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Chapter

Global Existence of Solutions to a
Class of Reaction–Diffusion
Systems on 

n

Salah Badraoui

Abstract

We prove in this work the existence of a unique global nonnegative classical
solution to the class of reaction–diffusion systems

ut t, xð Þ ¼ aΔu t, xð Þ � g uð Þvm,
vt t, xð Þ ¼ dΔv t, xð Þ þ λ t, xð Þg uð Þvm,

where a>0, d>0, t>0, x∈
n, n,m∈

∗ , λ is a nonnegative bounded
function with λ t, :ð Þ∈BUC 

nð Þ for all t∈þ, the initial data u0, v0 ∈BUC 
nð Þ, g :

BUC 
nð Þ ! BUC 

nð Þ is a of class C1, dg uð Þ
du ∈L∞ ð Þ, g 0ð Þ ¼ 0 and g uð Þ≥0 for all

u≥0: The ideas of the proof is inspired from the work of Collet and Xin who proved
the same result in the particular case d> a ¼ 1, λ ¼ 1, g uð Þ ¼ u: Moreover, they
showed that the L∞-norm of v can not grow faster than O ln ln tð Þ for any space
dimension.

Keywords: reaction–diffusion systems, local existence, positivity,
comparison principle, global existence

1. Introduction

In the sequel, we use the notations.
þ ¼ 0,∞½ ½,  ∗

þ ¼ 0,∞� ½:
 ¼ 0, 1, …f g the set of natural numbers and 

∗ ¼ n 0f g:
For p∈ : p½ � the integer part of p.
For n∈

∗ and x ¼ x1, … , xnð Þ∈
n

: xj j2 ¼
Pn

j¼1x
2
j:

 ¼ ⋯,�1, 0, 1,⋯f g the set of integers.

For x 0ð Þ ∈
n and ρ∈

∗
þ , :

B0 x 0ð Þ, ρ
� �

¼ x∈
n

: x� x 0ð Þ�

�

�

�≤ ρ
� �

the closed ball of center x 0ð Þ and radius ρ:

S x 0ð Þ, ρ
� �

¼ x∈
n

: x� x 0ð Þ�

�

�

� ¼ ρ
� �

the boundary of B0 x 0ð Þ, ρ
� �

:

Let Q ⊂
n n∈

∗ð Þ a subset. ∂Q denote the boundary of Q:
ln : the natural logaritm function.

ωn ρð Þ ¼ 2πn=2ρn�1

Γ n=2ð Þ the surface area of S 0, ρð Þ, where Γ xð Þ ¼
Ð

∞

0 e�tt�xdt x∈
∗
þ

� �

is

the Gamma function.
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BUC 
nð Þ the Banach space of bounded and uniformly continuous functions on


n with the supremum norm ∥u∥

∞
¼ supx∈

n u xð Þj j:
X ¼ BUC 

nð Þ � BUC 
nð Þ which is a Banach space endowed with the norm

u, vð Þk kX ¼ ∥u∥
∞
þ ∥v∥

∞
:

For u∈Lp


nð Þ p∈ 1,∞½ ½ð ), we denote by ∥u∥pp ¼
Ð


n uj jpdx:

For u, v : 
n !  two regular functions, ∇u ¼ ∂u

∂x1
, … , ∂u

∂xn

� �

and ∇u:∇v ¼
Pn

j¼1
∂u
∂x j

: ∂v
∂x j

:

Reaction-Diffuison equations are nonlinear parabolic partial differential equa-
tions arises in many fields of sciences like chemistry, physics, biology, ecology and
even medicine. It appears usually as coupled systems.

The somewhat general form of these systems of two equations is

ut t, xð Þ ¼ aΔu t, xð Þ þ f 1 t, x, u, vð Þ,
vt t, xð Þ ¼ dΔv t, xð Þ þ f 2 t, x, u, vð Þ,

	

where t>0, x∈Ω with Ω⊂
n n∈

∗ð Þ is an open set, Δ is the Laplacian
operator, a, d are two real positive constants called the coefficients of the diffusion.
For a chemical reaction where two substances S1 and S2, u and v represent their
concentrations at time t and position x respectively, and f 1 and f 2 represent the rate
of production of these substances in the given order. For more details see [1, 2].

In this chapter, we are concerned with the existence of global solutions to the
reaction–diffusion system

ut t, xð Þ ¼ aΔu t, xð Þ � g uð Þvm, t, xð Þ∈
∗
þ � 

n, (1)

vt t, xð Þ ¼ dΔv t, xð Þ þ λ t, xð Þg uð Þvm, t, xð Þ∈
∗
þ � 

n, (2)

with initial data

u 0, xð Þ ¼ u0 xð Þ, v 0, xð Þ ¼ v0 xð Þ, x∈
n: (3)

Whe assume that.
(H1) The constants a, d are such that a, d∈

∗
þ :

(H2) λ : 
þ � 

n !  is a non-null, nonnegative and bounded function on 
þ �


n such that λ t, :ð Þ∈BUC 

nð Þ for all t∈þ. We denote λ
∞
¼ supt≥0 λ tð Þk k

∞

� �

:

(H3) n and m are positive integers, i.e. n,m∈
∗ :

(H4) g : BUC 
nð Þ ! BUC 

nð Þ is a function defined on BUC 
nð Þ such that:

i. g 0ð Þ ¼ 0 and g uð Þ≥0 pour u≥0:

ii. g is of class C1 and dg uð Þ
du is bounded on :

(H5) The initial data u0, v0 are nonnegative and are in BUC 
nð Þ.

One of the essential questions for (1)–(3) is the existence of global solutions and
possibly bounds uniform in time. Recently, Collet and Xin in their paper [3] published
in 1996 have studied the system (1)–(3) but with a ¼ λ ¼ 1, d> 1 and φ uð Þ ¼ u: In
this particular case, this system describes the evolution of u the mass fraction of
reactant A and that v of the product B for the autocatalytic chemical reaction of the
form AþmB ! mþ 1ð ÞB: They proved the existence of global solutions and showed
that the L∞ norm of v can not grow faster than O ln ln tð Þ for any space dimension.

If we replace g uð Þvm by u exp �E=vf g where E>0 is a constant and take λ ¼ 1,
there are many works on global solutions, see Avrin [4], Larrouturou [5] for results
in one space dimension, among others.
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It is worth mentioning here the result of S. Badraoui [6] who studied the system

ut ¼ aΔu� uvm,

vt ¼ bΔuþ dΔvþ uvm,

where a>0, d>0, b 6¼ 0, x∈
n, n∈

∗ , m∈ 2 ∗ is an even positive integer.
He has proved that if u0, v0 are nonnegative and are in BUC 

nð Þ that:
If a> d, b>0, v0 ≥ b

a�d u0 on 
n, then the solution is global and uniformly

bounded.

If a< d, b<0, v0 ≥ b
a�d u0 on 

n, then the solution is global.

Our work here is a continuation of the work of Collet and Xin [3]. We treat the
same question in a slightly general case. Inspired by the same ideas in [3] we prove
that the system (1)–(3) under the assumptions (H1) to (H5) has a unique global
nonnegative classical solution.

The chapter is organized as follows: In section 2, we treat the existence of local
solution and reveal its positivity using the maximum principle.

In section 3, firstly, we prove by a simple comparison argument that if a≥ d, the
solution is uniformly bounded and we give an upper bound of it. Afterwards, we
attack the hard case in which a< d where we used the Lyapunov functional

L u, vð Þ ¼ αþ 2u� ln 1þ uð Þ½ �eεv α,ð ε>0Þ and the cut-off function φ xð Þ ¼

1þ xj j2
� ��n

: We show that for α sufficiently large and ε small enough we can

control the Lp-norms of v p> max 1, n=2f gð Þ on every unit spacial cub in 
n from

which we deduce the L∞-norm of v at any time t>0:
We emphazise here that I have engaged to calculate the constants encountered

in all equations and inequalities exactly.

2. Existence of a local solution and its positivity

We convert the system (1)–(3) to an abstract first order system in the Banach
space X≔BUC 

nð Þ � BUC 
nð Þ of the form

w0 tð Þ ¼ Aw tð Þ þ F w tð Þð Þ, t>0,

w 0ð Þ ¼ w0 ∈X:

(

(4)

Here w tð Þ ¼ u tð Þ, v tð Þð Þ; the operator A is defined as

Aw≔
aΔ 0

0 dΔ

 !

w ¼ aΔu, dΔvð Þ,

where D Að Þ≔ w ¼ u, vð Þ∈X : Δu,Δvð Þ∈Xf g. The function F is defined as
F w tð Þð Þ ¼ �φ u tð Þð Þvm tð Þ, λ tð Þφ u tð Þð Þvm tð Þð Þ.

It is known that for c>0 the operator cΔ generates an analytic semigroup G tð Þ in
the space BUC 

nð Þ:

G tð Þu ¼ 4πctð Þ�n=2
ð


n
exp � x� yj j2

4ct

( )

u yð Þdy: (5)
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Hence, the operator A generates an analytic semigroup defined by

S tð Þ ¼
S1 tð Þ 0

0 S2 tð Þ


 �

, (6)

where S1 tð Þ is the semigroup generated by the operator aΔ, and S2 tð Þ is the
semigroup generated by the operator dΔ.

Since the map F is locally Lipschitz in w in the space X, then proving the
existence of a loacl classical solution on 0, t1½ � where t1 ∈

∗
þ is standard [7, 8].

For the positivity, let w tð Þ ¼ u tð Þ, v tð Þð Þ is a local solution of the problem (1)–(3)

under the assumptions Hjf g5j¼1 on the interval 0, t1½ �.
We can write the first equation as

ut � aΔuþ vm
d

du
g ξð Þ

� 

u ¼ 0, t, xð Þ∈ 0, t1� � � 
n, (7)

for some ξ∈. Thanks to the assumption (H4)-ii we deduce that vm ∂

∂u g ξð Þ is
bounded on 0, t1½ � � 

n:Whence, by the theorem 9 on page 43 in [9], we obtain that

u t, xð Þ≥0, forall t, xð Þ∈ 0, t1½ � � 
n, (8)

The second equation can be written as

vt � dΔvþ �λg uð Þvm�1
� �

v, t, xð Þ∈ 0, t1� � � 
n: (9)

By the same theorem we get

v t, xð Þ≥0, forall t, xð Þ∈ 0, t1½ � � 
n: (10)

For the existence of a global solution, we use the contraposed of the characteri-
zation of the maximal existence time tmax ([8] on page 193) as follows

there existsamapC : þ ! þsuch that :

u tð Þk k
∞
þ v tð Þk k

∞
≤C tð Þ forall t∈þ

� 

) tmax ¼ þ∞: (11)

3. Existence of a global solution

For this task we will use the fact that the solution is nonnegative.
Theorem 3.1. Let u, vð Þ be the solution of the problem (1)–(3) under the

assumptions Hjf g5j¼1 and such that

a≥ d: (12)

Then, the solution is global and uniformly bounded on 
þ � 

n. More precisely,
we have the estimates

u tð Þk k
∞
≤ u0k k

∞
, forall t∈þ, (13)

v tð Þk k
∞
≤ v0k k þ λ

∞

a

d

� �n=2
u0k k

∞
, forall t∈þ: (14)
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Proof. By the comparison principle we get (13).
The solution u, vð Þ satisfies the integral equations

u t, xð Þ ¼ S1 tð Þu0 �
ðt

0
S1 t� τð Þg u τð Þð Þvm τð Þdτ, (15)

v t, xð Þ ¼ S2 tð Þv0 þ
ðt

0
S2 t� τð Þλ τð Þg u τð Þð Þvm τð Þdτ: (16)

Here S1 tð Þ and S2 tð Þ are the semigroups generated by the operators aΔ and dΔ in
the space BUC 

nð Þ respectively. As u is nonnegative, then from (15) we get

ðt

0
S1 t� τð Þg u τð Þð Þvm τð Þdτ≤ S1 tð Þu0: (17)

Since a≥ d, using the explicit expression of S1 t� τð Þg u τð Þð Þvm τð Þ and
S2 t� τð Þg u τð Þð Þvm τð Þ, one can observe that (see [10])

ðt

0
S2 t� τð Þλ τð Þg u τð Þð Þvm τð Þdτ≤ a

d

� �n=2
ðt

0
S1 t� τð Þλ τð Þg u τð Þð Þvm τð Þdτ

≤ λ
∞

a

d

� �n=2
ðt

0
S1 t� τð Þg u τð Þð Þvm τð Þdτ:

(18)

From (17) and (18) into (16) we get

v tð Þ≤ S2 tð Þv0 þ λ
∞

a

d

� �n=2
S1 tð Þu0: (19)

This last inequality leads to the veracity of (14).
Thus, from (13) and (14), we deduce that the solution u, vð Þ is global and

uniformly bounded on þ � 
n. ♦

In the case where d> a, it seems that the idea of comparison cannot be applied.
Nevertheless, we can prove the existence of global classical solutions; but it appears
that their boundedness is not assured.

Theorem 3.2. Let u, vð Þ be the solution of the problem (1)–(3) with the

assumptions Hjf g5j¼1. If

a< d, (20)

the solution u, vð Þ is global. More precisely we have the estimates (13) and (83).
Proof. In this case, it is not easy to prove global existence. But can derive

estimates of solutions independent of t1 by using the same method used in [3] and
the same form of the functional used in [6] but with different coefficients.

We need some lemmas.
Lemma 3.3. Let u, vð Þ be the solution of the problem (1)–(3) under the assump-

tions Hjf g5j¼1 on the local interval time 0, t1½ �. Define the functional

L u, vð Þ ¼ αþ 2u� ln 1þ uð Þ½ �eεv with α, ε∈
∗
þ : (21)

Then for any φ ¼ φ xð Þ x∈
nð Þ a smooth nonnegative function with exponential

spacial decay at infinity, we have
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d

dt

ð


n
φLdx ¼ d

ð


n
ΔφLdxþ d� að Þ

ð


n
L1∇φ:∇udx

�
ð


n
φ aL11 ∇uj j2 þ aþ dð ÞL12∇u∇vþ dL22 ∇vj j2
h i

dx

þ
ð


n
φ λL2 � L1ð Þg uð Þvmdx,

(22)

where

L1�
∂L

∂u
¼ 2� 1

1þ u


 �

eεv,L2 �
∂L

∂v
¼ ε αþ 2u� ln 1þ uð Þ½ �eεv,

L11�
∂
2L

∂u2
¼ 1

1þ uð Þ2
eεv,L12 �

∂
2L

∂u∂v
¼ ε 2� 1

1þ u


 �

eεv,

L22�
∂
2L

∂v2
¼ ε2 αþ 2u� ln 1þ uð Þ½ �eεv:

(23)

Proof. Note that L>0, L1 >0, L2 >0, L11 >0, L12 >0 and L22 >0. We can
differentiate under the integral symbol

d

dt

ð


n
φLdx ¼ a

ð


n
φL1udxþ d

ð


n
φL2Δvdxþ

ð


n
φ λL2 � L1ð Þg uð Þvmdx: (24)

Using integration by parts, we get

ð


n
φL1Δudx ¼

ð


n
φL1ð ÞΔudx ¼ �

ð


n
∇ φL1ð Þ∇udx ¼ �

ð


n
L1∇φ∇udx

�
ð


n
φL11 ∇uj j2dx�

ð


n
φL12∇u∇vdx,

(25)

In fact, let ρ∈
∗
þ , then we have by the Geen theorem

ð

B0 0,ρð Þ
φL1Δudx ¼

ð

B0 0,ρð Þ
φL1ð ÞΔudx

¼ �
ð

B0 0,ρð Þ
∇ φL1ð Þ:∇udxþ

ð

S 0,ρð Þ
φL1ð Þ ∂u

∂ν
dx,

(26)

where ∂u
∂ν
is the derivative of u with respect to the unit outer normal ν to the

boundary S 0, ρð Þ.
We have

ð

S 0,ρð Þ
φL1 tð Þð Þ ∂u tð Þ

∂ν
dx

�

�

�

�

�

�

�

�

�

�

≤ 2eε v tð Þk k
∞

∂u tð Þ
∂ν

�

�

�

�

�

�

�

�

∞

ð

S 0,ρð Þ
φdx

≤ 2eε v tð Þk k
∞

∂u tð Þ
∂ν

�

�

�

�

�

�

�

�

∞

1

1þ ρ2ð Þn
2πn=2ρn�1

Γ n=2ð Þ :

(27)

From (27) we obtain

lim
ρ!∞

ð

S x0,ρð Þ
φL1 tð Þ½ � ∂u tð Þ

∂ν
dx ¼ 0: (28)
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We pass to the limit for ρ ! ∞ in (26) taking into account (28) we obtain (25).
By the same way we get

ð


n
φL2Δvdx ¼ �

ð


n
L2∇φ:∇vdx�

ð


n
φL22 ∇vj j2dx�

ð


n
φL12∇u∇vdx, (29)

ð


n
LΔφdx ¼ �

ð


n
L1∇φ:∇udx�

ð


n
L2∇φ:∇vdx: (30)

From (30) we find that

ð


n
L2∇φ:∇vdx ¼ �

ð


n
L1∇φ:∇udx�

ð


n
LΔφdx: (31)

From (25), (29) and (31) into (24) we get our basic identity (22). ♦

Lemma 3.4. There exist two positive real constants α ¼ α a, d, γ1, u0k k
∞

� �

and

ε ¼ ε a, d, γ1, γ2, λ∞, u0k k
∞

� �

such that

d

dt

ð


n
φLdx≤ d

ð


n
LΔφdxþ d� að Þ

ð


n
L1∇φ:∇udx

�γ1

ð


n
φ aL11 ∇uj j2 þ dL22 ∇vj j2
h i

dx� γ2

ð


n
φL1g uð Þvmdx,

(32)

where γ1, γ2 ∈ 0, 1� ½ are two arbitrary constants.
Proof. We seek L such that

aL11 ∇uj j2 þ aþ dð ÞL12∇u∇vþ dL22 ∇vj j2 ≥ γ1 aL11 ∇uj j2 þ dL22 ∇vj j2
h i

(33)

and

λL2 � L1 ≤ � γ2L1 (34)

for γ1, γ2 ∈ 0, 1� ½:
The inequality (33) is satisfied if

aþ dð Þ2L2
12

4ad 1� γ1ð Þ2L11L12

≤ 1: (35)

From (23); (35), then (33) is satisfied if

α≥
aþ dð Þ2 1þ 2 u0k k

∞

� �2

4ad 1� γ1ð Þ2
: (36)

Also, (34) is satisfied if
ελ∞ αþ2 u0k k

∞
ð Þ
1�γ2

≤ 1, i.e. ε≤ 1�γ2

λ
∞

αþ2 u0k k
∞

ð Þ , and from (36)

we get

0< ε≤
1� γ2

λ
∞

4ad 1� γ1ð Þ2

aþ dð Þ2 1þ 2 u0k k
∞

� �2 þ 8ad 1� γ1ð Þ2 u0k k
∞

: (37)

Whence, if α satisfies (36) and ε satisfies (37), we obtain (32). ♦
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As a consequence of (33) we have

d

dt

ð


n
φLdx≤ d

ð


n
LΔφdxþ d� að Þ

ð


n
L1∇φ:∇udx� γ1a

ð


n
φL11 ∇uj j2dx: (38)

Lemma 3.5. With the functional L defined in (21) and α, ε defined in (36) and
(37) respectively and with the truncation function φ : 

n !  defined by

φ xð Þ ¼ 1

1þ x� x0j j2
� �n : (39)

We have

d

dt

ð


n
φLdx≤ dk1 nð Þ

ð


n
φLdxþ 1

4γ1a
d� að Þ2k22 nð Þ

ð


n
φ
L2
1

L11
dx, (40)

where

k1 nð Þ ¼ 2n 3nþ 2ð Þ, k2 nð Þ ¼ 2n: (41)

Proof. Calulate Δφ and estimate it

Δφ ¼ � 2n2

1þ x� x0j j2
� �nþ1 �

4n nþ 1ð Þ x� x0j j2

1þ x� x0j j2
� �nþ2 ;

whence

Δφj j≤ 2n 3nþ 2ð Þφ: (42)

Calulate ∇φ and estimate it

∇φj j2 ¼ 4n2
x� x0j j2

1þ x� x0j j2
� �2 nþ2ð Þ ;

whence

∇φj j≤ 2nφ: (43)

Using the Cauchy-Schwarz inequality ∇φ:∇u≤ ∇φj j ∇uj j and the inequalities
(42) and (43) into (38) we get

d

dt

ð


n
φLdx≤ dk1 nð Þ

ð


n
φLdxþ d� að Þk2 nð Þ

ð


n
φL1 ∇φj jdx� γ1a

ð


n
φL11 ∇uj j2dx:

(44)

We pove that

d� að Þk2 nð ÞφL1 ∇φj j � γ1aφL11 ∇uj j2 ≤ 1

4γ1

d� að Þ2
a

k22 nð Þφ L2
1

L11
: (45)
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To do this, it sufficies to compute the discriminant of the trinoma in ∇φj j

Δ ¼ �γ1aφL11 ∇uj j2 þ d� að Þk2 nð ÞφL1 ∇φj j � 1

4γ1

d� að Þ2
a

k22 nð Þφ L2
1

L11
:

From (45) into (42) we find the desired result (40). ♦
Lemma 3.6. For α and ε defined in (36) and (37) respectively and for all real

constant γ

γ ≥ max
1

a
, 8 u0k k

∞
þ 4

	 �

, (46)

we have

ð


n
φLdx≤ βeσt, forall t∈þ; (47)

where

β ¼ 2

n
αþ 2 u0k k

∞

� �

ωne
ε v0k k

∞ , (48)

and

σ ¼ dk1 nð Þ þ γ

4γ1a
d� að Þ2k22 nð Þ: (49)

Proof. We seek a constant γ ∈
∗
þ such that

L2
1

L11
≤ γL, for all u∈ 0, u0k k

∞

� �

: (50)

The inequality (50) is equivalent to 2uþ 1ð Þ2eεv ≤ γ αþ 2u� ln 1þ uð Þ½ �: We
prove that if γ satisfies (46) then (50) follows.

Whence, from (50) into (40) we obtain

d

dt

ð


n
φLdx≤ dk1 nð Þ þ γ

4γ1a
d� að Þ2k22 nð Þ

� 
ð


n
φLdx, forallt∈þ: (51)

As

ð


n
φL t ¼ 0ð Þdx ¼

ð


n
φ αþ 2u0 � ln 1þ u0ð Þ½ �eεv0dx; (52)

then, from (51) and (52) we get

ð


n
φLdx≤ αþ 2 u0k k

∞

� �

φk k1 exp ε v0k k
∞

� �� �

eσt, forall t∈þ, (53)

where σ is defined by (49).
Now, let us estimate φk k1: We have ([11] on page 485)

φk k1 ¼
ð


n
φdx ¼

ð


n

1

1þ xj j2
� �n dx ¼ ωn

ð

∞

0
rn�1 1

1þ r2ð Þn dr:
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As

ð

∞

0

rn�1

1þ r2ð Þn dr ¼
ð1

0

rn�1

1þ r2ð Þn drþ
ð

∞

1

rn�1

1þ r2ð Þn dr

≤

ð1

0
rn�1drþ

ð

∞

1

1

rnþ1
dr≤

2

n
,

then

φk k1 ≤
2

n
ωn: (54)

Thus, from (54) in (53) we get the estimate (47) with β and σ given by (48) and
(49). ♦

In the following step we trie to control the second component v of the solution
on any unit spacial cube in the Lp� norms with p∈ 1,∞½ ½:

Let x 0ð Þ ¼ x
0ð Þ
1 , … , x

0ð Þ
n

� �

∈
n be an arbitrary fixed point and

Q ¼ x ¼ x1, … , xnð Þ∈
n

: xk � x
0ð Þ
k

�

�

�

�

�

�≤
1

2
, forallk ¼ 1, … , n

	 �

: (55)

Lemma 3.7. Let u, vð Þ be the solution of the problem in consideration. For α and
ε satisfying (36) above and (63) below respectively, then for any unit cube Q of n

of the form (55) we have

ð

Q
vpdx≤

β pþ 1ð Þpþ1

αε p½ �þ1

4þ n

4


 �n

eσt, forall p, tð Þ∈ 1,∞½ ½ � þ: (56)

Proof. It’s obvious that

φ xð Þ≥ 4

4þ n


 �n

, forallx∈
n, (57)

and

eεv ≥
εk

k!
vk, forallk∈

∗ : (58)

Then

ð


n
φLdx≥

αεk

k!

4

4þ n


 �nð

Q
vkdx: (59)

Let us combine (47) and (59)

ð

Q

vkdx≤
βk!

αεk
4þ n

4


 �n

eσt, forall k, tð Þ∈
∗ � þ: (60)

By induction we prove that

k!≤ pp, forallk∈
∗ andp≥ k : (61)
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Let p≥ 1 and k ¼ p½ � þ 1, then we have by the imbedding theorem for Lp�spaces
ð

Q
vpdx≤

ð

Q
vkdx


 �p=k

: (62)

Taking ε enough small such that βk!

αεk
4þn
4

� �n
≥ 1. Combining this with (37)

0< ε≤ min

1� γ2

λ
∞

4ad 1� γ1ð Þ2

aþ dð Þ2 1þ 2 u0k k
∞

� �2 þ 8ad 1� γ1ð Þ2 u0k k
∞

,

1
α
βk!

4þn
4

� �n� �1=k

8

>

>

<

>

>

:

9

>

>

=

>

>

;

: (63)

From (60), (61) and (63) into (62) we get (56). ♦

Lemma 3.8. Let Q i et Q j be two different unit cubes of center x ið Þ ¼

x
ið Þ
1 , … , x

ið Þ
n

� �

and x jð Þ ¼ x
jð Þ

1 , … , x
jð Þ

n

� �

respectively of the form

Q i ¼ x ¼ x1, … , xnð Þ∈
n

: xk � x
ið Þ
k

�

�

�

�

�

�≤ 1=2
n o

, forallk ¼ 1, … , n,

Q j ¼ x ¼ x1, … , xnð Þ∈
n

: xk � x
jð Þ

k

�

�

�

�

�

�≤ 1=2
n o

, forallk ¼ 1, … , n,
(64)

with x jð Þ ¼ x ið Þ þ l, where l ¼ l1, … , lnð Þ∈
nn0

n . Then, there exists a positive
constant

δ nð Þ ¼ 2þ
ffiffiffi

n
p� �2

, (65)

such that

dist x ið Þ,Q j

� �2
≤ x ið Þ � y
�

�

�

�

2
≤ δ nð Þdist x ið Þ,Q j

� �2
, for all y∈Q j: (66)

Proof. By Pythagorean theorem we have

x jð Þ � y
�

�

�

�≤

ffiffiffi

n
p

2
: (67)

As x ið Þ � x jð Þ�

�

�

�≥ 1, then from (67)

x jð Þ � y
�

�

�

�≤

ffiffiffi

n
p

2
x ið Þ � x jð Þ�

�

�

�: (68)

Also, it’s clear that dist x ið Þ,Q j

� �

¼ dist x ið Þ, ∂Q j

� �

, but every point z ¼
z1, … , znð Þ∈ ∂Q j is of the form

z ¼ x jð Þ þ s, (69)

where s ¼ s1, … , snð Þ 6¼ 0 and sk ∈ � 1
2,

1
2

� �

, for all k ¼ 1, … , n with at least one of

the sk ∈ � 1
2,

1
2

� �

:

It’s easy to prove that

x
jð Þ

k � x
ið Þ
k

�

�

�

�

�

�≤ 2 x
jð Þ

k � x
ið Þ
k þ sk

�

�

�

�

�

�, forall k ¼ 1, … , n: (70)
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Then

x jð Þ � x ið Þ�

�

�

�≤ 2dist x ið Þ,Q j

� �

: (71)

As x ið Þ � y
�

�

�

�≤ x ið Þ � x jð Þ�

�

�

�þ x jð Þ � y
�

�

�

� we get from (68) and (71) the estimate

x ið Þ � y
�

�

�

�≤ 2dist x ið Þ,Q j

� �

þ
ffiffiffi

n
p

2
x ið Þ � x jð Þ�

�

�

�

≤ 2þ
ffiffiffi

n
p� �

dist x ið Þ,Q j

� �

:

(72)

We have obviously

x ið Þ � y
�

�

�

�≥ dist x ið Þ,Q j

� �

: (73)

From (71) and (73) we get (66). ♦
Proof of theorem 3.2.

Let x∈
n an arbitrary point and Q j

n o

j∈

be the family of pairwise disjoint

measurable cubes of the form (64) covering n such that the center of Q0 is x
0ð Þ ¼ x.

Firstly, using the fact that n ¼ ∪∞j¼0Q j and applying the left-hand inequality

in (66)

ð


n
e�

x�yj j2
4d t�sð Þλg uð Þvmdy ¼

X

∞

j¼0

ð

Q j

e�
x�yj j2
8d t�sð Þe�

x�yj j2
8d t�sð Þλg uð Þvmdy

≤
X

∞

j¼0

e�
dist x,Q jð Þ2

8d t�sð Þ

ð

Q j

� x�yj j2
8d t�sð Þ

λg uð Þvmdy

8

<

:

9

=

;

:

(74)

By Hölder ineguality with p> max 1, n
2

� �

and q ¼ 1� 1
p

ð

Q j

� x�yj j2
8d t�sð Þ

λg uð Þvmdy≤
ð

Q j

�q x�yj j2
8d t�sð Þ

dy

2

4

3

5

1=q
ð

Q j

λpgp uð Þvpmdy
" #1=p

: (75)

As

ð

Q j

e�
q x�yj j2
8d t�sð Þdy≤

ð


n

�q x�yj j2
8d t�sð Þ

dy ¼ 8πd

q


 �n=2

t� sð Þn=2 (76)

and by (56) we have

ð

Q j

λpgp uð Þvpmdy≤ λp
∞
gp
∞
β

pmþ 1ð Þpmþ1

αε pm½ �þ1

4þ n

4


 �n

eσt, (77)

where

g
∞
¼ sup

u∈ 0, u0k k
∞

½ �
g uð Þ: (78)
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Then, from (76) and (77) into (75)

ð

Q j

� x�yj j2
8d t�sð Þ

λg uð Þvmdy≤K
8πd

q


 �n
2 1�1

p

� �

t� sð Þn2 1�1
p

� �

λ
∞
g
∞
e σ=pð Þt, (79)

where

K ¼ K p,m, n, α, εð Þ ¼ β
pmþ 1ð Þpmþ1

αε pm½ �þ1

4þ n

4


 �n
" #1=p

: (80)

On the other hand, we deduce from the right-hand inequality in (66) that

ð

Q j

e�
x�yj j2

8dδ nð Þ t�sð Þdy≥ e�
dist x,Q jð Þ2

8d t�sð Þ , forall j∈
∗ : (81)

Then

X

∞

j¼0

e�
dist x,Q jð Þ2

8d t�sð Þ ≤ 1þ
X

∞

j¼1

e�
dist x,Q jð Þ2

8d t�sð Þ ≤ 1þ
X

∞

j¼1

ð

Q j

e�
x�yj j2

8dδ nð Þ t�sð Þdy

≤ 1þ
ð


n
e�

x�yj j2
8dδ nð Þ t�sð Þdy≤ 1þ 8πdδ nð Þ½ �n=2 t� sð Þn=2:

(82)

We have from (79) and (82) into (74)

1

4πd t� sð Þ½ �n=2
ð


n
e�

x�yj j2
4d t�sð Þλg uð Þvmdy

≤ 2n=2 1� 1

p


 �n
2 1�1

p

� �

t� sð Þ� n
2pKλ

∞
g
∞
e σ=pð Þt 1þ 8πdδ nð Þ½ �n=2 t� sð Þn=2

n o

≤ 2n=2 1� 1

p


 �n
2 1�1

p

� �

Kλ
∞
g
∞
e σ=pð Þt t� sð Þ� n

2p þ 8πdδ nð Þ½ �n=2 t� sð Þn2 1�1
p

� �

	 �

:

Whence

ðt

0
S2 t� sð Þλg uð Þvmds

≤ 2n=2 1� 1

p


 �n
2 1�1

p

� �

Kλ
∞
g
∞
e σ=pð Þt 2p

2p� n
t1�

n
2p þ 8πdδ nð Þ½ �n=2 2p

p nþ 2ð Þ þ 2p
t
n
2 1�1

p

� �

þ1

� 

and finally we have for all t∈þ

v tð Þk k
∞
≤ v0k k

∞

þ 2n=2 1� 1

p


 �n
2 1�1

p

� �

Kλ
∞
g
∞
e σ=pð Þt

2p

2p� n
t1�

n
2p

þ 8πdδ nð Þ½ �n=2 2p

p nþ 2ð Þ � n
t
n
2 1�1

p

� �

þ1

2

6

6

4

3

7

7

5

(83)
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As p> max 1, n
2

� �

, the function in t on the right-hand side of the estimate (83) is

continuous on þ. As u tð Þk k
∞
≤ u0k k

∞
on 0, tmax½ ½ and v satisfied (83), we conclude

from (11) that tmax ¼ þ∞. Whence, the solution is global. ♦
Remark.We can extend the system to the case where instead of vm we put vh vð Þ

provided that.

i. h : BUC ð Þ ! BUC ð Þ is a locally continuous Lipschitz function, namely: for
all constant ρ∈þ, there exists a constant c ρð Þ∈

∗
þ such that for all

u, v∈BUC 
nð Þ with uk k

∞
≤ ρ and vk k

∞
≤ ρ we have

h uð Þ � g vð Þk k
∞
≤ c ρð Þ u� vk k

∞
:

ii. There exist two constants M∈
∗
þ and r∈ such that:

0≤ h vð Þ≤Mvr, forallv∈þ:

In this more general case, by examining the proof of the theorem 3.2; we see that
under the same assumptions above, the system has also a global nonnegative
classical solution. ♦

4. Illustrative example

To illustrate the previous study about global existence, we give the following
reaction–diffusion system

ut t, xð Þ ¼ aΔu t, xð Þ � c1u
3

c2 þ c3u2
vm, t, xð Þ∈

∗
þ � 

n,

vt t, xð Þ ¼ dΔv t, xð Þ þ c4e
�c5t xj j2 u3

c2 þ c3u2
vm, t, xð Þ∈

∗
þ � 

n ,

u 0, xð Þ ¼ u0 xð Þ, v 0, xð Þ ¼ v0 xð Þ, x∈
n,

8

>

>

>

>

>

<

>

>

>

>

>

:

(84)

where ck, k ¼ 1, … , 4 are real positive constants and c5 is a real nonnegative
constant. If a, b∈þ, n,m∈

∗ , u0, v0 ∈BUC 
nð Þ and are nonnegative; the

system (84) admits a unique global nonnegative classical solution

u, vð Þ∈C þ;Xð Þ∩C1


∗
þ ;X

� �

: ♦

5. Conclusion and perspectives

We have prouved in the case where a< d that the solution is global, but it
remains an interesting question that if it is uniformly bounded or not.

As perspectives, we will replace the function g ¼ g uð Þ satisfying the hypothesis
(H4) by the function g uð Þ ¼ ur with r≥ 1 is a real constant and replace the term vm

by eαv with α>0; namely that reaction term is of exponential growth. The system
was studied on bounded domain by J. I. Kanel and M. Mokhtar in [12]. ♦
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