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Chapter

Application of Deep Learning 
Methods for Detection and 
Tracking of Players
Marina Ivasic-Kos, Kristina Host and Miran Pobar

Abstract

This chapter deals with the application of deep learning methods in sports 
scenes for the purpose of detecting and tracking the athletes and recognizing their 
activities. The scenes recorded during handball games and training activities will be 
used as an example. Handball is a team sport played with the ball with well-defined 
goals and rules, with a given number of players who can participate in the game 
as well as their roles. Athletes move quickly throughout the field during the game, 
change position and roles from defensive to offensive, use different techniques and 
actions, and very often are partially or completely occluded by another athlete. If 
artificial lighting and cluttered background are additionally taken into account, it 
is clear that these are very challenging tasks for object detectors and trackers. The 
chapter will present the results of various experiments that include player and ball 
detection using state-of-the-art deep convolutional neural networks such as YOLO 
v3 or Mask R-CNN, player tracking using Deep Sort, key player determination 
using activity measures, and action recognition using LSTM. In the conclusion, 
open issues and challenges in applying deep learning methods in such a dynamic 
sports environment will be discussed.

Keywords: handball, object detector, object tracking, action recognition,  
person detection, deep convolutional neural networks, YOLO, mask R-CNN, LSTM, 
DeepSort, Hungarian algorithm, optical flow, STIPs

1. Introduction

Computer vision (CV) is a compelling field of Artificial intelligence that develops 
the theory and methods by which information about the real world can be automati-
cally extracted and analyzed from image data. Image data can be in many forms, such 
as image, video, depth image, multi-camera views, or multidimensional data from a 
medical scanner.

The objective of CV is to model the real world or to recognize objects from digital 
images enabling computers or devices to “see”, interpret, manipulate, analyze, and 
understand what was seen and draw conclusions about the properties of the 3D 
world based on a given image or a sequence of images [1].

Basic CV tasks are image classification, segmentation, similarity calculation and 
object localization. Recognition of objects present on the scene and their features 
(e.g., shapes, textures, colors, sizes, spatial arrangement,) is often prerequisite 



Deep Learning Applications

2

for more complex CV tasks such as image retrieval, image description, object 
detection, object tracking, action recognition, image or scene analysis, and image 
understanding [2].

In all tasks, the starting point are the image features that carry important infor-
mation and need to be extracted and processed in order to generate new informa-
tion and conclusions. The image features can be divided into low-level features such 
as corners, edges, or contours that can be extracted with relatively simple image 
operations, and high-level features that require domain-knowledge to get struc-
tured information related to the object or action being taken [3].

Feature extraction can be described as a pre-processing step to remove redun-
dant parts from the data and keeping the key information for accomplishing the 
task. Some well-known features that can be extracted are Optical flow for extract-
ing motion information, Histogram of Oriented Gradients (HOG) and Silhouette 
for extracting shape information, Space–Time Interested Points for extracting 
interest points, etc.

To accomplish typical CV tasks, Image processing and Machine learning (ML) 
play an important role. Image processing is focused on low-level features and 
manipulation of image data for normalizing photometric properties of visual data, 
removing digital noise, data augmentation, etc., and is not concerned with under-
standing the content of visual data. However, when it comes to interpret the content 
and draw conclusions about the image to automate CV tasks, the most important 
fields are ML and its subfield Deep learning (DL) [2].

Before DL, computer vison tasks required a lot of coding and manual effort 
to define the features that can be extracted from images, with little automation 
involved [4]. With DL methods such as Convolutional Neural Network (CNN) [5], 
much of that work related the features to be extracted can be inferred automatically 
from data. Even though many features can be extracted automatically in the CNN 
framework for different tasks, manual feature extraction can still be useful for 
either augmenting the automatically extracted features or perform other tasks such 
as temporal segmentation of video or detection of active players.

Typical CV tasks such as object detection, object tracking, and action rec-
ognition, the tasks we will focus on the most here, are supervised learning tasks 
(Figure 1). Supervised learning relies on labeled ground truth data, based on 
which the learning algorithm infers the mapping between the raw data and the 
desired labels in the training stage. Thus, a prerequisite for supervised learning is 
data preparation, which includes data collection and labeling, pre-processing and 
feature extraction, followed by splitting data into a training and testing set, then 
selecting an appropriate learning algorithm and model structure for the specific 
task. After training and validating the model, the model needs to be tested and the 
obtained results need to be compared with the ground-truth data to evaluate the 

Figure 1. 
Supervised learning process.
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performance. The performance evaluation is represented with different metrics 
appropriate for the specific task.

CV tasks can be implemented for image and video analysis in different domains, 
including the sports domain. Various CV techniques can be very useful for all par-
ties interested in analyzing the game, including the coach, the reporters, the referee 
team, the physiotherapists and others, for making decisions about an occurred 
event, for monitoring and comparing the performance of each individual player, for 
choosing a strategy, for fast automatic analysis of video materials captured during a 
match or practice and the like.

In this chapter, the focus will be on handball, a team indoor sport played with 
a ball by two teams with seven players, one of whom is the goalkeeper. To analyze 
handball sports videos, different CV tasks can be combined. For example, the object 
or person detection can be applied to detect the players on the field, the object 
tracking to follow the players’ movements across the field, and action recognition to 
analysis of the players’ performances.

In the next sections, a created dataset for handball will be presented, and then 
the simple CNN architecture and typical measures for evaluation of model per-
formance are described. In the following sections, CV tasks will be described and 
implemented in the context of handball. Object detection with YOLO and Mask 
R-CNN is presented in Section 5, object tracking with Hungarian algorithm and 
Deep SORT in Section 6, and action recognition using LSTM model in Section 
7. Applications of optical flow and spatiotemporal interest points for temporal 
segmentation and active player determination are presented in Section 8.

2. The dataset

The handball dataset used for the following experiments was recorded during a 
handball school, where participants were young handball players and their coaches.

The dataset consists of high-quality video recordings of practices and matches, 
filmed in a sport hall or in an outdoor handball field, without additional scene 
preparation or player instruction to preserve real-world conditions. The recordings 
were made using different stationary cameras positioned on the left or right border 
of the field on a tripod at 1.5 m, or from the spectator’s viewpoint at the height of 
approximately 3.5 m and the distance from the filed limit of 10 m. The recordings 
are in full HD resolution (1920x1080) and contain from 30 to 60 frames per second.

The dataset is quite challenging with a cluttered background, a variable number 
of players at different distance from the camera, who move fast and often change 
direction, are often occluded with another player, have jerseys of similar color to the 
background, etc.

The data needs to be prepared, processed and labeled for each specific task that 
will be considered here, so that domain- and task-specific models can be made by 
either training from scratch if there is sufficient data, or preferably, by tuning an 
existing model for a similar task using examples from the new domain.

For the player and ball detection task, 394 training and 27 validating images 
were extracted from the videos in the handball dataset and manually labeled, to 
form the PBD-Handball dataset [6].

To obtain the ground-truth data for the player tracking task, a subset of videos 
from the handball dataset was first processed using the YOLOv3 object detec-
tor, then with the DeepSORT tracker to bootstrap the annotation process, and 
lastly manually corrected. The total duration of the annotated dataset, named 
PT-Handball, prepared for this task is 6 min and 18 s [7].
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For the action recognition task, parts of the videos containing the chosen actions 
were extracted from the whole handball dataset to get a subset of 2,991 short videos 
that were then labeled with one of the 10 action classes, or the Background class 
where action is not happening. This dataset is referred to as PAR_Handball.

3. Convolutional neural networks

Typical models used today for image classification and object detections tasks 
are based on Convolutional Neural Networks (CNNs), since they are adapted to 
solve the problems of high-dimensional inputs and inputs that have many features. 
The CNN network consists of a number of convolution layers, after which the 
network has been named, the activation and pooling layers, and one or more fully 
connected layers at the end of the network [8], (Figure 2).

The convolution layer refers to a mathematical operator defined over two 
functions with real value arguments that give a modified version of one of the two 
original functions. The layer takes a map of the features (or, in the first layer, the 
input image) and convolves it with a set of learned parameters resulting in a new 
two-dimensional feature map. The sets of learned parameters (weights and thresh-
olds) are called filters or kernels. Each filter is a 2D square matrix, small in size 
compared to the image to which it is applied (equal depths as well as the input). The 
filter consists of real values that represent the weights that need to be learned, so 
that the output feature map contains useful information such as a particular shape, 
color, edge in order to give the network good results.

The pooling layer is usually inserted between two successive convolution layers 
to reduce a map resolution and increase spatial invariance or network insensitivity 
to minor shifts such as rotations, and translations of features in the image. The pool-
ing layer also reduces memory requirements for network implementation. The most 
commonly used pooling methods are arithmetic mean and maximum, but several 
other pooling methods are also used in CNN architecture, such as Mixed Pooling, 
Stochastic Pooling, Spatial Pyramid Pooling and others [8].

The activation function defines the output of a node given an input or set 
of inputs. In its simplest form, this function is binary and represents the action 
potential of neurons by propagating the output value of the neuron or by stopping 
it. There is a broad range of univariate functions of linear combination of the input 
variables acting as CNN activation functions such as linear activation functions, 
jump functions, and sigmoidal functions. The jump and sigmoidal functions are 
a better choice for neural networks that perform classification tasks while linear 
functions are often used in output layers where unlimited output is required. Newer 
architectures use activation functions, typically Rectified Linear Unit (ReLU), 
behind each layer.

Figure 2. 
Simplified CNN architecture.
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A fully connected layer is the last layer in the network. The name comes because 
of its configuration: all neurons are linked to all the outputs of the neurons in the 
previous layer. Fully connected layers can be viewed as special types of convolution 
layers where all feature maps and all filters are 1 x 1.

Network hyperparameters are all parameters needed by the network that have to 
be set before the network is provided with data for learning. The hyper-parameters 
in convolutional neural networks are the learning rate, the number of epochs, 
the number and kind of network layers, the activation function, the initialization 
weights, input pre-processing and the error function.

Selecting the structure of the CNN network for feature extraction plays a vital 
role in object detection because the number of parameters and types of layers 
directly affect the memory requirements, speed, and performance of the detector.

In this paper, two types of CNN-based networks, YOLO and Mask-RCNN, have 
been used for object detection, while for the task of action recognition, the CNN 
network is not used on its own, but it forms a part of the more advanced LSTM 
network as the feature extractor.

4. Evaluation measures

The performance of object detectors is usually evaluated in terms of accuracy, 
recall, precision, and F1 score [9], for a given confidence threshold. The same 
measures can also be used for evaluation of the action classification task.

The detections are deemed true positive when the intersection over union of 
(IoU) the detected bounding box and the ground truth box is greater than 0.5. The 
IoU measure is defined as the ratio of the intersection of the detected bounding box 
and the ground truth (GT) bounding box and their union, see Figure 3.

Since the confidence threshold controls the tradeoff between recall and preci-
sion, Average Precision (AP) measure is frequently used to evaluate the perfor-
mance of the detectors. The AP is the area below the precision-recall curve which 
is calculated for every class by varying the confidence threshold. To get the mean 
Average Precision (mAP) value, mean of AP values of all classes is calculated.

Since there is no single measure that can uniquely describe the complex behavior 
of trackers, several measures are used to evaluate the tracking performance. These 
measures are the number of identity switches (ID), identification precision (IDP), 
identification recall (IDR) and the identification F1 (IDF1) measures [10].

An identity switch occurs when an object that was assigned an ID j in previous 
frames, gets a new id k, k ≠ j in a subsequent frame. The IDF1 measure focuses on 
how long a target is correctly identified, regardless of the number of mismatches. 
It is the ratio of correctly identified detections over the average number of ground-
truth and computed detections.

Figure 3. 
Visualization of intersection over union (IoU) criteria equal to or greater than 50%.
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5. Object detection

The task of object detection is to find instances of real-world objects in images or 
videos. A detected object is typically marked with a bounding box and labeled with 
a corresponding class label and classification confidence value. Thus, object detec-
tion includes both the problems of finding the location of the object on the scene 
and of classification for predicting the class to which the object belongs to.

In case of player detection, the object detector should be able to overcome chal-
lenging conditions such as variable number of players, different player positions, 
varying distance of the player from the camera, the possibility of changing shape 
and appearance of players in time, presence of the blur of due to the speed of the 
movement, occlusion, shadows of artificial and external light, as well as cluttered 
background.

Nowadays, the focus in object detection is on CNNs that have been extended to 
be able to both detect and localize individual objects on the scene. In the following 
subsections, two different object detectors YOLO and Mask R-CNN are described 
with a corresponding experiment of player and ball detection.

5.1 YOLO

YOLO is a detection algorithm based on a single-stage CNN architecture that 
can detect multiple objects in an image in real-time. The main idea is to predict 
bounding boxes and confidence values for grid cells into which an image or frame 
is divided. In the cases when an object is spread across more than one grid cell, the 
holder of its prediction will be the center cell.

There have been four versions of YOLO since it was first published. In the origi-
nal version, the network architecture has 24 convolutional layers with two addi-
tional fully connected layers. The purpose of the convolutional layers is the feature 
extraction, while for fully connected layers to calculate the bounding boxes predic-
tions and probabilities. The bounding box predictions and class probabilities are 
associated with grid cells so that if an object occupies more than one cell, the center 
cell will be designated to be the holder of prediction for a particular object [11].

In the next version, YOLOv2 [12], five convolution layers were replaced with 
max-pooling layers, and instead of the fully connected layers, predefined anchor 
boxes are introduced. In the training phase, to define the anchor boxes, YOLOv2 
uses k-means clustering on ground-truth bounding boxes where boxes translations 
are relative to a grid cell.

YOLOv3 [13] is the third version of the YOLO object detector. It consists of 53 
convolutional layers of (3 × 3) and (1 × 1) filters with shortcut connections between 
layers (residual blocks) used for feature extraction. The last convolutional layer pre-
dicts the bounding boxes, the confidence scores, and the prediction class. It predicts 
possible bounding boxes at three different scales using a structure that is similar 
to feature pyramid networks. In this way three sets of boxes are predicted at each 
feature map cell for each scale, to improve the detection of objects of different sizes.

5.1.1 Player detection with YOLO

Player and ball detection performance of the YOLOv3 detector was tested on the 
handball dataset using two different models. The reference model, further marked 
as Y, is the pre-trained YOLOv3 model with 608 x 608 input image size with weights 
pre-trained on the COCO dataset and no additional training. The pre-trained model 
contains the person and sports ball among other classes from the COCO dataset. 
Transfer learning [14] was used to avoid training the models from the beginning.
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The second model (YBP) was trained using transfer learning, on PBD-
Handball part of the dataset. The input image resolution was increased to 1024 
x 1024 from 608 x 608 of the original model and the model was trained for 
approximately 80 epochs. Figure 4 shows an example of detection results for the 
“person” class.

To evaluate the performance of a model, the average precision (AP) metric of 
both classes and the mean average precision are used and shown on Table 1.

The best results for ball detection in terms of AP were achieved with the YPB 
model, which was trained on additional examples for both ball and person class and 
had an increased input image size. A small amount of training data can significantly 
improve detection results as can be seen in the example of ball detection which 
improved for 23%. The achieved results are satisfactory given the demanding envi-
ronment but are not sufficient for commercial application, so the training dataset 
should be increased.

5.2 Mask R-CNN

Mask R-CNN [15] is a two-stage CNN that can not only detect and localize 
multiple objects simultaneously present in the image, but also provides a segmenta-
tion mask of the objects, that is, assigns a membership value to each of the pixels 
belonging to the object. The first stage of the network is a region proposal network 
that finds the regions of the image that are likely to contain objects (regions of 
interest, RoI) and proposes candidate object bounding boxes. A sliding window 
is applied to the feature map to examine the probability whether there is an object 
class or a background in the examined region. Then, bounding boxes and masks are 
generated with the corresponding confidence values for all possible classes.

In the second stage, there are two parallel branches of the network, a fully 
convolutional branch for predicting the segmentation masks and a fully connected 
branch used on each RoI for classification and for adjusting the proposed box size.

There are similar networks like R-CNN, Fast R-CNN, Faster R-CNN [16] on 
which Mask R-CNN is based to look up for object detection purpose.

Figure 4. 
Player detections in handball scene with YOLOv3 (bounding boxes with confidences).

PBD-Handball

Model Ball AP Person AP mAP

Y 13.53 66.13 39.83

YPB 35.44 63.77 49.61

Table 1. 
Evaluation of the object detector.
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5.2.1 Player detection with mask R-CNN

The performance of the Mask R-CNN for player detection was tested on the 
PBD-Handball dataset using the standard Resnet-101-FPN network configura-
tion with pre-trained parameters on the COCO dataset. For player detection 
experiment, only the bounding boxes that refer to the “person” class were 
considered.

To obtain a good balance of high detection rates and low false positive detections, 
detections with confidence values below a threshold experimentally set to 0.55 were 
discarded. The detector performance was evaluated in terms of recall, precision, F1 
scores and inference time per frame (using the NVIDIA 1080ti GPU). The results 
and comparison with the YOLOv3 detector are shown in Table 2. Detection was 
considered as true positive when the intersection of the detected bounding box and 
the ground truth box was above 50%.

One handball scene with the bounding boxes, class confidence value, and 
segmentation masks obtained with Mask R-CNN is shown on Figure 5.

It can be concluded that the results of both the YoloV3 and Mask R-CNN detec-
tor are good enough to be used for further analysis of player performance. However, 
the YOLOv3 detector is much faster, so it can be used not only for offline analysis of 
recordings, but also for real-time detection, at the cost of somewhat reduced recall. 
The detection results could be improved if more data is used, but the performance 
depends on the number and size of the players on the scene, the contrast between a 
player and a background, illumination, etc.

6. Object tracking

Tracking of handball players in video is an example of a Multi-Object Tracking 
(MOT) problem, where the goal is to track both the position and the identity of 

Object Detector/Measure Inference time / frame Recall Precision F1

YOLOv3 0.04 s 68% 95% 79%

Mask R-CNN 0.3 s 76% 98% 85%

Table 2. 
Results of player detection with mask R-CNN and YOLOv3.

Figure 5. 
Player detections obtained with mask R-CNN in a handball scene (bounding boxes with segmentation mask 
and confidence value).
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multiple objects present in video, so that the same unique ID is assigned to each 
object in every frame it appears. In an ideal case, in every video frame, all the 
present players should be detected in their correct position and a unique ID for 
each player, that stays the same throughout the video, should be assigned. This is a 
difficult task as many players can be on the field, from 14 to 25, depending if it is a 
practice or a match, and every one of them needs to be tracked. Furthermore, play-
ers can leave and re-enter the camera field of view, move very quickly, often change 
directions, occlude each other and wear similar clothes, or clothes with similar color 
as the background [17].

Thanks to improvements in performance of object detectors, and thanks to 
the ability to deal with challenges such as cluttered scenes or dynamics of tracked 
objects, tracking-by-detection has become a leading paradigm for MOT.

When using tracking-by-detection, the tracking algorithm relies on the object 
detector to detect and locate the objects on the scene in each frame, while the role 
of the tracking algorithm itself is reduced to the problem of associating the detec-
tions across frames that belong to the same object. To do so, the tracker may use 
the information about bounding boxes obtained by object detection, such as their 
dimensions, the locations of their centroids, the relative position to the boxes in 
previous frames, or some visual features extracted from the image.

6.1 Hungarian assignment algorithm

The Hungarian algorithm [18] solves the problem of finding the globally optimal 
assignment of IDs to detected player bounding boxes, with respect to some cost func-
tion that is defined for an individual assignment. Here the cost function is defined 
only in terms of the parameters of the bounding boxes detected by the object detector 
in the current and previous frame, without using any visual features extracted from 
the video frames. Its value depends on the Euclidean distance of each detected object’s 
bounding box centroid from the predicted centroid of an object in the track, and on 
the size difference of the bounding box and the last assigned bounding box to the 
same track.

Formally, the assignment cost ( )b kd ,  of assigning a bounding box b with the 

centroid bC  and area bP  to the k-th track with the predicted centroid kC
′

+1  is:

 ( ) ( ) ( )b k b kb k w d C C w P P′
+ −= + − −2 1 1d , · , 1  (1)

 w k N∈ ∈  0,1 ,  

where kP −1  is the area of the last bounding box assigned to the track with 
the ID k.

For the prediction of the centroid location kC +
′
1 , last known position of object 

centroid in the track k is used, so k kC C+ −=′1 1.
Moreover, a unique track ID is assigned to each detected bounding box whose 

detector confidence is higher than a set threshold during the initial assignment of 
bounding boxes to tracks. Afterwards, whenever the number of detected objects 
exceeds the number of currently active tracks, new tracks are created and initialized 
using the unassigned object’s bounding box.

An existing track is considered inactive when no detections are assigned to that 
track for several frames. Once a track is marked inactive, no further detections are 
added to it, so if an object later reappears or is detected again, it will get a new track 
ID and will be considered a new object.
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6.2 Deep SORT

Deep SORT [19] is a tracking algorithm that builds upon the Hungarian 
algorithm, adding the appearance information about the tracked objects into 
consideration when associating new detections with previously tracked objects. 
The appearance information is particularly useful for re-identifying players that 
were occluded or have temporarily left the scene. As in the previous case, a unique 
track ID is assigned to each bounding box within the first frame, and the Hungarian 
algorithm is used to assign the new detections to existing tracks so that the assign-
ment cost function reaches the global minimum.

The cost function consists of the spatial distance ( )d 1  in form of Mahalanobis 
distance of the detected bounding box from its position predicted according to its 
last known position, and a visual distance ( )d 2  that compares the appearance of the 
detected object with the history of appearances of the tracked object. Formally, the 
cost function i jc ,  of assigning a detected object j  to a track i  is given by:

 ( ) ( ) ( ) ( ) ( )i jc d i j d i jλ λ= + −1 2

, , 1 ,  (2)

where λ is a tunable parameter that determines the relative influence of the 
spatial distance ( )d 1  and the visual distance ( )d 2 .

The spatial distance ( )d 1  is given by the expression:

 ( ) ( ) ( ) ( )T

j i i j id i j d y S d y−= − −1 1,  (3)

where iy  and iS  represent the mean and the covariance matrix of bounding box 

observations for the ith track, and jd  is the jth detected bounding box.

The visual distance ( )d 2  is is given by the expression:

 ( ) ( ) ( ) ( ){ }i iT
j k k id i j r r r= − ∈2 , min 1 | ,  (4)

where jr  is the appearance descriptor extracted from within the jth detected 

bounding box, and i is the set of the last 100 appearance descriptors i
kr  associated 

with the ith track.
The ( )d 2  measure uses the cosine distance between the jth detection and a 

number of detections already assigned to ith track, so if a visually similar detection 
was previously seen, the distance will be low.

The appearance descriptors are extracted using a wide residual neural network 
comprising two convolutional layers followed by six residual blocks that output a 
128-element vector, and then normalized to fit within a unit hypersphere so that the 
cosine distance can be used. The network was pre-trained on a person re-identifi-
cation dataset of more than a million images of 1261 pedestrians. The appearance 
information helps with re-identification of objects that have not been tracked for 
some time because of missed detections, because they were under occlusion or 
because they have briefly left the scene.

New tracks are formed whenever there are more detections in a frame than there 
are existing tracks or when a detection cannot be assigned to any track, because its 
spatial or visual distance is too far from any existing track. The maximum allowed 

( )d 1  and ( )d 2  distance when an assignment is still possible is set with tunable 
thresholds.
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6.3 The player tracking experiment

The tracking of players previously detected with the YOLOv3 detector using 
pre-trained tiny-yolo weights and confidence threshold set to 0.5 was performed on 
the PT-Handball dataset with the Hungarian algorithm and Deep SORT [20].

An example of a tracking situation in sequential frames when occlusions occurred 
is shown in Figure 6. The numbers above the bounding boxes represent the track-
ing ID of each player. The shown situation is quite demanding, resulting in rather 
unstable and inconsistent tracking in the selected frame. The Hungarian algorithm 
successfully tracked one of four players, and two of the players got new IDs after 
occlusion, while one player has switched ID with another, so that 807 got previously 
existing ID 812 (Figure 6, top row). Deep SORT managed to track correctly all four 
players (Figure 6, bottom row).

Since the best results were obtained with the Deep SORT algorithm, its ability 
to assign the correct IDs to detections is analyzed in more detail using the common 
MOT evaluation measures. The results are shown in Table 3.

For each player that should be tracked, the identity switches caused, 5 to 6 
additional tracks on average, so there are 5 times more tracks than in ground-
truth annotated data. Furthermore, a large number, precisely 1483, of identity 
switches are present, due to a relatively large number of players in the video that 
move fast, exit the camera field view, frequently change positions, and occlude 
each other.

The number of players that are simultaneously present in the frame obviously 
affects the tracking performance, and according to the IDF1 measure, the players 
can be correctly identified for 24,7% of the time.

Tracking mistakes can be attributed to several factors. As in all tracking-by-
detection algorithms, the accuracy of tracking is greatly influenced by the accuracy 
of the object detector. If a player is inaccurately detected, the tracking will be 
inaccurate as well. Furthermore, the scale of an object, occlusion, and the similar 
color of the players’ clothes with the background often cause tracking problems. 
To overcome these problems, in further work, multiple camera systems will be 
investigated [21], which can also allow for a more robust generation of a top-view 
trajectory [22].

Figure 6. 
An example of tracking situation with occlusion. Top: Hungarian algorithm, bottom: Deep SORT. The left and 
right frames are 1 second apart.
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In Figure 7, the top row shows the problem of re-identification after occlusion, 
and the bottom row the problem of identity switch due to small scale and  
similar colors.

7. Action recognition

The goal of action recognition is to infer which action takes place in a set of 
image or video observations. Some simple actions, like eating or cutting, could be 
recognized using just a single frame, but actions are mostly much more complex 
and take place over a period of time, so they need to be analyzed across consecutive 
video frames.

Here, for recognition of handball actions, a simple long short-term memory 
(LSTM)-based artificial recurrent neural network is used.

During the handball game, every player is moving around the field performing 
different actions with a ball, such as shot, jump-shot or dribbling, or without the 
ball, such as running or defending. Some actions are performed by more players 
such as passing the ball or crossing.

7.1 LSTM

Unlike CNNs and other so-called feedforward neural (FFNN) networks, recur-
rent neural networks (RNNs) [23] have connections that feed the activations of an 
input in a previous time step back into the network, to influence the output for the 
current input. These activations from the previous time step are held potentially 
indefinitely in the internal state of the network, so the temporal context is not 
limited to a fixed window that could be used as an input to a FFNN. This property 
makes RNNs especially appropriate for modeling sequences, such as text or a 
sequence of video frames in action recognition.

Long Short-Term Memory (LSTM) [24] is a type of recurrent neural network 
(RNN) designed to model temporal sequences and their long-range dependencies 

Measure Value

#tracks in the ground truth 279

#tracks 1554

Identity switches 1483

IDF1 24.7%

Table 3. 
Performance evaluation of deep SORT.

Figure 7. 
Problem of re-identification after occlusion.
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more accurately than conventional RNNs. In the recurrent hidden layers, the LSTM 
contains special units called memory blocks. Those units contain memory cells, that 
have self-connections storing the temporal state of the network, and gates, which 
are special multiplicative units that control the flow of information. The flow of 
input activations into the memory cell is being controlled by the input gate, while 
the output gate controls the output flow of cell activations into the rest of the net-
work. The forget gate scales the internal state of the cell before adding it as input to 
the cell through the self-recurrent connection of the cell, thus causing the adaptive 
forgetting or resetting the cell’s memory.

7.2 The action recognition experiment

In the experiment handball actions from the PAR-Handball dataset are consid-
ered: Throw, Catch, Shot, Jump-shot, Running, Dribbling, Defense, Passing, Double-
pass, and Crossing. An example of jump-shot action is shown in Figure 8. The action 
consists of a sequence of different phases of jump-shot action from running, take-
off, flight, throw, and landing that are captured on different video frames.

Different actions can take different amounts of time to perform, so the average 
number of frames in a video depends on the action class it belongs to, as shown in 
Figure 9.

Only Throw and Catch actions are significantly shorter (two or three times) 
than the other action classes that have a duration of around 60 frames on 
average.

Because these two actions are also parts of the more complex ones, like Passing, 
the model is trained once with all 11 classes and once with 9 classes, excluding 
Throw and Catch.

The model selected for action recognition is a LSTM-based network with one 
LSTM layer with 1,024 units, followed by a dropout layer with 0.5 dropout, one 

Figure 8. 
Active player collage for jump-shoot action.

Figure 9. 
Average number of frames per action from the handball dataset.
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fully connected layer with 512 neurons, also followed by a dropout layer with 0.5 
dropout rate. and the output layer with 11 neurons.

The input to the LSTM consists of a sequence of features extracted from video 
frames using the InceptionV3 [25] network with the ImageNet [26] re-trained 
weights as the starting point. The model is trained with the Adam optimize with a 
learning rate of 0.00001 and decay of 10–6 for up to 100 epochs, stopping early if 
the validation loss does not improve for more than 20 epochs.

Different frame selection strategies and different input size of sequences from 
20 to 80 were used to train the model, because actions might have most distinctive 
characteristics in different parts of the sequence.

In videos containing more frames than expected, the chosen number of frames 
were selected consecutively from either beginning, middle or the end of the video, 
or from the whole video by decimation, i.e., by skipping some frames at regular 
intervals. Conversely, copies of existing frames were inserted between frames to 
extend the number of frames.

The action recognition results obtained by the described LSTM model, con-
sidering the frame selection strategies and different class numbers are shown in 
Figure 10 in terms of validation accuracy.

Having to classify a smaller number of classes can generally be considered a 
simpler task, so, as expected, the models trained on 9 classes have better results 
on average than the models trained on 11 classes. However, the best result overall 
of 70.94% is obtained for the model with 11 classes and 45 frames taken from the 
middle of the sequences. This is possibly due to the overlap of some actions that 
make them more difficult to recognize, as the actions Throw, and Catch that are 
parts of other actions such as Passing, Double-pass, Crossing, Shot and Jump-shot. 
Closely behind with 70.55% is the model trained on 9 classes with 20 frames in the 
middle, and in the third place is the model trained on 9 classes with last 45 frames 
with 70.47% validation accuracy.

Taking into consideration only the number of input frames and ignoring the 
number of classes or frame selection, the best results are obtained with 45 frames 
followed by 20 frames. In most cases the additional frames in the sequence do not 

Figure 10. 
Validation accuracy for different lengths of input sequences and 9 or 11 action classes.
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improve the result much over the models trained with 20 frames. Considering only 
the way the sequence is selected, the highest average accuracy of 67.69% is achieved 
by the model while trained on 9 classes and the last frames selection, followed by 
67,05% by skipping frames.

It can be noted that regardless the strategy of selecting frames, increasing the 
number of input frames does not contribute to a better result. The number of 
frames and frame selection strategies appear to be highly dependent on the type of 
action being performed.

8. Application of low-level video features

Low-level features extracted from video frames, combined with specific knowl-
edge about the problem domain can sometimes be used for solving specific tasks 
and generate conclusions about the objects in the image or for scene analyzes. For 
example, optical flow can be used as a measure of motion in video, and for rough 
temporal segmentation of the input video in order to automatically cut periods of 
inactivity or detect intervals of repetition of a certain exercise in handball training.

If the low-level features such as optical flow or spatio-temporal interest points 
are used with additional information such as the detected player bounding boxes, 
conclusions can be drowned about the most active player on the scene and auto-
matic detection of players that are at a certain time likely to be performing the 
action that is of most interest for the interpreting the scene [27].

8.1 Temporal segmentation using optical flow

A low-level feature that captures motion information is optical flow, which is 
estimated from the time-varying image intensity. A moving point on the image 
plane produces a 2D path ( ) ( ) ( )( )Tt x t y t≡ ,x  in camera-centered coordinates, and 

the current direction of movement is described by the velocity vector ( )d t dt/x . 

The 2D velocities of all visible surface points form the 2D motion field.
The movement of points can be estimated from consecutive video frames, using 

some optical flow estimation algorithm, e.g., the Lucas-Kanade method [28]. This 
method assumes that small sections, i.e., groups of pixels of the initial images move 
with the same velocity, so the result is a vector field V of velocities of each image 
section. At each point x yV ,  in the field, the vector magnitude corresponds to the 
speed of movement and the vector angle represents the movement’s direction.

A visualization of an optical flow field calculated between two video frames 
from the dataset is shown in Figure 11. The direction and magnitude of optical flow 
at each point is represented by the direction and length of each arrow.

In an uninterrupted recording of a handball training, there are usually periods of 
repletion of a certain exercise, where all players repeat the exercise either simultane-
ously or taking turns, followed by short pauses where the coach explains the next 

Figure 11. 
Two consecutive frames in video and the corresponding optical flow field.
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exercise to be performed. The periods of higher activity, when players perform the 
exercises are characterized with the higher magnitude of extracted motion features 
from video, while the periods when players queue or wait for instruction (Figure 12) 
are characterized with lower magnitude of motion features [29].

To mark the periods of inactivity and segment the videos into sections where 
a single exercise is repeatedly practiced, an optical flow threshold is used. First, 
the optical flow field is calculated between two consecutive frames sampled each 
N frames (here, N = 50). Then, mean optical flow magnitude is calculated for 
each field, resulting in a single value for each sampled time point in video. The 
video is cut at time points when the mean magnitude of optical flow is lower than 
an experimentally determined threshold value. An example of the mean optical 
flow magnitude calculated for a video sequence where there were short pauses of 
10–20 seconds between active repetition of an exercise was is shown in Figure 13. It 
can be seen that the normalized flow threshold of about 0.07 clearly separates the 
periods of inactivity from parts of video showing exercise.

8.2 Active player determination

In a typical footage of a handball game or training session, at a given time only 
one player or a small proportion of players present on the scene participate in the 
action that is currently in focus, e.g., jump-shot, passing, while others may perform 
actions that are not currently relevant for interpreting the situation, e.g., moving 
into their positions. To train the action recognition models, the actions of those 
players that perform the action of interest should be annotated. The annotation 
process is at least partly manual, so it is time-consuming and tedious given the large 
amounts of video data to process. To assist with annotation, a method is proposed 
to select among the detected and tracked players, the ones that are currently the 

Figure 12. 
A typical training situation. Two players on the right are performing the current task, while the rest are 
queuing.

Figure 13. 
An example of segmentation of a video sequence using optical flow magnitude.
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most likely to be performing the action of interest, here called active players. Thus, 
instead of reviewing every single players’ activity at all times, the manual annota-
tion is reduced to verification of only the proposed active players’ tracks.

First, the players are detected and tracked as described in previous chapters. 
Then, the information about player positions, i.e., the detected bounding boxes, is 
combined with the low-level movement features, such as optical flow or spatiotem-
poral interest points, to obtain a measure of each player’s activity in the considered 
time interval.

The optical flow-based measure of player’s activity ( OF
bA ) is calculated using the 

bounding box ( bB ) of each detected player bounding box, as the maximum optical 
flow magnitude within that box:

 
b

OF
b x y b

B
A V x y B= ,max ; , within  (5)

An alternative feature to optical flow for defining the activity measure are 
spatiotemporal interest points, or STIPs. STIPs are an extension from the spatial 
domain into both spatial and temporal domain of the notion of interest points in 
images, which are points with a significant local variation of image intensities. 
STIPs are thus points in the image with large variation of values in both spatial and 
temporal directions around these points.

As for calculating the optical flow, there are several algorithms that can be used 
to detect the STIPs, e.g. the method presented in [30] is based on the Harris corner 
operator (Harris3D) that is extended into the spatiotemporal domain, [31] uses a 
Gaussian filter in the spatial domain and a Gabor band-pass filter in the temporal 
domain, the algorithm presented in [32] is based on Hessian3D derived from SURF, 
and the selective STIPs detector [33] is designed to specifically detect the STIPs that 
likely belong to persons and not to the background.

Given that movement during the performance of various sports actions causes 
significant variation of appearance in that part of image, it is expected that there will 
be more detected STIPs in image regions with more intense player’s activity [34].

An activity measure based on density of STIPs in the area near the detected 
player, STIP

bA , can be calculated for a player with a bounding box bB  and area bP  as:

 STIP
b b

b

STIP
A STIP B

P
=
#

; within .  (6)

In the experiment here, the Harris3D detector with the default parameters 
was used to extract the STIPs. Figure 14 shows an example of the detected player 
bounding boxes and STIPs in a video frame.

Figure 14. 
Detected players and spatiotemporal interest points.
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A threshold of activity measure can be used to filter active from inactive players, 
since the players that perform sports actions should make more sudden movements 
corresponding to higher activity measures than other players.

Looking at activity measures in a sequence of frames, the ranking of play-
ers’ activity can change between frames. So, to choose the players that are active 
throughout the sequence, the Active player score is calculated as the average activity 
measure of the player along the trajectory of the player’s bounding boxes. The result 
is a set of player trajectories with corresponding player activity scores (Figure 15).

9. Conclusion

In this chapter, the applications of deep learning methods on typical CV tasks 
such as object detection, object tracking and action recognition are presented on 
videos from the handball domain, recorded during training and matches.

Handball is a team sport, played with a ball, with well-defined player’s roles, 
goals and rules. During the game, the athletes move quickly throughout the field, 
change positions and roles from defensive to offensive and vice versa, use different 
techniques and actions, and doing so often get partially or completely occluded by 
another athlete, making player detection, tracking and action recognition challeng-
ing problems of ongoing research interest.

For detection, the algorithm must be able to locate an object in relation to its 
environment and, define that object. It is important for the detector to be as accu-
rate and fast as possible especially if the real time detection is needed. State of the 
art deep learning-based detectors such as YOLOv3 and Mask R-CNN, prove to be 
successful for player detection, while the performance on ball detection still lags 
due to the combination of its small size, great speed and occlusion by the players.

Once objects such as players are detected, they can be tracked. Here, the 
Hungarian assignment algorithm and SORT with a deep association metric (Deep 
SORT) are considered for tracking. The goal of a tracker is to assign the same 
unique track ID to the same player in consecutive frames, which is complicated by 
the changes of appearance and sudden motions of players. Thus, the trackers can 
model this motion or the changing appearance to help the association process. The 
Deep SORT adds an appearance model based on deep neural network features. This 
appearance model allows the Deep SORT method to re-identify players that have 
been temporarily occluded or left the scene much more successfully than the other 
tested methods, making it more appropriate for use in the handball domain.

For the action recognition task, LSTM network is used, as it is suited to deal with 
both image information contained in a single video frame and its temporal evolu-
tion during the performance of actions. The obtained action recognition results 
are promising, however due to dependence of the action recognition model on the 
performance of previous stages, i.e. object detection and tracking, the challenge 
remains to improve all three tasks. As in all deep learning tasks, an important factor 

Figure 15. 
Detected leading player (white box) and his trajectory through the whole sequence (yellow line).
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is gathering enough training data, which can be facilitated by methods that reduce 
the manual effort of labeling ground truth data. To that end, the experiments for 
automatic temporal segmentation of the raw footage and a method for detecting the 
active player in a sequence using low level visual features were presented.

Advances in deep learning methods promise continued improvement in the 
analysis of dynamic sports scenes, in order to recognize more complex activities, 
plan competitive tactics and monitor player progress.
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