:

σ tð Þ ¼ G1G2

G1 þ G2
ε tð Þ þ G1η

G1 þ G2

dε tð Þ
dt

(33)

Figure 4.
Numerical and analytical solutions for the SLS model (Kang et al. [13]).
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The creep compliance J(t) is expressed as:

J tð Þ ¼ 1

G1
þ 1� e�tG2=η

G2
(34)

The relaxation time T is defined as:

T ¼ η=G2 (35)

In the numerical simulation, Eq. (34) will be implemented into Eq. (27), and the
displacement and pressure field will be solved as described in Sections 2.1 and 2.2.
For the geometry setup shown in Figure 2, the analytical solution for the contacting
region radius and pressure field can be obtained:

p t, rð Þ ¼ 2

πR 1� υð Þ

ðt

0

G1

G1 þG2
G2 þG1e

� t�t0ð Þ G1þG2ð Þ=η
h i d

dt0
a2 t0ð Þ � r2
	 
1=2

dt0 (36)

and

a tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 1� νð ÞRP
4

1

G1
þ 1

G2
1� e�tG2=ηð Þ

� �

3

s

(37)

where p is the pressure field, t is the total time duration, υ is the Poisson’s ratio,
and r is the distance from the center of the contacting region.

Figure 5.
Numerical and analytical solutions for the Maxwell model (Kang et al. [13]).
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Johnson [15] solved Eqs. (31), (32), (36), and (37), Figures 4 and 5 compare the
numerical and analytical solutions for the SLS and Maxwell models, respectively.
The solid lines are the numerical solutions obtained by the author, and the dashed
lines are the analytical solutions solved by Johnson [15]. In Figures 4 and 5, rh is the
contacting region at time zero, ph is the maximum contacting pressure at time zero,
and T is the relaxation time.

Figures 4 and 5 indicate the deviation between the numerical and analytical
results is less than 10%. Therefore, the numerical code can be used to simulate the
visco-elastic deformations of rough fractures. For the two validation cases, the
numerical simulation accuracy is not strongly dependent on the total number of
elements, but on the time interval Δt. The deviation between numerical and ana-
lytical solutions will be smaller if the time interval Δt is reduced.

3. One example: visco-elastic deformations of rough rock fractures

3.1 Brief introduction of Brown’s (1995) model

In this chapter, synthetic fracture surface pairs are generated based on Brown’s
model [10]. Brown’s probabilistic model assumes that the surface is self-affine, and
the surface height distribution follows Gaussian distribution [10]. The surface
geometry can be completely described by three parameters: the Hurst exponent H,
the mismatch length λc, and the root mean square roughness RMS.

Mathematically, a self-affine surface is defined as:

z xð Þ � ε�Hz εxð Þ (38)

where H is the Hurst exponent, z is the surface height, and ε is a constant for
scaling at the x-direction. The H value is between 0 and 1, and it describes local
roughness. A smaller H value corresponds to a rougher local surface profile.

The H value can be obtained from the power spectrum of surface height. The
power spectrum of a surface can be obtained by decomposing the surface profile
into a series of sinusoidal waves via Fourier transform, and each sinusoidal wave has
its own amplitude A, wavelength λ, and phase. Figure 6 shows the schematic of the
decomposition process. The power (A2) is defined as the square of the amplitude A;
and the plot of power versus the wavelength number (the inverse of wavelength,
which is 2π/λ) is defined as the power spectrum. Figure 7 shows the schematic of
power spectrum.

For a self-affine fracture surface, the power C (=A2) can be related to the
wavelength number q (=2π/λ) as:

C qð Þ � q�2 1þHð Þ (39)

Figure 6.
Schematic of wave decomposition via Fourier transform (Kang et al. [13]).
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In Figure 7, the q has an upper bound and a lower bound. For the lower bound,
qmin = 2π / λL, where λL is the surface dimension; for the upper bound, qmax = 2π/λ1,
where λ1 is the surface measurement resolution.

The second parameter is the mismatch length, λc. As illustrated in Figure 6, each
wave component has its own wavelength λ. Glover et al. [16] and Brown [10, 17, 18]
stated that for most natural rock joints, the two surfaces have relative shear dis-
placements. At long wavelengths, the wave components match well; at short wave-
lengths, the wave components are not identical. Based on the above observation,
Brown [10] proposed a parameter: critical wavelength λc, which is also called the
mismatch length scale. Brown [10] assumed that above the mismatch wavelength,
the decomposed wave components of two surfaces match perfectly; they have the
same amplitudes, wavelengths, and phases. On the contrary, below the mismatch
wavelength, the decomposed wave components of two surfaces do not match; they
have the same amplitudes and wavelengths, but the phases are independent.
Figure 8 illustrates the concept of the mismatch wavelength.

The third parameter is the root mean square roughness, RMS. It represents the
absolute scale of surface asperity elevation. Mathematically, the RMS is defined as:

σ2 ¼
ðqmax

qmin

C qð Þdq (40)

Figure 7.
Schematic of a power spectrum (Kang et al. [13]).

Figure 8.
Illustration of the mismatch wavelength (Kang et al. [13]).
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where C is the power, q is the wavelength number, and σ is the RMS value.
When generating the synthetic surface, the surface heights are normalized by its
own RMS value, σini, and then multiplied by the designated RMS value, σdes:

zdes ¼ zini
σdes

σini
(41)

where zini is the initial surface height and zdes is the surface height after linear
scaling. In this chapter, only the key mathematical concepts of Brown’s [10] model
is introduced; other details can be found in [10].

3.2 Generated synthetic surface pairs

Brown [10] measured the Hurst exponent H, mismatch length λc, and RMS for
23 natural rock joints. His measurement results imply that the H value is normally
between 0.5 and 1.0; the normalized λc value (λc/fracture profile length) is normally
between 0.02 and 0.2, and the normalized RMS value (RMS/fracture profile length)
is normally between 0.005 and 0.015. Based on the above conclusion, seven syn-
thetic fracture surface pairs are generated, with different H, λc, and RMS values.
Table 1 summarizes the parameters of the seven synthetic surface pairs. It is worth
noting that surface pair No. 2 is the reference surface pair.

Table 1 shows that between surface pairs 1, 2, and 3, the H value is varied;
between surface pairs 2, 4, and 5, the λc value is varied; between surface pairs 2, 6,
and 7, the RMS value is varied. For each surface pair, the aperture distribution field
can be plotted. Figure 9 plots the aperture fields for surface pairs 1, 2, and 3;
Figure 10 plots the aperture fields for surface pairs 2, 4, and 5, and Figure 11 plots
the aperture fields for surface pairs 2, 6, and 7.

Based on Figures 9–11, we have the following observations:

1.According to Figure 9, when H increases, the average and standard
deviation of the aperture decreases;

2.According to Figure 10, when λc deceases, the average and standard
deviation of aperture decreases;

3.According to Figure 11, the average and standard deviation of aperture
scales linearly with the RMS value.

Surface Pair

No.

Profile length L

(mm)

H λc RMS

λc/L Absolute value

(μm)

RMS/L Absolute value

(μm)

1 10 0.6 0.1 1000 0.005 50

2 10 0.8 0.1 1000 0.005 50

3 10 1.0 0.1 1000 0.005 50

4 10 0.8 0.2 2000 0.005 50

5 10 0.8 0.3 3000 0.005 50

6 10 0.8 0.1 1000 0.010 100

7 10 0.8 0.1 1000 0.015 150

Table 1.
The parameters of the seven synthetic surface pairs.
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Figure 9.
Aperture fields for different H values (Kang et al. [13]). (a): aperture field for surface pair 1; (b): aperture
field for surface pair 2; (c): aperture field for surface pair 3. The color bar scales are identical.

Figure 10.
Aperture fields for different λc values (Kang et al. [13]). (a): aperture field for surface pair 2; (b): aperture
field for surface pair 4; (c): aperture field for surface pair 5. The color bar scales are identical.
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Table 2 summarizes the mean and standard deviation of aperture for each
surface pair. In the numerical code, each calculated aperture field (shown in
Figures 9–11) is considered as the initial aperture field.

3.3 Creep simulation results for the Maxwell model

The author uses the Maxwell model to calculate the visco-elastic deformation of
seven synthetic surface pairs. The mechanical properties of Vaca Muerta Shale
measured by Mighani et al. [19] are used as the input parameters, and those prop-
erties are summarized in Table 3.

Figure 11.
Aperture fields for different RMS values (Kang et al. [13]). (a): aperture field for surface pair 2; (b): aperture
field for surface pair 6; (c): aperture field for surface pair 7. The color bar scales scale linearly with the RMS
value.

Surface pair

No.

H λc

(μm)

RMS

(μm)

Average aperture

(μm)

Standard deviation of aperture

(μm)

1 0.6 1000 50 63.41 14.29

2 0.8 1000 50 37.30 8.57

3 1.0 1000 50 21.89 5.14

4 0.8 2000 50 55.94 15.01

5 0.8 3000 50 66.10 20.12

6 0.8 1000 100 74.59 17.15

7 0.8 1000 150 111.89 25.72

Table 2.
The average and standard deviation of seven synthetic surface pairs.
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Before showing the results, two parameters are introduced: macroscopic stress σ
and contact ratio:

1.The macroscopic stress σ = total force applied to the fracture/fracture surface
area;

2.Contact ratio = 100 * (the number of grids in contact/total number of grids).

Figures 12 and 13 show the mean aperture and contact ratio evolving with time
for seven synthetic surface pairs, respectively. The total time duration is 2τ, and the
macroscopic stress σ = 10 MPa. The initial changes of the mean aperture and contact
ratio correspond to fracture elastic deformation.

Based on Figures 12 and 13, several conclusions can be drawn:

1.As H decreases, the mean aperture increases, and the contact ratio increases
slower with time;

Parameters Value

Shear modulus, G (GPa) 7.0

Poisson’s ratio, υ 0.25

Viscosity, η (GPa*s) 2.0 � 107

Relaxation time, τ = η / G (s) 2.857 � 106

Table 3.
Input parameters for the Maxwell model.

Figure 12.
Mean aperture changing with time (Kang et al. [13]). The time duration is normalized by τ.
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Figure 13.
Contact ratio changing with time (Kang et al. [13]). The time duration is normalized by τ.

Parameters Average aperture Contact ratio

Initial value Decrease rate Initial value Increase rate

H↓ ↑ ↑ ↓ ↓

λc↑ ↑ ↑ ↓ ↓

RMS↑ ↑ ↑ ↓ ↓

Table 4.
Effect of surface parameters on the mean aperture and contact ratio.

Figure 14.
Contact region and local contacting stress evolution before and after the creep stage (Kang et al. [13]). (a):
before the creep stage; (b): after the creep stage. In both x- and y-directions, the number of grids is 512. The
contact area increase is qualitatively shown.
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2.As RMS increases, the mean aperture increases, and the contact ratio increases
slower with time;

3.As λc increases, the mean aperture increases, and the contact ratio increases
slower with time.

4.Under current macroscopic stress, time duration, and surface parameters, the
contact ratio is generally less than 9.5%.

Table 4 summarizes the effect of surface parameters on the mean aperture and
contact ratio.

Figure 14 shows the contact region and local contacting stress evolution of
surface pair 3 before and after the creep stage. The macroscopic stress is 10 MPa and

Parameters Value

Shear modulus, G1 (GPa) 7.0

Shear modulus, G2 (GPa) 7.0

Poisson’s ratio, υ 0.25

Viscosity, η (GPa*s) 2.0 � 107

Relaxation time, τ = η / G2 (s) 2.857 � 106

Table 5.
Input parameters for the SLS model.

Figure 15.
Mean aperture changing with time (Kang et al. [13]). The time duration is normalized by τ.
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the creep time duration is 2τ. The colored regions and white regions correspond to
the contacting regions and non-contacting regions, respectively. The color bar scale
is 2000 MPa. After the creep stage, the area of contacting regions becomes larger,
and the local contacting stress reduces. However, even after the creep stage, the
contact ratio is still less than 9.5%. Under the same time duration, if η is reduced,
the contact area will increase more rapidly.

3.4 Creep simulation results for the SLS model

The author also uses the SLS model to calculate the visco-elastic deformation of
seven synthetic surface pairs. The mechanical properties of Vaca Muerta Shale
measured by Mighani et al. [19] are used as the input parameters, and those prop-
erties are summarized in Table 5.

Parameters Average aperture Contact ratio

Initial value Decrease rate Initial value Increase rate

H↓ ↑ ↑ ↓ ↓

λc↑ ↑ ↑ ↓ ↓

RMS↑ ↑ ↑ ↓ ↓

Table 6.
Effect of surface parameters on the mean aperture and contact ratio.

Figure 16.
Contact ratio changing with time (Kang et al. [13]). The time duration is normalized by τ.
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Figures 15 and 16 show the mean aperture and contact ratio evolving with time
for seven synthetic surface pairs, respectively. The total time duration is 5τ, and the
macroscopic stress σ = 10 MPa. The total time duration is extended from 2τ to 5τ to
show the time-decaying creep rate. The initial changes of the mean aperture and
contact ratio correspond to fracture elastic deformation.

Based on Figures 15 and 16, several conclusions can be drawn:

1.As H decreases, the mean aperture increases, and the contact ratio increases
slower with time;

2.As RMS increases, the mean aperture increases, and the contact ratio increases
slower with time;

3.As λc decreases, the mean aperture increases, and the contact ratio increases
slower with time.

4.Under current macroscopic stress, time duration, and surface parameters, the
contact ratio is generally less than 7.0%.

5.Under current macroscopic stress, time duration, and surface parameters, the
creep rate decreases significantly with time. This is mainly because the SLS
model assumes an exponentially decaying creep rate.

Table 6 summarizes the effect of surface parameters on the mean aperture and
contact ratio.

Figure 17 shows the contact region and local contacting stress evolution of
surface pair 3 before and after the creep stage. The macroscopic stress is 10 MPa and
the creep time duration is 5τ. The colored regions and white regions correspond to
the contacting regions and non-contacting regions, respectively. The color bar scale
is 2000 MPa. After the creep stage, the area of contacting regions becomes larger,
and the local contacting stress reduces. However, even after the creep stage, the
contact ratio is still less than 7.0%. Under the same time duration, if η is reduced,
the contact area increase will increase more rapidly.

Figure 17.
Contact region and local contacting stress evolution before and after the creep stage (Kang et al. [13]). (a):
before the creep stage; (b): after the creep stage. In both x- and y-directions, the number of grids is 512. The
contact area increase is qualitatively shown.
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4. Limitations of the method

In this numerical method, the contacting asperities deform visco-elastically, and
there is no upper limit on the local contacting stress. For some synthetic surfaces,
the contacting stress in a few cells exceed 1.3 GPa. In reality, under such high
contacting stresses, the asperities may deform plastically. Ignoring the plastic
deformation will underestimate the contact ratio and overestimate the local
contacting stress. In addition, asperity breakage is ignored in this numerical
method. Under high contacting stresses, asperities may break, which will further
change the contacting regions and the contacting stress distribution [20]. Further-
more, the effect of shear stress on fracture visco-elastic deformations is also not
considered. In engineering applications (especially in oil and gas production), frac-
tures may subject to shear stress, which may significantly change the visco-elastic
deformations.

5. Conclusions

This chapter explains how to use the boundary element method to calculate
visco-elastic deformations of rough fractures. Fast numerical algorithms (CG and
FFT) are implemented to further improve the efficiency. In addition, one example,
which investigates the effect of surface geometry on visco-elastic deformations of
rough rock fractures, is given. In this example, the author builds two in-house
numerical codes: one code generates synthetic fracture surface pairs using Brown’s
probabilistic model [10], and the other simulates the visco-elastic deformations of
the synthetic surface pairs. Seven synthetic surface pairs are generated by system-
atically changing the values of the root mean square roughness RMS (50 μm,
100 μm, and 150 μm), mismatch length λc (1000 μm, 2000 μm, and 3000 μm), and
Hurst exponent H (0.6, 0.8, and 1.0). Then, the author simulates the visco-elastic
deformation of the seven surface pairs by using the Standard Linear Solid (SLS) and
the Maxwell model. The following key conclusions can be drawn:

1.As RMS increases, the average aperture increases, and the contact ratio
increases slower with time;

2.As λc increases, the average aperture increases, and the contact ratio increases
slower with time;

3.As H decreases, the average aperture increases, and the contact ratio increases
slower with time;

4.For the macroscopic stress (10 MPa), time durations (5τ for the SLS model and
2τ for the Maxwell model), and the surface roughness parameters (RMS
between 50 and 150 μm, λc between 1000 and 3000 μm, H between 0.6 and
1.0) used in the examples, the contact ratio is less than 9.5%.

While the results are useful, future work would be helpful. First, more surface
roughness parameter values can be used so a quantitative relationship between
surface parameters and contact ratio or average aperture can be obtained. In addi-
tion, other visco-elastic models, such as the Burgers model and the Power Law
model, can be implemented. Furthermore, in this simulation, the plastic deforma-
tion of contacting asperities is not considered. As a result, the local contacting stress
may be overestimated. The plastic deformation of contacting asperities can be
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considered so the results can be more realistic. Last but not least, the effect of shear
stress can be simulated to make the results more applicable.
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