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Flavonoids via Shikimate and 
Phenylpropanoid Pathway
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Abstract

Flavonoids are natural products, which are useful in the protection of various 
types of human diseases. Several bioactive flavonoids as chalcones, flavonols, flava-
nol, flavones, flavanone, flavan, isoflavonoids, and proanthocyanidin, are found in 
parts as leaves, root, bark, stem, flowers, weed, fruits of plant species. Flavonoids 
are synthesized in higher plant species via the shikimate pathway, phenylpropanoid 
and polyketide pathway. The chalcones and flavanones are central intermediates of 
the pathway, which give several diverse classes of flavonoids. Central intermediates 
pathway (chalcones and flavanones pathway) depends on plants species and group 
of enzymes such as hydroxylases, reductases and isomerases to give different classes 
of flavonoids skeleton. The anthocyanins, isoflavonoids and condensed tannin 
(proanthocyanidins) are an important class of flavonoids, which synthesized by 
flavanones. Mostly, biosynthesis of flavonoids start from phenylpropanoid path-
way. The phenylpropanoid pathway starts from shikimate pathway. The shikimate 
pathway starts from phosphoenol pyruvate and erythrose 4-phosphate.

Keywords: flavonoids, biosynthesis, shikimate pathway, phenylpropanoid pathway, 
tannins

1. Introduction

Flavonoids, are the largest class of secondary metabolites, having polyphenolic 
structure, which widely distributed in several parts as leaves, root, stem, bark, fruit, 
flower, weed, of diverse plant species [1]. The flavonoids play a key role to provide 
pigments in plant as dark blue and red color of berries, yellow and orange color of 
citrus fruits. These flavonoids play similar role as vitamins in the human body [2]. 
The flavonoids are constituted by 15 carbon atoms, which are arranged in C6-C3-C6 
backbone skeleton rings, in which ring A and ring B are linked by three carbon ring 
C [3]. The skeleton of ring represented in Figure 1.

On the basis of substitution pattern, flavonoids can be classified into major 
subgroups as chalcone, flavanone, dihydroflavonol, flavanol, flavones, isofla-
vone, flavonol, leucoanthocyanidin, proanthocyanidin (condensed tannins), 
anthocyanin [4]. The nature of these flavonoids depends on the basis of degree 
of hydroxylation, structural class, conjugations, substitutions and degree of 
polymerization [5]. Approximately, 9000 diverse type flavonoids have been 
reported and sure this number will be increased [6]. The diverse type flavonoids 
show diverse biological function as protection from UV radiation, apoptosis, 
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treatment of psoriasis [7, 8]. The diverse class of flavonoids have been isolated 
from several plant species as quercetin and apigenin from Cymbopogon citratus 
[9], pinostrobin and cardamonin chalcone from rhizomes of Boesenbergia rotunda 
[10], 6-aldehydo-isoophiopogonanone A, 6-aldehydo-isoophiopogonanone B, 
methylophiopogonanone A and methylophiopogonanone B from fibrous roots of 
Ophiopogon japonicus [11]. The diverse type flavonoids were synthesized in plant 
species via shikimate and phenylpropanoid pathway. Several types enzyme as 
DAHP synthase, DHQ synthase, SA kinase, PAT, ADT, 4CL, CHS, CHI, F3H, DFR 
play key role in the biosynthesis of flavonoids [12, 13].

2. Shikimate pathway

Shikimate pathway plays high potential role in the biosynthesis of flavonoids. 
Several key enzymes are involved in this pathway for biosynthesis of shikimic acid. 
This pathway starts with the aldol condensation reaction of phosphoenol pyruvate 
(PEP) and D-erythrose 4-phosphate (E4P) to generate seven carbon keto acid, 
3-deoxy-D-arabino-heptulosonate −7-phosphate (DAHP). This reaction catalyzes 
by 3-deoxy-D-arabino-heptulosonate −7-phosphate synthase (DAHPS) enzyme. 
The DAHPS is a highly potential enzyme of the shikimate pathway. Two DAHPS 
genes as DHS1 and DHS2 are found in Arabidopsis thaliana plants [14]. From 
literature, it is identified that DHS1 is more produced by infiltration or by physi-
cal wounding with pathogen in both tomato and Arabidopsis [15]. The DAHP is 
transformed to 3-dehydroquinic acid (DHQ ) by intramolecular cyclization reaction 
in presence of DHQ synthase enzymes.

In most bacteria, DHQS is monofunctional and in some organism, it behaves 
multifunctional enzyme, which catalyze 2, 3, 4, and 5 steps of the shikimate path-
way. The DHQS is a small part of larger AROM protein, which is pentafunctional 
peptide containing enzyme [16, 17]. The Neurospora crassa and Aspergillus nidulans 
DHQS enzyme found in nature as part of the AROM protein [18]. The DHQ con-
verts into 3-dehydroshikimic acid (DHS) by losing a water molecule.

In the fourth step, DHS is transformed into shikimic acid by removing water 
molecule. The phosphorylation of shikimic acid is done by activating of shi-
kimate kinase enzyme in the fifth step reaction. The shikimic acid with ATP is 
phosphorylated at the 5-OH group of shikimic acid converts into shikimic acid 
3-phosphate (S3P). The shikimate kinase enzyme is not found in the human cell, 
but is an essential enzyme of many bacterial pathogens [19, 20]. The shikimic acid 
3-phosphate converts into 3-enolpyruvyl shikimate −5-P (EPSP) by EPSP synthase 
enzymes.

The EPSPS is activating of shikimic acid 3-phosphate in the sixth step reaction 
of the shikimate pathway. According to intrinsic glyphosate sensitivity, it enzyme 
has been classified as a class I EPSP synthases and class II EPSP synthases [21, 22]. 

Figure 1. 
Basic skeleton C6-C3-C6 of ring A, B, and C in flavonoids.
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The class I EPSP synthases are found in plant and some bacteria as Escherichia coli 
and Salmonella typhimurium. The class II EPSP synthases is found several bacteria 
species as Streptococcus pneumonia, Streptococcus aureus. The EPSP converts into 
chorismic acid (CHA) by eliminating of the pi group at C-3.

The end product of shikimate pathway is chorismic acid, which found in plants, 
fungi, bacteria and some parasites [23]. The chorismate synthases (CS) is divided 

Figure 2. 
Shikimate pathway in biosynthesis of flavonoids.
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within one of two functional groups as fungal type bifunctional CS and plant, 
bacterial type monofunctional CS [24, 25].

The chorismate mutase (CM) is a first step enzyme of the tyrosine and phenyl-
alanine biosynthesis. It activates of chorismic acid, which converts into prephenic 
acid by claisen rearrangement [26]. On the basis functional and structural, multiple 
form of this enzyme exists. Some monofunctional example from Serratia rubidaea, 
Bacillus subtilis [27], Aspergillus nidulans [28]. In presence of this enzyme, chorismic 
acid change into prephenic acid.

The prephenate aminotransferase (PAT) play a key role in phenylalanine bio-
synthesis. It catalyzes first step product (prephenic acid) into arogenic acid [29]. 
The arogenate dehydratase (ADT) is a last step enzyme of phenylalanine biosyn-
thesis, which catalyzes of arogenic acid into amino acid phenylalanine [30]. In the 
arabidopsis genome, six ADT genes as ADT1-ADT6 are found, whereas ADT4 and 
ADT5 were dominant in roots and stems [31]. The shikimate pathway with enzyme 
activity is summarized in Figure 2.

3. Phenylpropanoid pathway

The shikimate pathway plays the main role in the biosynthesis of flavonoids, 
which provides amino acid phenylalanine. The phenylalanine ammonia lyase (PAL) 
is an enzyme of first step reaction in phenylpropanoid pathway. The presence of this 

Figure 3. 
Phenylpropanoid pathway in biosynthesis of flavonoids.



5

Biosynthesis of Diverse Class Flavonoids via Shikimate and Phenylpropanoid Pathway
DOI: http://dx.doi.org/10.5772/intechopen.96512

enzyme has been reported in different types of plant species [32] as certain fungi 
[33], few prokaryotic organisms, including Streptomyces [34, 35], algae, including 
Dunaliella marina [36] and detected in several species representing gymnosperms, 
ferns, lycopods, monocots, and dicots [37]. This enzyme converts phenylalanine 
into cinnamic acid and remove the ammonium ion.

The cinnamate −4-hydroxylase (C4H) plays a crucial role in conversion of 
trans-cinnamic acid in 4-coumaric acid. This acid, yielding 4-coumaroyl-CoA 
by catalyzing of 4-coumaroyl-CoA-ligase (4CL). The 4-coumaroyl-CoA-ligase 
(4CL) plays a pivotal role in phenylpropanoid biosynthesis pathway and produced 
coumarin skeleton. Mostly, a multiple isoform of 4CL are found in higher plants. 
These isoforms have distinct catalytic properties and expression profiles in plant 
tissue [38].

The initial step of flavonoids biosynthesis is the condensation reaction of one 
molecule 4-coumaroyl-CoA with three molecules of malonyl-CoA to yielding chal-
cone (2′,4′,6′,4-tetrahydroxy chalcone) by catalyzing the chalcone synthase (CHS) 
enzyme [39]. chalcone synthase (CHS) enzyme plays key role in the biosynthesis 
of flavonoids and isoflavonoids. The plant polyketide synthase is a big family called 
superfamily, CHS is a member of this family [40]. The chalcone isomerized into 
flavanone by activating of chalcone flavanone isomerase (CHI) enzyme. The flava-
none is the intermediate pathway of flavonoids, which divided into many different 
flavonoids classes [41, 42]. The modification of flavanone into the basic skeleton 
of flavonoids, depends on the species and a group of enzymes as hydroxylases, 
reductases, isomerases [43]. The phenylpropanoid pathway in the biosynthesis of 
flavonoids summarized in Figure 3.

4. Flavonoids pathway

The shikimate and phenylpropanoid pathway play important role in biosyn-
thesis of flavonoids. After this pathway flavonoids pathway starts, which produce 
various diverse type flavonoids in presence of several enzymes. The isoflavonoid 
synthase (IFS) is a main enzyme, which converts a flavanone into isoflavone. In 
soybean, two isoform of IFS genes as IFS-1 and IFS-2 are found, which play a crucial 
role in the isoflavones biosynthesis [44, 45]. The role of this enzyme summarized in 
Figure 4.

The flavonol synthase (F3H) is a key enzyme of the biosynthesis in the central 
flavonoid pathway. It plays a pivotal role in the conversion of flavanone into dihy-
droflavonol. It has been isolated from various plant species (more than 50 plants) 
[46, 47]. The flavonol synthase (FLS) is a highly activating enzyme, which converts 
of dihydroflavonol into flavonol. The first FLS gene was known from P. hybrida 
[48] and other FLS gene were known from various plant species as A. thaliana [49], 
E. grandiflorum [50] etc.

The dihydroflavonol reductase (DFR) is a essential enzyme, which catalyzes 
dihydroflavonol into leucoanthocyanidin and are precursors of anthocyanidins and 
proanthocyanidins [51]. The DFR genes have been cloned in several plant species as 
Lotus japonicas [52], Ginkgo biloba [53], Brassica rapa [54]. The DFR can overexpres-
sion in apple and tobacco, which increase anthocyanin production [55, 56].

The proanthocyanidins is known condensed tannins (polymers), which produced by 
condensation of flavan-3-ol monomeric units as epicatechin and catechin. It catalyzes in 
the presence of two enzymes as leucoanthocyanidin reductase (LAR) and anthocy-
anidin reductase (ANR). The LAR is the main enzyme of anthocyanin biosynthesis 
pathway, which converts leucoanthocyanidin into catechin, while ANR converts 
anthocyanidin into epicatechin [57–59]. The CsLAR gene is found in tobacco, which 
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accumulation of higher level of epicatechin than catechin while ANR in tea and grape-
vine is involved in biosynthesis of mixture of catechin and epicatechin from anthocyanidin 
[60, 61]. The proanthocyanidins have been reported from various plant species [62, 63]. 
The catalyzing properties of these enzymes are showed in Figure 5.

4.1 Chalcones

Chalcone synthase plays potential role in the biosynthesis of flavonoids/
isoflavonoids pathway. The CHS is a member of the polyketide synthase family, 
which play a key role flowering plant as providing floral pigment, insect repel-
lents, UV Protectants and antibiotics [64]. The chalcones are called open chain 

Figure 4. 
The essential role of enzyme in flavonoids pathway.

Figure 5. 
Biosynthesis of tannins and anthocyanin in flavonoids pathway.



7

Biosynthesis of Diverse Class Flavonoids via Shikimate and Phenylpropanoid Pathway
DOI: http://dx.doi.org/10.5772/intechopen.96512

Figure 6. 
Various types chalcones isolated from several plants.

Figure 7. 
Diverse type of flavan and flavan-3-ol reported from parts of plants.
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Figure 8. 
Structural diversity of flavones and flavanone.

flavonoids, which have 15 carbon structure and arranged in C6-C3-C6 skeleton. 
The modification of chalcones can be done by methylation, condensation, and 
hydroxylation. These chalcones can be distributed in many parts of plants as 
fruits, seed, bark, stem, flowers [65].

Various diverse type chalcones have been reported from many plant species such 
as 2,4-dihydroxy-30-methoxy-40-ethoxychalcone from Caragana pruinosa [66], 
two chalcones, sappanchalcone and 3-deoxysappanchalcone from Haematoxylum 
campechianum [67], 4,2′,4′-trihydroxy-chalcone 4,2′-dihydroxy-4′- methoxy-
chalcone, 4-hydroxylonchocarpin, crotmadine chalcones Codonopsis cordifolioidea 
root [68], and crotaramin chalcone from Crotalaria ramosissima plant [69]. These 
chalcones are showed in Figure 6.

4.2 Flavan and Flavan-3-ol

Many different flavan and flavan-3-ol are summarized in Figure 7, which 
have been isolated from many plants as afzelechin from steam bark of Pinus 
halepensis [70], oncoglabrinol C from Oncocalyx glabratus [71], epicatechin, 
and 3,5,7,4′-tetrahydroxy flavan from stem bark of Embelia schimperi [72], 
three flavan-3-ol derivatives as (+)-afzelechin, (+)-afzelechin-7-O-α-L-
arabinofuranoside and (+)-afzelechin-7-O-β-D-apiofuranoside from Polypodium 
vulgare L. rhizomes [73].
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4.3 Flavone-flavanone

Many different structures of flavones and flavanone are synthesized via shikimate 
and flavonoids pathway. These structures of these are showed in Figure 8. Several type 
of flavones and flavanone were isolated such as apigenin 7-O-β-D-glucopyranoside, 
dimethylchrysin, trimethylapigenin, 5,7,3′,4′-tetrahydroxyflavone (Luteolin) from 
Sterculia foetida leaves [74], three new flavan-flavanones as friesodielsones A, 
friesodielsones B, friesodielsones, from Friesodielsia desmoides leaves [75], and flavo-
noids (flavones) as apigenin-7,4′-dimethylether, genkwanin from Aquilaria sinensis 
leaves [76].

4.4 Isoflavonoids

The diverse type structure of isoflavonoids was synthesized from flavanone, 
which have been reported several plants as corylifol A, neobavaisoflavone, and iris-
florentin from Cytisus striatus [77], formoninetin and biochanin A from Hylastinus 
obscurus [78]. One new leptoisoflavone A (a rare 5-membered dihydrofuran ring) 
from Limonium leptophyllum [79], 2,2′-trimethoxy-6,8-dihydroxy-isoflavone from 
the ethanol extract of Thespesia populnea bark [80] and isoflavones, genistein and 
daidzein from Hericium erinaceum (Figure 9) [81].

4.5 Flavonol

Several type of flavonol were reported from parts of plants as myricetin 
3-O-(2″,4″-di-O-acetyl)-α-L-rhamnopyranoside from Myrsine Africana [82], flavo-
noid glycoside named as 3’-O-methyl quercetin-3-glucose-6-gallic acid from Cordia 
oblique leaves [83], 2-(3, 4-dihydroxyphenyl)-3, 5, 7-trihydroxy-4H-chromen-4-one 

Figure 9. 
Diverse structure of isoflavonoids from plants species.
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from aerial parts of Chenopodium album [84], amurensin and cosmosiin from 
Trigonella foenum graecum [85], rhamnosides flavonol, kaempferol-3-O-rhamnoside 
and quercetin-3-O-rhamnoside from leaves of Pometia pinnata [86] and a new 
flavonol glycoside, sabiapside A from Sabia parviflora [87] (Figure 10).

5. Conclusions

Flavonoids are a large class of natural compounds, which isolated from various 
of plants as seed, root, bark, flower, leaves, fruit etc. and prevent from various 
diseases. The biosynthesis of flavonoids is highly complicated because a group of 
enzyme (DHAP synthase, SA kinase, EPSP synthase, PAL, 4CL, CHS, CHI, F3H, 
DFR) plays a key role in the pathway of flavonoids biosynthesis. These enzymes 
play a potential role in modification of flavonoids via isomerases, hydroxylases, 
reductases, and polymerises reaction. The proanthocynidins are interested natural 
compounds, which formed via polymerization reaction of flavonoids. The flavo-
noids are synthesized in various plant species via shikimate and phenylpropanoid 
pathway.

Figure 10. 
Several different structures of flavonol isolated from parts of plant species.
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