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Chapter

Invariants for a Dynamical
System with Strong Random
Perturbations
Elena Karachanskaya

Abstract

In this chapter we consider the invariant method for stochastic systemwith strong
perturbations, and its application to many different tasks related to dynamical sys-
tems with invariants. This theory allows constructing the mathematical model
(deterministic and stochastic) of actual process if it has invariant functions. These
models have a kind of jump-diffusion equations system (stochastic differential Itô
equations with a Wiener and a Poisson paths). We show that an invariant function
(with probability 1) for stochastic dynamical system under strong perturbations
exists. We consider a programmed control with Prob. 1 for stochastic dynamical
systems – PSP1. We study the construction of stochastic models with invariant
function based on deterministic model with invariant one and show the results of
numerical simulation. The concept of a first integral for stochastic differential equa-
tion Itô introduce by V. Doobko, and the generalized Itô –Wentzell formula for
jump-diffusion function proved us, play the key role for this research.

Keywords: Itô equation, Poisson jump, invariant function,
differential equations system construction, stochastic system with invariants,
programmed control with probability 1

1. Introduction

Models for actual dynamical processes are based on some restrictions. These
restrictions are represented as a conservation law.

The conservation law states that a particular measurable property of an isolated
dynamical system does not change as the system evolves over time.

Actual dynamical systems are open, and they are subject to strong external
disturbances that violate the laws of conservation for the given system.

Conventionally, deterministic dynamical systems have an invariant function.
Doobko1 V. in [1] proved that stochastic dynamical systems have an invariant
function as well. For dynamical system which are described using a system of
stochastic differential Itô equations, a first integral – or an invariant function, exists
with probability 1 [2–10].

When we know only a conservation law for a dynamical system, and equations
which describing this system are unknown, the invariant functions are a good tool
for determination of these equations.

1 Different variant of transliteration of the name: Dubko
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Our method differs for other (see, for example, [11]) preliminary in the fact that
we construct a system of differential equation with the given first integral under
arbitrary initial conditions. Besides, this algorithm is realized as software and it
allows us to choose a set of functions for simulation. Moreover, we can construct
both a system of stochastic differential equations and a system of deterministic ones.

The goal of this chapter is representation of modern approach to describe of
dynamical systems having a set of invariant functions.

This chapter is structured as follows. Firstly, we show that the invariant functions
for stochastic systems exist. Then, the generalized Itô – Wentzell formula is
represented. It is a differentiated rule for Jump-diffusion function under variables
which solves the Jump-diffusion equations system. This rule is basic for the necessary
and sufficient conditions for the stochastic first integral (or invariant function with
probability 1) for the Jump-diffusion equations system. The next step is the construc-
tion of the differential equations system using the given invariant functions. It can be
applied for stochastic and nonstochastic cases. The concept of PCP1 (Programmed
control with Prob. 1) for stochastic dynamical systems is introduced. Finally, we show
an application of the stochastic invariant theory for a transit from deterministic model
with invariant to the same stochastic model. Several examples of application of this
theory are given and confirmed by results of numerical calculations.

2. Notation and preliminaries

Now we introduce the main concepts which we will use below.
Let w tð Þ, t∈ 0,∞½ Þ be a Wiener process or a (standard) Brownian motion, i. e.

• w 0ð Þ ¼ 0,

• it has stationary, independent increments,

• for every t>0, w tð Þ has a normal N 0, tð Þ distribution,

• it has continuous sample paths,

• every trajectory of w tð Þ is not differentiated for all t≥0.

A ν t,Að Þ is called a Poisson random measure or standard Poisson measure (PM)
if it is non-negative integer random variable with the Poisson distribution ν t,Að Þ �
Poi tΠ Að Þð Þ, and it has the properties of measure:

• ν t,Að Þ is a random variable for every t∈ 0,T½ �, A∈
n0 ,

• ν t,Að Þ∈∪ 0f g, ν t,∅ð Þ ¼ 0,

• if A∩B ¼ ∅, then ν t,A∪Bð Þ ¼ ν t,Að Þ þ ν t,Bð Þ,

• E ν t,Að Þ½ � ¼ tΠ Að Þ,

• if #A is a number of random events from set A during t, then

Pt #A ¼ kð Þ ¼ tΠ Að Þð Þk
k!

exp �tΠ Að Þf g:
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~ν t,Að Þ ¼ ν t,Að Þ � E ν t,Að Þ½ � is called a centered Poisson measure (CPM).
Let w tð Þ ¼ w1 tð Þ, … ,wm tð Þð Þ ∗ be an m-dimensional Wiener process, such that

the one-dimensional Wiener processes wk tð Þ for k ¼ 1, … ,m is mutually
independent.

Take a vector γ ∈Θ with values in 
n0 . Denote by ν Δt,Δγð Þ the PM on 0,T½ � �


n0 modeling independent random variables on disjoint intervals and sets. The

Wiener processes wk tð Þ, k ¼ 1, … ,m, and the Poisson measure ν 0,T½ �,Að Þ defined
on the specified space are F t-measurable and independent of one another.

Consider a random process x tð Þ with values in Rn, n≥ 2, defined by the
Equation [12]:

dx tð Þ ¼ A tð Þdtþ B tð Þdw tð Þ þ
ð

Rγ

g t, γ,xð Þν dt, dγð Þ, (1)

where A tð Þ ¼ a1 tð Þ, … , an tð Þf g ∗ , B tð Þ ¼ b j,k tð Þ
� �

is n� kð Þ - matrix, and

g t, γð Þ ¼ g1 t, γð Þ, … , gn t, γð Þ
� � ∗

∈
n, and γ ∈

n0≕Rγ, while w tð Þ is an m-dimen-
sional Wiener process. In general the coefficients A tð Þ, B tð Þ, and g t, γð Þ are random
functions depending also on x tð Þ. Since the restrictions on these coefficients relate
explicitly only to the variables t and γ, we use precisely this notation for the
coefficients of (1) instead of writing A t,x tð Þð Þ, t,x tð Þð Þ, and g t,x tð Þ, γð Þ.

A system (1) is the stochastic differential Itô equation with Wiener and Poisson
perturbations, which named below as a Jump-diffusion Itô equations system
(GSDES).

We will consider the dynamical system described using ordinary deterministic
differential equations (ODE) system and ordinary stochastic differential Itô equa-
tions (SDE) system of different types, taking into account the fact that x∈Rn, n≥ 2.

3. An existence of an invariant function (with Prob.1) for stochastic
dynamical system under strong perturbations

Consider the diffusion Itô equation in R3 with orthogonal random action with
respect to the vector of the solution

dv tð Þ ¼ �μv tð Þdtþ b

∣v tð Þ∣ v tð Þ � dw tð Þ½ �, (2)

where v∈R3, w∈R3, and wi tð Þ, i ¼ 1, 2, 3 are independent Wiener processes.
This equation is a specific form of the Langevin equation.

V. Doobko in [1] showed that the system (2) have an invariant function called a
first integral of this system:

u t,vð Þ ¼ exp 2μtf g v 0ð Þj j2 � b2

μ

 !

:

This, in particular, implies that

lim
t!∞

v tð Þj j2 ¼ b2

μ
,

i.e. process ∣v tð Þ∣ is a nonrandom function and the random process v tð Þ itself is
generated in a sphere of constant radius b

ffiffi

μ
p .
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In [4, 5, 10] it is shown that invariant function exists for other stochastic
equations of Langevin type. To obtain this result, it is necessary to use the Itô’s
formula.

4. The generalized Itô – Wentzell formula for jump-diffusion function

The rules for constructing stochastic differentials, e.g., the change rule, are very
important in the theory of stochastic random processes. These are Itô’s formula
[13, 14] for the differential of a nonrandom function of a random process and the
Itô – Wentzell2 formula [15] enabling us to construct the differential of a function
which per se is a solution to a stochastic equation. Many articles address the deri-
vation of these formulas for various classes of processes by extending Itô’s formula
and the Itô – Wentzell formula to a larger class of functions.

The next level is to obtain a new formula for the generalized Itô Equation [14]
which involves Wiener and Poisson components. In 2002, V. Doobko presented [7]
a generalization of stochastic differentials of random functions satisfying GSDES
with CPM based on expressions for the kernels of integral invariants (only the ideas
of a possible proof) were sketched in [7]. The result is called” the generalized Itô –

Wentzell formula”.
In contrast to [7], the generalized Itô – Wentzell formula for the noncentered

Poisson measure was represented in [9, 16, 17]. The proof [9] of the generalized Itô
– Wentzell formula uses the method of stochastic integral invariants and equations
for their kernels. In this case the requirement on the character of the Poisson
distribution is only a general restriction, as the knowledge of its explicit form is
unnecessary. Other proofs in [16, 17] are based on traditional stochastic analysis and
the use of approximations to random functions related to stochastic differential
equations by averaging their values at each point.

The generalized Itô – Wentzell formula relying on the kernels of integral invari-
ants [9] requires stricter conditions on the coefficients of all equations under con-
sideration: the existence of second derivatives. The reason is that the kernels of
invariants for differential equations exist under certain restrictions on the
coefficients.

Since the random function F t,x tð Þð Þ has representation as stochastic diffusion
Itô equation with jumps, we can use the generalized Itô –Wentzell formula, proved
by us by several methods in accordance with different conditions for the equations
coefficients. Now we consider only one case.

We will use the following notation: Csy is the space of functions having continu-
ous derivatives of order s with respect to y, Cs0 yð Þ is the space of bounded functions
having bounded continuous derivatives of order s with respect to y.

Theorem 1.1 (generalized Itô – Wentzell formula). Consider the real function
F t,xð Þ∈ C1,2t,x , t,xð Þ∈ 0,T½ � � 

n with generalized stochastic differential of the form

dtF t,xð Þ ¼ Q t,xð Þdtþ
X

m

k¼1

Dk t,xð Þdwk tð Þ þ
ð

Rγ

G t,x, γð Þν dt, dγð Þ (3)

whose coefficients satisfy the conditions:

Q t,xð Þ∈ C1,2t,x , Dk t,xð Þ∈ C1,2t,x , G t,x, γð Þ∈ C1,2,1t,x,γ :

2 Different variants of transliteration of this formula name: Itô –Wentcell, Itô – Venttcel’, Itô – Ventzell
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If a random process x tð Þ obeys (1) and its coefficients satisfy the conditions

ai t,xð Þ∈ C1,1t,x , bij t,xð Þ∈ C1,2t,x , gi t,x, γð Þ∈ C1,2,1t,x,γ : (4)

then the stochastic differential exists and

dtF t,x tð Þð Þ ¼ Q t,x tð Þð Þdtþ
X

m

k¼1

Dk t,x tð Þð Þdwkþ

þ
X

n

i¼1

ai tð Þ
∂F t,xð Þ

∂xi
x¼x tð Þ þ

1
2

X

n

i¼1

X

n

j¼1

X

m

k¼1

bi,k tð Þb j,k tð Þ ∂
2F t,xð Þ
∂xi∂x j

�

�

�

�

�

�

�

�

�

�

x¼x tð Þ

þ

2

4

þ
X

n

i¼1

bi,k tð Þ∂Dk t,xð Þ
∂xi x¼x tð Þ

#

dtþ
X

n

i¼1

X

m

k¼1

bi,k tð Þ ∂F t,xð Þ
∂xi

�

�

�

�

�

x¼x tð Þ
dwkþ

þ
ð

Rγ

ðFðt,x tð Þ þ gðt, γÞÞ � Fðt,x tð ÞÞ½ �ν dt, dγð Þþ

þ
ð

Rγ

G t,x tð Þ þ g t, γð Þ, γð Þν dt, dγð Þ:

(5)

By analogy with the terminology proposed earlier, let us call formula (5) “the
generalized Itô – Wentzell formula for the GSDES with PM” (GIWF).

By analogy with the classical Itô and Itô –Wentzell formulas, the generalized Itô
– Wentzell formula is promising for various applications. In particular, it helped to
obtain equations for the first and stochastic first integrals of the stochastic Itô
system [9], equations for the density of stochastic dynamical invariants, Kolmogo-
rov equations for the density of transition probabilities of random processes
described by the generalized stochastic Itô differential Equation [8], as well as the
construction of program controls with probability 1 for stochastic systems [18, 19].

5. A first integral for GSDES

In the theory of ODE, there are constructed equations to find deterministic
functions, first integrals which preserve a constant value with any solutions to the
equation. The concept of a first integral plays an important role in theoretical
mechanics, for example, to solve inverse problems of mechanics or in constructing
controls of dynamical systems.

It turned out that the first integral exists in the theory of stochastic differential
equations (SDE) as well. However, there appears an additional classification
connected with different interpretations. This gives a first integral for a system of
SDE (see [1]), a first direct integral, and a first inverse integral for a system of Itô
SDE (see [20]).

Definition 1.1 [1, 3]. Let x tð Þ be an n-dimensional random process satisfying a
system of Itô SDE

dxi tð Þ ¼ aiðt,x tð ÞÞdtþ
X

m

k¼1

bik t,x tð ÞÞdwk tð Þ, x t,x 0ð ÞÞð jt¼0 ¼ x 0ð Þ,
�

(6)

whose coefficients satisfy the conditions of the existence and uniqueness of a
solution [12]. A nonrandom function u t,xð Þ∈ C1,2t,x is called a first integral of the

5
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system of SDE if it takes a constant value depending only on x 0ð Þ on any trajectory
solution to (6) with probability 1:

u t,x t,x 0ð Þð Þ ¼ u 0,x 0ð Þð Þ almost surely,
�

or, in other words, its stochastic differential is equal to zero: dtu t,x tð Þð Þ ¼ 0:

Another important notion in the theory of deterministic dynamical systems is
given by the notion of an integral invariant introduced by Poincaré [21].

As it turned out, there also exist integral invariants for stochastic dynamical
systems [2, 3]. In [7] V. Doobko give the concept of a kernel (=density) of a
stochastic integral invariant and, based on it, formulate the notion of a stochastic
first integral and a first integral as a deterministic function for GSDES with the
centered Poisson measure, which makes it possible to compose a list of first
integrals for stochastic differential equations.

Consider a random process x tð Þ, x∈
n, which is a solution to GSDES

dxi tð Þ ¼ ai t,x tð Þð Þdtþ bik t,x tð Þð Þdwk tð Þ þ
ð

Rγ

gi t,x tð Þ, γð Þν dt, dγð Þ,

x tð Þ ¼ x t,x 0ð Þ,ωÞð jt¼0 ¼ x 0ð Þ, i ¼ 1, … , n, t≥0,
(7)

whose coefficients (in general, random functions) satisfy the conditions of the
existence and uniqueness of a solution [12] and the following smoothness
conditions:

ai t,xð Þ∈ C1,1t,x , bij t,xð Þ∈ C1,2t,x , gi t,x, γð Þ∈ C1,2,1t,x,γ : (8)

Suppose that ρ t,x,ωð Þ is a random function connected with any deterministic
function f t,xð Þ∈S⊂ C1,20 t,xð Þ by the relations

ð


n
ρ t,x,ωð Þf t,xð ÞdΓ̂ xð Þ ¼

ð


n
ρ 0, y
� �

f t,x t, y
� �� �

dΓ̂ y
� �

(9)

ð


n
ρ 0,xð ÞdΓ̂ xð Þ ¼ 1, (10)

lim
∣x∣!∞

ρ 0,x,ωð Þ ¼ lim
∣x∣!∞

ρ 0,xð Þ ¼ 0, dΓ̂ xð Þ ¼
Y

n

i¼1

dxi, (11)

where y≔x 0ð Þ, and x t,y
� �

is a solution to (7), and ω is a random event.
In the particular case when f t,xð Þ ¼ 1, conditions (9) and (10) imply that

ð


n
ρ t,x,ωð ÞdΓ̂ xð Þ ¼

ð


n
ρ 0, y
� �

dΓ̂ y
� �

¼ 1, (12)

i.e., for the random function ρ t,x,ωð Þ, there exists a nonrandom functional
preserving a constant value:

ð


n
ρ t,x,ωð ÞdΓ̂ xð Þ ¼ 1: (13)

Then, with conditions (10) and (11), Eq. (9) can be regarded as a stochastic
integral invariant, and the function (t, x) can be viewed as its density.

6
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Definition 1.2 [3]. A nonnegative random function ρ t,x,ωð Þ is referred to as a
stochastic kernel or the stochastic density of a stochastic integral invariant (of nth
order) if conditions (9), (10), and (11) are held.

Note that a substantial difference which made it possible to consider the invari-
ance of the random volume on the basis of a kernel of an integral operator in [3, 7],
is that (9) contains a functional factor. Thus, the notion of a kernel of an integral
invariant [3] for a system of ordinary differential equations can be regarded as a
particular case by taking f t,xð Þ ¼ 1 and excluding from (7) the randomness
determined by the Wiener and Poisson processes.

Using the GIWF (5), we obtain equation for the stochastic kernel function [9].

dtρ t,x,ωð Þ ¼ � ∂ρ t,x,ωð Þbi k t,xð Þ
∂xi

dwk tð Þ þ ð� ∂ ρ t,x,ωð Þaiðt,xÞð Þ
∂xi

þ

þ 1
2
∂
2 ρ t,x,ωð Þbi kðt,xÞb j kðt,xÞ
� �

∂xi∂x j
Þdtþ

þ
ð

Rγ

ρ t,x� g t,x�1 t,x, γð Þ, γ,ωÞ
� �

� J x�1 t,x, γð Þ
� �

� ρ t,x,ωð Þ
� �

ν dt, dγð Þ,
	

(14)

under restrictions

ρ t,x,ωð Þjt¼0 ¼ ρ 0,x,ωð Þ ¼ ρ 0,xð Þ∈ C20 xð Þ,

lim
∣x∣!∞

ρ 0,x,ωð Þ ¼ lim
∣x∣!∞

ρ 0,xð Þ ¼ 0, lim
∣x∣!∞

∂ρ 0,x,ωð Þ
∂xi

¼ lim
∣x∣!∞

∂ρ 0,xð Þ
∂xi

¼ 0:

This result plays a major role in obtaining of equation for the stochastic first
integral.

6. Necessary and sufficient conditions for the stochastic first integral

Lemma 1.1. If ρ t,x,ωð Þ is a stochastic kernel of an integral invariant of n th order
of a stochastic process x tð Þ starting from a point x 0ð Þ then, for every t, it satisfies
the equality

ρ t,x t,x 0ð Þð Þ,ωð ÞJ t,x 0ð Þ,ωð Þ ¼ ρ 0,x 0ð Þð Þ,

where J t,x 0ð Þ,ωð Þ is the Jacobian of transition from x tð Þ to x 0ð Þ.
Definition 1.3 A set of kernels of integral invariants of nth order is called

complete if any other function that is the kernel of this integral invariant can be
presented as a function of the elements of this set.

In [9] it is shown that a system of GSDE (7) whose coefficients satisfy the
conditions in (8), has a complete set of kernels consisting of nþ 1ð Þ functions.

Suppose that ρl t,x,ωð Þ 6¼ 0, l ¼ 1, … ,m, m≤ nþ 1 are kernels of the integral

invariant (9). Lemma 1.1 implies that, for any l 6¼ nþ 1, the ratio
ρl t,x t,yð Þ,ωð Þ

ρnþ1 t,x t,yð Þ,ωð Þ is a
constant depending only on the initial condition x 0ð Þ ¼ y for every solution x tð Þ to
the GSDE (7) because

ρs t,x t, y
� �

,ω
� �

ρnþ1 t,x t,y
� �

,ω
� � ¼ ρs 0,y

� �

ρnþ1 0, y
� �

: (15)
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Since for some realization ω1 we have

u t,x t,x 0ð Þð Þð Þ � ρl t,x t,x 0ð Þð Þ,ω1ð Þ
ρs t,x t,x 0ð Þð Þ,ω1ð Þ ¼

ρl 0,x 0ð Þð Þ
ρs 0,x 0ð Þð Þ � u 0,x 0ð Þð Þ,

and it means, that dtu t,x tð Þð Þ ¼ 0.
Definition 1.4 A random function u t,x,ωð Þ defined on the same probability

space as a solution to (7) is referred to as a stochastic first integral of the system (7)
of Itô Ë† GSDE with NCM if the following condition holds with probability 1:

u t,x t,x 0ð Þ,ωð Þð Þ ¼ u 0,x 0ð Þð Þ almost surely

for every solution x t,x 0ð Þ,ωð Þ to (7).
For practical purposes, for example, to construct program controls for a dynam-

ical system under strong random perturbations, the presence of a concrete realiza-
tion is important, i.e., the parameter ω is absent in what follows. In this connection,
we introduce one more notion.

Definition 1.5 A nonrandom function u t,xð Þ is called a first integral of the system
of GSDE (7) if it preserves a constant value with probability 1 for every realization
of a random process x tð Þ that is a solution to this system:

u t,x t,x 0ð Þð Þð Þ ¼ u 0,x 0ð Þð Þ almost surely:

Thus, a stochastic first integral includes all trajectories (or realizations) of the
random process while the first integral is related to one realization.

Construct an equation for u t,x,ωð Þ using the relation

ln us t,x,ωð Þ ¼ ln ρs t,x,ωð Þ � ln ρl t,x,ωð Þ, (16)

as a result of assertion (15). Let us differentiate ln ρ t,xð Þ (omit ω) using gener-
alized Itô – Wentzell formula:

dt ln ρ t,xð Þ ¼ 1
ρ t,xð Þ

~dtρ t,xð Þ � 1
2ρ2 t,xð Þ � ∂ ρ t,xð Þbi k t,xð Þð Þ

∂xi


 �2

dtþ

þ
ð

Rγ

ln ρs t,x� g t,x t, y
� �

, γÞ, γ
� �

J x�1 t,x, γð Þ
� �� �

� ln ρs t,xð Þ
� �

ν dt, dγð Þ,
	

(17)

where ~dtρ t,xð Þ is the right side of Eq.(14) without the integral expression.
Having written down the equations for ln ρs t,xð Þ and ln ρl t,xð Þ, and taking into
account this result and Eq.(16), we obtain:

dtu t,x,ωð Þ ¼ �ai t, xð Þ ∂u t, x,ωð Þ
∂xi

þ 1
2
bi kðt, xÞb j kðt, xÞ

∂
2u t, x,ωð Þ
∂xi∂x j

�
�

�bi k t,xð Þ ∂

∂xi
b j k t,xð Þ ∂u t,x,ωð Þ

∂x j


 �

dt� bi k t,xð Þ ∂u t,x,ωð Þ
∂xi

dwk tð Þþ

þ
ð

Rγ

u t,x� g t,x�1 t,x, γð Þ, γÞ,ω
� �

� u t,x,ωð Þ
� �

ν dt, dγð Þ,
	

(18)

which means that a stochastic first integral u t,x,ωð Þ of the Itô generalized
Eq. (7) is a solution to the GSDE (18).

For a first integral which is a nonrandom function of one realization, the
differential is also defined by an equation of the form of (18).

8
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Theorem 1.2 Let x tð Þ be a solution to the GSDES (7) with conditions (8). A
nonrandom function u t,xð Þ∈ C1,2t,x is a first integral of system (7) if and only if it
satisfies the conditions:

1. ∂u t,xð Þ
∂t þ ∂u t,xð Þ

∂xi
ai t,xð Þ � 1

2 b j k t,xÞ ∂bi k t, xð Þ
∂x j

� i

¼ 0
h

,

2.bi k t,xð Þ ∂u t, xð Þ
∂xi

¼ 0, for all k ¼ 1,m,

3.u t,xð Þ � u t,xþ g t,x, γð Þð Þ ¼ 0 for any γ ∈Rγ in the entire domain of definition
of the process.

Theorem (6) allows us to obtain a method for construction of differential
equations systems on the basis of the given set of invariant functions.

7. Construction of the differential equations system using the given
invariant functions

The concept of a first integral for a system of stochastic differential equations
plays a key role in our theory. In this section, we will use a set of first integrals for
the construction of a system of differential equations.

Let us write Eq. (7) in matrix form:

dX tð Þ ¼ A t,X tð Þð Þdtþ B t,X tð Þð Þdw tð Þ þ
ð

Rγ

Θ t,X tð Þ, γð Þν dt, dγð Þ

X 0ð Þ ¼ x0, t≥0:

(19)

Theorem 1.3 [22]. Let X tð Þ be a solution of the Eq. (19) and let a nonrandom
function s t, xð Þ be continuous together with its first-order partial derivatives with

respect to all its variables. Assume the set e
!
o, e

!
1, … , e!n

n o

defines an orthogonal

basis in Rþ � Rn. If function s t, xð Þ is a first integral for the system (19), then the
coefficients of Eq. (19) and the function s t, xð Þ together are related by the conditions:

1. Functions Bk t, xð Þ ¼Pn
i¼1bik t, xð Þ e!i k ¼ 1, … ,mf gð Þ, which determine

columns of the matrix B t, xð Þ, belong to a set

Bk t, xð Þ∈ qoo t, xð Þ � det

e
!
1 … e

!
n

∂s t, xð Þ
∂x1

…
∂s t, xð Þ
∂xn

f 31 … f 3n

… … …

f n1 … f nn

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

, (20)

where qoo t, xð Þ is an arbitrary nonvanishing function,

2. Coefficient A t, xð Þ belongs to a set of functions defined by

A t, xð Þ∈ R t, xð Þ þ 1
2

X

n

k¼1

∂Bk t, xð Þ
∂x

� 

� Bk t, xÞð g,
(

(21)
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where a column matrix R t, xð Þ with components ri t, xð Þ, i ¼ 1, … , nf g, is defined
as follows:

C�1 t, xð Þ � detH t, xð Þ ¼ e
!
o þ

X

n

i¼1

ri t, xð Þ e!i,

C t, xð Þ is an algebraic adjunct of the element e
!
o of a matrix H t, xð Þ and

detC t, xð Þ 6¼ 0, a matrix H t, xð Þ is defined as

H t, xð Þ ¼

e
!
o e

!
1 … e

!
n

∂s t, xð Þ
∂t

∂s t, xð Þ
∂x1

…
∂s t, xð Þ
∂xn

h30 h31 … h3n

… … … …

hnþ1,0 hnþ1,1 … hnþ1,n

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

, (22)

and ∂Bk t, xð Þ
∂x

h i

is a Jacobi matrix for function Bk t, xð Þ,
3. Coefficient Θ t,X, γð Þ ¼Pn

i¼1γi t, x, γð Þ e!i, related to Poisson measure, is
defined by the representation Θ t, x, γð Þ ¼ y t, x, γð Þ � x, where y t, x, γð Þ is a
solution of the differential equations system

∂y �, γð Þ
∂γ

¼ det

e
!
1 e

!
2 ⋯ e

!
n

∂s t, y �, γð Þð Þ
∂y1

∂s t, y �, γð Þð Þ
∂y2

⋯
∂s t, y �, γð Þð Þ

∂yn

φ31 t, y �, γð Þð Þ φ32 t, y �, γð Þð Þ ⋯ φ3n t, y �, γð Þð Þ
⋯ ⋯ ⋯ ⋯

φn1 t, y �, γð Þð Þ φn2 t, y �, γð Þð Þ ⋯ φnn t, y �, γð Þð Þ

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

: (23)

This solution satisfies the initial condition: y t, x, γð Þjγ¼0 ¼ x.
The arbitrary functions f ij ¼ f ij t, xð Þ, hij ¼ hij t, xð Þ, and φij ¼ φij t, y �, γð Þð Þ are

defined by the equalities f ij t, xð Þ ¼ ∂ f i t, xð Þ
∂x j

, hij t, xð Þ ¼ ∂hi t, xð Þ
∂x j

, and φij t, y �, γð Þð Þ ¼
∂φi t, y �, γð Þð Þ

∂y j
. Sets of functions φi t, y �, γð Þð Þf g and the function g t, xð Þ together form a

class of independent functions.
Using this theorem, we can to construct SDE system of different types and ODE

system. Choice of arbitrary functions allows us to construct a set of differential equa-
tions systems with the given invariant functions. Theorem (7) allows us to introduce a
concept of Programmed control with probability 1 for stochastic dynamical system.

8. Programmed control with Prob. 1 for stochastic dynamical systems

Definition 1.6 [18, 19]. A PCP1 is called a control of stochastic system which
allows the preservation with probability 1 of a constant value for the same function
which depends on this systems position for time periods of any length T.

Let us consider the stochastic nonlinear jump of diffusion equations system:

dX tð Þ ¼ P t,X tð Þð Þ þ Z t,X tð Þð Þ � u t,X tð Þð Þð Þdtþ B t,X tð Þð Þ þ K t,X tð Þð Þð Þdw tð Þþ

þ
ð

Rγ

L t,X tð Þ, γð Þ þ Λ t,X tð Þð Þð Þν dt, dγð Þ,

(24)
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where P �ð Þ, Z �ð Þ are given matrix functions and B �ð Þ, L �ð Þ are the functions that
may either be known or not. For such systems we construct a unit of programmed
control u t,X tð Þð Þ,K t,X tð Þð Þ,M t,X tð Þð Þf g which allows the system (24) to be on the
given manifold u t,X tð ÞÞð g ¼ u 0, x0ð Þf gf with Prob. 1 (PCP1) for each t∈ 0,T½ �,
T ≤∞.

Suppose that the nonrandom function s t,X tð Þð Þ is the first integral for the same
stochastic dynamical system. The PCP1 u t,X tð Þð Þ,K t,X tð Þð Þ,M t,X tð Þð Þf g is the
solution for the algebraic system of linear equations.

Theorem 1.4 Let a controlled dynamical system be subjected to Brownian per-
turbations and Poisson jumps. The unit of PCP1 u t,X tð Þð Þ,K t,X tð Þð Þ,M t,X tð Þð Þf g,
allowing this system to remain with probability 1 on the dynamically structured
integral mfd s t,X t, xoð Þ,ωð Þ ¼ s 0, xoð Þ, is a solution of the linear equations system
(with respect to functions u t,x tð Þð Þ), K t,X tð Þð Þ, M t,X tð Þð Þ which consists of
Eq. (19) and Eq. (24). The coefficients of the Eq. (19), (and the coefficients of the
Eq. (24) respectively) are determined by the theorem 7. The response to the
random action is defined completely.

We show how the stochastic invariants theory can be applied to solve different
tasks.

9. Stochastic models with invariant function which are based on
deterministic model with invariant one

In this section we consider a few examples for application of the theory above to
modeling actual random processes with invariants [23]. Firstly, we consider an
example of construction of a differential equation system with the given invariant.
Secondly, we study a general scheme for the PCP1 determination. And finally, we
show the possibility of construction of stochastic analogues for classical models
described by a differential equations system with an invariant function. The
suggested method of stochastization is based on both the concept of the first
integral for a stochastic differentialItô equations system (SDE) and the theorem for
construction of the SDE system using its first integral.

9.1 Construction of a differential equations system

It is necessary to construct a differential equations system for X∈R3, t≥0 such
that the equality

X tð Þ � Y2
1 tð Þ þ Y2 tð Þ þ et ¼ 0 (25)

is satisfied with Prob.1. The equality (25) means that the differential equations
system has a first integral s t,X tð Þ,Y1 tð Þ,Y2 tð Þð Þ ¼ X tð Þ � Y2

1 tð Þ þ Y2 tð Þ þ et with
initial condition 0, 1, 0ð Þ ∗ :

s t,X tð Þ,Y1 tð Þ,Y2 tð Þð Þ � X tð Þ � Y2
1 tð Þ þ Y2 tð Þ þ et ¼ s 0, x 0ð Þ,Y1 0ð Þ,Y2 0ð Þð Þ:

We have

Bk �ð Þ ¼ q00 �ð Þdet
e
!
1 e

!
2 e

!
3

1 �2y1 1

f 1 �ð Þ f 2 �ð Þ f 3 �ð Þ

2

6

4

3

7

5
¼ q00 �ð Þ

�2y1 f 3 �ð Þ � f 2 �ð Þ
� f 3 �ð Þ þ f 1 �ð Þ
f 2 �ð Þ þ 2y1 f 1 �ð Þ

2

6

4

3

7

5
¼

b1k �ð Þ
b2k �ð Þ
b3k �ð Þ

2

6

4

3

7

5
:

11

Invariants for a Dynamical System with Strong Random Perturbations
DOI: http://dx.doi.org/10.5772/intechopen.96235



Therefore,

Bk �ð Þ,∇zð ÞBk �ð Þ ¼ q200 �ð Þ

∂ �2Y1 f 3 �ð Þ � f 2 �ð Þ
� �

∂x

∂ �2Y1 f 3 �ð Þ � f 2 �ð Þ
� �

∂Y1

∂ �2Y1 f 3 �ð Þ � f 2 �ð Þ
� �

∂Y2

∂ � f 3 �ð Þ þ f 1 �ð Þ
� �

∂x

∂ � f 3 �ð Þ þ f 1 �ð Þ
� �

∂Y1

∂ � f 3 �ð Þ þ f 1 �ð Þ
� �

∂Y2

∂ f 2 �ð Þ þ 2Y1 f 1 �ð Þ
� �

∂x

∂ f 2 �ð Þ þ 2Y1 f 1 �ð Þ
� �

∂Y1

∂ f 2 �ð Þ þ 2Y1 f 1 �ð Þ
� �

∂Y2

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

�

�
�2Y1 tð Þ f 3 �ð Þ � f 2 �ð Þ

� f 3 �ð Þ þ f 1 �ð Þ
f 2 �ð Þ þ 2Y1 tð Þ f 1 �ð Þ

2

6

4

3

7

5
¼

p1 �ð Þ
p2 �ð Þ
p3 �ð Þ

2

6

4

3

7

5
:

Thus the new drift coefficients are

A1 �ð Þ ¼ et h2 f 3 � f 2h3
� �

þ 2Y1 h0 f 3 � f 0h3
� �

þ h0 f 2 � f 0h2

f 2h3 � h2 f 3 þ f 1h2 � h1g2 � 2Y1 h1 f 3 � f 1h3
� � þ p1

2
,

A2 �ð Þ ¼ et h3 f 1 � f 3h1
� �

þ h0 f 3 � f 0h3 þ h0 f 1 � f 0h1

f 2h3 � h2 f 3 þ f 1h2 � h1g2 � 2Y1 h1 f 3 � f 1h3
� �þ p2

2
,

A3 �ð Þ ¼ et h2 f 1 � f 2h1
� �

� 2Y1 h0 f 1 � f 0h1
� �

þ h0 f 2 � f 0h2

f 2h3 � h2 f 3 þ f 1h2 � h1g2 � 2Y1 h1 f 3 � f 1h3
� � þ p3

2
:

(26)

According to term 3 of Theorem 1.3, we will determine a coefficient for Poisson
measure. Now we rename variables: Z � Z1,Z2,Z3ð Þ ∗≔ X,Y1,Y2ð Þ ∗ . Then, we have:

u t,Zð Þ ¼ Z1 � Z2
2 þ Z3 þ et,

u t,Zð Þ � u t,Z þ g t,Z, γð Þð Þ � u t,Zð Þ � u t,Vð Þ ¼ 0,

V ¼ Z þ g t,Z, γð Þ,
g t,Z, γð Þ ¼ V t,Z, γð Þ � Z,

where a function V t,Z, γð Þ solves the a differential equations system:

∂V �, γð Þ
∂γ

¼ det
e
!
1 e

!
2 e

!
3

1 �2Z2 1

φ1 �, γð Þ φ2 �, γð Þ φ3 �, γð Þ

2

6

4

3

7

5
¼

�2Z2φ3 �, γð Þ � φ2 �, γð Þ
φ1 �, γð Þ � φ3 �, γð Þ

φ2 �, γð Þ þ 2Z2φ1 �, γð Þ,

2

6

4

3

7

5
,

and satisfies the initial condition V �, 0ð Þ ¼ Z. Then, we determine functions
g1 �, γð Þ, g2 �, γð Þ, g3 �, γð Þ.

Assume, that φ1 �, γð Þ ¼ 1
γþ1, φ2 �, γð Þ ¼ 2γ, φ3 �, γð Þ ¼ 1. Then, we get:

g1 t,X tð Þ,Y t,ð Þ, γð Þ ¼ �2Y1 tð Þγ � γ2 � x tð Þ,

g2 t,X tð Þ,Y t,ð Þ, γð Þ ¼ ln ∣γ þ 1∣� γ þ 1� Y1 tð Þ,

g3 t,X tð Þ,Y t,ð Þ, γð Þ ¼ �γ2 þ 2Y1 ln ∣γ þ 1∣� Y2:

Finally, we have constructed three variants of differential equations system:
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1. deterministic differential equations system:

dX tð Þ
dt

¼ et h2 f 3 � f 2h3
� �

þ 2Y1 h0 f 3 � f 0h3
� �

þ h0 f 2 � f 0h2

f 2h3 � h2 f 3 þ f 1h2 � h1g2 � 2Y1 h1 f 3 � f 1h3
� �

dY1 tð Þ
dt

¼ et h3 f 1 � f 3h1
� �

þ h0 f 3 � f 0h3 þ h0 f 1 � f 0h1

f 2h3 � h2 f 3 þ f 1h2 � h1g2 � 2Y1 h1 f 3 � f 1h3
� �

dY2 tð Þ
dt

¼ et h2 f 1 � f 2h1
� �

� 2Y1 h0 f 1 � f 0h1
� �

þ h0 f 2 � f 0h2

f 2h3 � h2 f 3 þ f 1h2 � h1g2 � 2Y1 h1 f 3 � f 1h3
� �

:

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

2. stochastic differential equations system (Itó diffusion equations):

dX tð Þ ¼ et h2 f 3 � f 2h3
� �

þ 2Y1 h0 f 3 � f 0h3
� �

þ h0 f 2 � f 0h2

f 2h3 � h2 f 3 þ f 1h2 � h1g2 � 2Y1 h1 f 3 � f 1h3
� � þ 1

2
�2Y1 tð Þ f 3 �ð Þ � f 2 �ð Þ
� �

" #

dtþ

þ �2y1 f 3 �ð Þ � f 2 �ð Þ
� �

dw1 tð Þ

dY1 tð Þ ¼ et h3 f 1 � f 3h1
� �

þ h0 f 3 � f 0h3 þ h0 f 1 � f 0h1

f 2h3 � h2 f 3 þ f 1h2 � h1g2 � 2Y1 h1 f 3 � f 1h3
� �þ 1

2
� f 3 �ð Þ þ f 1 �ð Þ
� �

" #

dtþ

þ � f 3 �ð Þ þ f 1 �ð Þ
� �

dw2 tð Þ

dY2 tð Þ ¼ et h2 f 1 � f 2h1
� �

� 2Y1 h0 f 1 � f 0h1
� �

þ h0 f 2 � f 0h2

f 2h3 � h2 f 3 þ f 1h2 � h1g2 � 2Y1 h1 f 3 � f 1h3
� � þ 1

2
f 2 �ð Þ þ 2Y1 tð Þ f 1 �ð Þ

� �

" #

dtþ

þ f 2 �ð Þ þ 2y1 f 1 �ð Þ
� �

dw2 tð Þ
:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

3. stochastic differential equations system (jump-diffusion Itó equations):

dX tð Þ ¼ et h2 f 3 � f 2h3
� �

þ 2Y1 h0 f 3 � f 0h3
� �

þ h0 f 2 � f 0h2

f 2h3 � h2 f 3 þ f 1h2 � h1g2 � 2Y1 h1 f 3 � f 1h3
� � þ 1

2
�2Y1 tð Þ f 3 �ð Þ � f 2 �ð Þ
� �

" #

dtþ

þ �2y1 f 3 �ð Þ � f 2 �ð Þ
� �

dw1 tð Þ þ
Ð

Rγ
�2Y1 tð Þγ � γ2 � x tð Þ½ �ν dt, dγð Þ,

dY1 tð Þ ¼ et h3 f 1 � f 3h1
� �

þ h0 f 3 � f 0h3 þ h0 f 1 � f 0h1

f 2h3 � h2 f 3 þ f 1h2 � h1g2 � 2Y1 h1 f 3 � f 1h3
� �þ 1

2
� f 3 �ð Þ þ f 1 �ð Þ
� �

" #

dtþ

þ � f 3 �ð Þ þ f 1 �ð Þ
� �

dw2 tð Þ þ
Ð

Rγ
ln jγ þ 1j�γ þ 1� Y1 tð Þ½ �ν dt, dγð Þ,

dY2 tð Þ ¼ et h2 f 1 � f 2h1
� �

� 2Y1 h0 f 1 � f 0h1
� �

þ h0 f 2 � f 0h2

f 2h3 � h2 f 3 þ f 1h2 � h1g2 � 2Y1 h1 f 3 � f 1h3
� � þ 1

2
f 2 �ð Þ þ 2Y1 tð Þ f 1 �ð Þ

� �

" #

dtþ

þ f 2 �ð Þ þ 2y1 f 1 �ð Þ
� �

dw2 tð Þ þ
Ð

Rγ
�γ2 þ 2Y1 ln jγ þ 1j�Y2½ �ν dt, dγð Þ:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(27)

We choose the functions q00 �ð Þ, f i �ð Þ and hi �ð Þ, i ¼ 1, 2, 3, in accordance with the
restriction of the task and taking into account the utility for modeling.

9.2 Transit from deterministic model with invariant to the same stochastic
model

Now we describe a general scheme for application of the theory above.
The suggested method of stochastization is based on both the concept of the first

integral for a stochastic differentialItô equations system (SDE) and the theorem for
construction of the SDE system using its first integral.
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Let us consider a classical model

dy1 tð Þ ¼ F1 t, y tð Þ
� �

dt,

dy2 tð Þ ¼ F2 t,y tð Þ
� �

dt,

dy3 tð Þ ¼ F3 t, y tð Þ
� �

dt,

8

>

<

>

:

(28)

with an invariant u t, y
� �

.
Then we construct the GSDE system, taking into account the equality

u t,x tð Þð Þ ¼ u 0,x 0ð Þð Þ ¼ C:

dx1 tð Þ ¼ a1 t,x tð Þð Þdtþ b1 t,x tð Þð Þdw tð Þ þ
Ð

g1 t,x tð Þ, γð Þν dt, dγð Þ,
dx2 tð Þ ¼ a2 t,x tð Þð Þdtþ b2 t,x tð Þð Þdw tð Þ þ

Ð

g2 t,x tð Þ, γð Þν dt, dγð Þ,
dx3 tð Þ ¼ a3 t,x tð Þð Þdtþ b3 t,x tð Þð Þdw tð Þ þ

Ð

g3 t,x tð Þ, γð Þν dt, dγð Þ:

8

>

<

>

:

(29)

Hence, the stochastic model has a representation

dy1 tð Þ ¼ a1 t, y tð Þ
� �

dtþ b1 t,y tð Þ
� �

dw tð Þ þ
Ð

g1 t,y tð Þ, γ
� �

ν dt, dγð Þ,
dy2 tð Þ ¼ a2 t, y tð Þ

� �

dtþ b2 t,y tð Þ
� �

dw tð Þ þ
Ð

g2 t,y tð Þ, γ
� �

ν dt, dγð Þ,
dy3 tð Þ ¼ a3 t, y tð Þ

� �

dtþ b3 t, y tð Þ
� �

dw tð Þ þ
Ð

g3 t,y tð Þ, γ
� �

ν dt, dγð Þ,
y 0ð Þ ¼ y0:

8

>

>

>

<

>

>

>

:

(30)

Further, we determine complementary function which is unit of control func-
tions for PCP1:

s1 t,y tð Þ
� �

¼ a1 t,y tð Þ
� �

� F1 t,y tð Þ
� �

,

s2 t,y tð Þ
� �

¼ a2 t,y tð Þ
� �

� F2 t,y tð Þ
� �

,

s3 t,y tð Þ
� �

¼ a3 t, y tð Þ
� �

� F3 t, y tð Þ
� �

:

8

>

<

>

:

(31)

Finally, we have constructed stochastic analogue for classical model described by
a differential equations system and having an invariant function.

9.3 The SIR (susceptible-infected-recovered) model

The SIR is a simple mathematical model of epidemic [24], which divides the
(fixed) population of N individuals into three” compartments” which may vary as a
function of time t.

S tð Þ are those susceptible but not yet infected with the disease,
I tð Þ is the number of infectious individuals,
R tð Þ are those individuals who have recovered from the disease and now have

immunity to it,
the parameter λ describes the effective contact rate of the disease,
the parameter μ is the mean recovery rate.
The SIR model describes the change in the population of each of these compart-

ments in terms of two parameters:

dS tð Þ
dt

¼ �λ
S tð ÞI tð Þ

N
,

dI tð Þ
dt

¼ λ
S tð ÞI tð Þ

N
� μI tð Þ,

dR tð Þ
dt

¼ μI tð Þ,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(32)
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and its restrictsion is

S tð Þ þ I tð Þ þ R tð Þ ¼ N: (33)

Let the model with strong perturbation be

dS tð Þ ¼ �λ
S tð ÞI tð Þ

N
þ s1 t, S tð Þ, I tð Þ,R tð Þð Þ


 �

dtþ

þb1 t, S tð Þ, I tð Þ,R tð Þð Þdw tð Þ þ
Ð

Rγ
g1 t, S tð Þ, I tð Þ,R tð Þ, γð Þν dt, dγð Þ,

dI tð Þ ¼ λ
S tð ÞI tð Þ

N
� μI tð Þ þ s2 t, S tð Þ, I tð Þ,R tð Þð Þ


 �

dtþ

þb1 t, S tð Þ, I tð Þ,R tð Þð Þdw tð Þ þ
Ð

Rγ
g2 t, S tð Þ, I tð Þ,R tð Þ, γð Þν dt, dγð Þ,

dR tð Þ ¼ μS tð Þ þ s3 t, S tð Þ, I tð Þ,R tð Þð Þð Þdtþ
þb1 t, S tð Þ, I tð Þ,R tð Þð Þdw tð Þ þ

Ð

Rγ
g3 t, S tð Þ, I tð Þ,R tð Þ, γð Þν dt, dγð Þ,

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(34)

and

u t, S tð Þ, I tð Þ,R tð Þð Þ ¼ S tð Þ þ I tð Þ þ R tð Þ �N � 0: (35)

Suppose that the function u t, x, y, zð Þ ¼ xþ yþ z�N is a first integral,
v t, x, y, zð Þ ¼ 2e�t þ x and h t, x, y, zð Þ ¼ y are complementary functions, and
q t, x, y, zð Þ ¼ x is arbitrary function. The initial condition is: x 0ð Þ ¼ 1, y 0ð Þ ¼ 0,
z 0ð Þ ¼ 0. Then constructed differential equations system has the form

dx tð Þ
dy tð Þ
dz tð Þ

2

6

6

4

3

7

7

5

¼
2e�t

0

�2e�t

2

6

6

4

3

7

7

5

dtþ
0

x tð Þ
�x tð Þ

2

6

6

4

3

7

7

5

dw tð Þ þ
ð

Rγ

0

x tð ÞγÞ
�x tð Þγ

2

6

6

4

3

7

7

5

ν dt, dγð Þ: (36)

Let us simulate a numerical solution of Eg.(36), where N ¼ 1 (for example).
Figure 1 shows simulation for system without jumps, the Figure 2 shows the
processes with jumps.

Figure 1.
Numerical solution for Eq.(36) without jumps.
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In such a way we could use the system of differential equations

dy1 tð Þ ¼ 2e�tdt,

dy2 tð Þ ¼ y1 tð Þdw tð Þ þ
Ð

γy1 tð Þν dt, dγð Þ,

dy3 tð Þ ¼ �2e�tdtþ y1 tð Þdw tð Þ �
Ð

γy1 tð Þν dt, dγð Þ,

y 0ð Þ ¼ y0,

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(37)

as initial step for construction of stochastic SIR-model. A good choice of com-
plementary functions v t, x, y, zð Þ and h t, x, y, zð Þ allows us to obtain such coefficients
that ensure that the solution x tð Þ, y tð Þ, z tð Þf g of the differential equations system
satisfy some reasonable limitations.

9.4 The predator–prey model

The Lotka - Volterra equations or the predator–prey equations used to describe
the dynamics of biological systems in which two species interact, one as a predator
and the other as prey.

The Lotka - Volterra model makes a number of assumptions, not necessarily
realizable in nature, about the environment and evolution of the predator and prey
populations:

• The prey population finds ample food at all times.

• The food supply of the predator population depends entirely on the size of the
prey population.

• The rate of change of population is proportional to its size.

Figure 2.
Numerical solution for Eq.(36) with jumps.
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• During the process, the environment does not change in favor of one species,
and genetic adaptation is inconsequential.

• Predators have limitless appetite.

Let us note: N1 tð Þ is the number of prey, and N2 tð Þ is the number of some
predator, ε1, ε2, η1 and η2 are positive real parameters describing the interaction of
the two species.

The populations change through time according to the pair of equations:

dN1 tð Þ ¼ N1 tð Þ ε1 � η1N2 tð Þð Þdt,
dN2 tð Þ ¼ �N2 tð Þ ε2 � η2N1 tð Þð Þdt:

�

(38)

Eq. (38) has the invariant function

N�ε2
1 tð Þeη2N1 tð Þ ¼ CNε1

2 tð Þe�η1N2 tð Þ, (39)

where C ¼ const.
We can introduce the stochastic model as a form

dx1 tð Þ ¼ ε1x1 tð Þ � η1x1 tð Þx2 tð Þ þ s1 t, x1 tð Þ, x2 tð Þð Þð Þdtþ

þb1 t, x1 tð Þ, x2 tð Þð Þdw1 tð Þ þ
Ð

Rγ
g1 t, x1 tð Þ, x2 tð Þ, γð Þν dt, dγð Þ,

dx2 tð Þ ¼ �ε2x2 tð Þ þ η2x1 tð Þx2 tð Þ þ s2 t, x1 tð Þ, x2 tð Þð Þð Þdtþ

þb2 t, x1 tð Þ, x2 tð Þð Þdw2 tð Þ þ
Ð

Rγ
g2 t, x1 tð Þ, x2 tð Þ, γð Þν dt, dγð Þ,

x1 0ð Þ ¼ N1, x2 0ð Þ ¼ N2,

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(40)

with condition

u t,x tð Þð Þ ¼ x�ε2
1 tð Þeη2x1 tð Þ � Cxε12 tð Þe�η1x2 tð Þ

: (41)

Let us assume that ε1 ¼ 2, ε2 ¼ 1, η1 ¼ η2 ¼ 1, and C ¼ 1, and initial condition is
x 0ð Þ ¼ y 0ð Þ ¼ 1. The function u t, x, yð Þ ¼ x�1ex � y2e�2y is a first integral,
h t, x, yð Þ ¼ y� xþ e�t and q t, x, yð Þ ¼ x are complementary functions.

We cannot find an analytical solution of the differential equations system

∂z1 t, x, y, γð Þ
∂γ

¼ e�z2 t,x,y,γð Þz1 t, x, y, γð Þz2 t, x, y, γð Þ z2 t, x, y, γð Þ � 2ð Þ,

∂z2 t, x, y, γð Þ
∂γ

¼ �e�z1 t,x,y,γð Þ 1� z�1
1 t, x, y, γð Þ

� �

:

8

>

>

<

>

>

:

Then, the constructed SDE system includes only Wiener perturbation:

dx tð Þ
dy tð Þ

" #

¼
A t, x tð Þ, y tð Þð Þ þ B t, x tð Þ, y tð Þð Þ þ C t, x tð Þ, y tð Þð Þ

D t, x tð Þ, y tð Þð Þ þ E t, x tð Þ, y tð Þð Þ

" #

dtþ

þ
x tð Þe�y tð Þ y2 tð Þ � 2y tð Þð Þ

ex tð Þ

x tð Þ � ex tð Þ

2

6

4

3

7

5
dw tð Þ,

(42)
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where

A t, x tð Þ, y tð Þð Þ ¼ 0:5e�y tð Þx tð Þ y2 tð Þ � 2y tð Þe�y tð Þ
� �2

,

B t, x tð Þ, y tð Þð Þ ¼ 0:5e�y tð Þ x tð Þex tð Þ � ex tð Þx�1 tð Þ
� �

2� 4y tð Þ þ y2 tð Þ
� �

,

C t, x tð Þ, y tð Þð Þ ¼ � e�te�y tð Þ y2 tð Þ � 2y tð Þð Þ
ex tð Þx�1 tð Þ � 2y tð Þe�y tð Þ � ex tð Þx�2 tð Þ þ y2 tð Þe�y tð Þ ,

D t, x tð Þ, y tð Þð Þ ¼ e�tex tð Þ x�1 tð Þ � x�2 tð Þð Þ
ex tð Þx�1 tð Þ � 2y tð Þe�y tð Þ � ex tð Þx�2 tð Þ þ y2 tð Þe�y tð Þ ,

E t, x tð Þ, y tð Þð Þ ¼ �0:5ex tð Þe�y tð Þ y2 tð Þ � 2y tð Þ
� �

1� x�1 tð Þ þ x tð Þ � 2þ 2x�1 tð Þ
� �

:

(43)

Figure 3.
Numerical simulation 1 for solution of Eq.(44).

Figure 4.
Numerical simulation 2 for solution of Eq.(44).
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Finally, we have the stochastic Lotka Volterra model associated to (38)
(N tð Þ ¼ N1 tð Þ,N2 tð Þð Þ):

dN1 tð Þ
dN2 tð Þ

" #

¼
A t,N tð Þð Þ þ B t,N tð Þð Þ þ C t,N tð Þð Þ

D t,N tð Þð Þ þ E t,N tð Þð Þ

" #

dtþ

þ
N1 tð Þe�N2 tð Þ N2

2 tð Þ � 2N2 tð Þ
� �

eN1 tð Þ

N1 tð Þ � eN1 tð Þ

2

6

4

3

7

5
dw tð Þ,

(44)

where A t,N tð Þð Þ, B t,N tð Þð Þ, C t,N tð Þð Þ, D t,N tð Þð Þ, E t,N tð Þð Þ are determined by
Eq.(43).

Figures 3 and 4 show two realizations for numerical solution of Eq. (44).
Another examples of a differential equation system construction and models see

in [25–29].

10. Conclusion

The invariant method widens horizons for constructing and researching into
mathematical models of real systems with the invariants that hold out under any
strong random disturbances.
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