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Chapter

The Application of Artificial 
Neural Network to Predicting 
the Drainage from Waste Rock 
Storages
Liang Ma, Cheng Huang and Zhong-Sheng Liu

Abstract

Reliable prediction of drainage flow rate and drainage chemistry is essential to 
the treatment of drainage from waste rock storages at mine sites. The traditional 
predictive models require simplification and assumption of geo-bio-chemical 
processes followed by intensive characterization, and sometimes lead to poor 
prediction accuracy. In the big data era, various sensors are installed in field to con-
stantly monitor mine sites, which enables machine learning to utilize the generated 
monitoring data and study the underlying pattern behind the data. This chapter 
describes an approach to use artificial neural network to predict the drainage flow 
rate and drainage chemistry based on weather monitoring data collected at mine 
sites. The advantage of this approach is that generally no additional characterization 
are required to make prediction because the relevant geo-bio-chemical mechanisms 
are embedded naturally in the monitoring data, which can be captured through 
machine learning process.

Keywords: machine learning, artificial neural network, drainage flow rate,  
drainage chemistry, waste rock storages, weather monitoring data

1. Introduction

Hard rock mining generates a huge amount of mine wastes (mine tailings 
and waste rocks), which often contains metal sulfide minerals. Once exposed 
to air and water during and after mining, the oxidation of metal sulfides miner-
als releases acid and heavy metals to the environment. The oxidation of metal 
sulfides can be accelerated in the presence of microorganisms. The drainage 
from mine wastes may have high level of toxic elements and chemicals such as 
arsenic, selenium, lead, uranium, zinc etc. Over time, waste rocks are deposited 
in the storages which can contain over one hundred million tons and cover a few 
hundred hectares. The drainage water from waste rock storages and its impact on 
the surrounding environment are becoming critical challenges to both of mining 
companies and the public. The treatment of the drainage from waste rock stor-
ages may have to last decades, even centuries, and bring a significant cost to the 
mining sectors [1, 2].
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For day-to-day mine site management, flood control and contaminant remedia-
tion plan are dependent on the evaluation and prediction of drainage flow rates 
and drainage chemistries. Various methodologies have been developed over the 
past several decades to predict the drainage from waste rock storages. For predict-
ing drainage flow rates, a numerical model to simulate groundwater flow through 
unsaturated bed or layers of earth is developed in [3]. In reference [4], a water bal-
ance approach is proposed to calculate the conservation of total water flow through 
waste rock piles by dividing the whole hydrological process into independent 
components. In terms of predicting drainage chemistries, a numerous numerical 
models enabled with mass transport effect are developed to evaluate the geochemi-
cal reaction and transport inside waste rock piles [5–7]. Furthermore, using dimen-
sional equation to correlate drainage chemistries with seepage flow rates from waste 
rock piles is explored in [8]. In reference [9], the effectiveness of a cover system is 
assessed and a Multiphysics model is developed to predict the iron loading and lime 
consumption for a full-scale waste rock pile.

However, there are several limitations with above predictive models. For 
example: 1. Many predictive models are based on lab testing and then scaled up to 
predict the result in the field, but there is little comprehensive understanding on 
how to scale up; 2. Simplification and assumptions of geo-bio-chemical processes 
for the geochemical reaction and leaching process in waste rock storages are critical 
to the accuracy of the predictive models; 3 Lab or field characterization of material 
and transport properties related to predictive models is essential, which is also very 
costly and time-consuming.

To understand and minimize the environmental impact from the contaminated 
drainage, routine monitoring of waste rock storages is required by many governmen-
tal regulators. With the rapid development of computer and sensing technologies, 
constant and comprehensive monitoring on the waste rock storages is now possible 
for many mine sites. Daily or even hourly monitoring data become available for 
many key parameters such as precipitation, temperature, wind, internal tempera-
ture, gas concentrations, air/water flow rates, drainage chemistries, etc. These moni-
toring data are accumulated to weekly, monthly and yearly datasets, and become so 
huge and complex that traditional data analysis approaches are inadequate to handle 
and investigate them. As one of the most famous machine learning technologies, 
artificial neural network not only has the advantages of high processing speed and 
high computational accuracy, but also enables a machine to mimic human learning 
behavior and problem solving functions. Thus using neural network to investigate 
the huge monitoring datasets and further predict drainage flow rates and drainage 
chemistries from waste rock storages shows very promising potentials. For example, 
the concentrations of sulphate, chlorine, total dissolved solids and total suspended 
solids in mine water are predicted by artificial neural network based on the input of 
pH, temperature and hardness in [10]. Heavy metal included in acid rock drainage 
is investigated by support vector machine and neural network for a copper mine 
in Iran [11]. Five machine learning approaches to predict copper concentration are 
compared in [12]. A feedforward neural network with weather input is proposed to 
predict drainage flow rates for a full scale waste rock pile [13].

In this book chapter, a refined feedforward neural network based on [13] will be 
introduced to learn from historical monitoring data and then predict the drainage 
flow rate, in addition, the refined neural network will also be extended to predict 
the drainage chemistries in the field. Compared with above traditional predictive 
models, the proposed neural network approach requires much less simplification 
and assumption of geo-bio-chemical processes involved and it can significantly 
reduce characterization cost for mining companies, as the monitoring data inher-
ently contain the information of all the underlying physical mechanisms within real 
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waste rock storages. However, the prediction accuracy is highly dependent on the 
quality of monitoring data as the proposed neural network is actually a mathemati-
cal regression process.

The proposed feedforward neural network selects the weather monitoring data 
from mine sites as the input to predict and the drainage as the output. The underly-
ing logic for this approach is based on the fact that the water passing through the 
waste rock storage is mainly from two sources: 1 precipitation falls directly onto the 
storage and infiltrates into it; 2 groundwater originating from uphill precipitation 
flows into the storage from higher elevations. Both sources are highly dependent 
on rain, snow, temperature, hydrologic properties and geo-bio-chemical condi-
tions in the field. As the hydrologic properties and geo-bio-chemical conditions are 
relatively stable than previous factors related to the weather, the evolution of total 
precipitation and mean temperature from ambient environment at the mine site is 
then adopted to correlate with the drainage flow rates and also drainage chemistries. 
The correlation can be gradually captured by machine learning through study-
ing historical monitoring data from a specific waste rock storage. In addition, the 
reference [13] proposed to use the number of year and month as additional input 
to capture long-term fluctuation of drainage. As the number of month is naturally 
uncycled, the value of the month number has no meaning for machine learning but 
only brings learning issue when December transits to January. The chapter proposes 
to use the concept of accumulated days to capture the long term fluctuation instead. 
With further normalizing all input data, the refined feedforward neural network 
can better predict the drainage flow rates and further the drainage chemistries. A 
case study on a full-scale waste rock storage will be provided to validate the  
proposed approach in this chapter.

2. Methodology

2.1 Feedforward neural network

The Feedforward neural network is an artificial neural network wherein con-
nections between the artificial neurons do not form a cycle, which is different from 
its variant: recurrent neural networks. The artificial neurons are capable of simulat-
ing basic learning behaviors through receiving inputs, calculating a weighted sum 
and then passing the sum through a transformation known as activation function to 
produce outputs. The mathematical calculation for an artificial neuron in a feedfor-
ward neural network is generally illustrated as follows:

 −
=

 
= + 
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t p t p t i t p i t p
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where t denotes the layer number and p denotes the order number in that layer. 
The combination of t and p can be used to determine the location of the neuron in 
the network. For the pth neuron located at the tth layer, there are q inputs from 

−1 1,tX  through −1,t qX , and also weights from 
1, ,t pw  to .t,p,qw  In addition, 

,t pb  is the 

bias input, ϕ
,t p  is the activation function and 

,t pX  is the output of that neuron. 

After calculating the output of 
,t pX  based on Eq. (1), it may further propagate to 

the input of the next layer or leave the network as the output of the whole  
feedforward neural network.
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2.2 Application to predict the drainage from waste rock storage

The schematic of the proposed feedforward neural network structure is illus-
trated in Figure 1. As mentioned above, hydrologic properties and geo-bio-chemical 
conditions in waste rock storages are generally considered as a very slow evolution, 
which means they are relatively stable compared with weather conditions such as 
rain, snow and temperature in the field. The dynamics of weather conditions are 
powerful to act as driving input forces for the training process, leaving hydrologic 
properties and geo-bio-chemical conditions as coefficients within neural network 
to be determined during learning process. As the temperature controls not only the 
formation of rain/snow but also evaporation rate on the surface, total precipitation 
and mean temperature are then selected as two groups of neurons in the input layer. 
Current and preceding total precipitation and mean temperature are extracted from 
the weather monitoring database, then they are formatted into a time series in the 
input layer before entering the hidden layer. The length of time series determines 
the neuron number in each group of the input layer. For example, an input includ-
ing previous 10 daily weather monitoring data indicates 10 neurons for previous 
daily total precipitation and 10 neurons for previous daily mean temperature in the 
input layer.

An additional neuron in the input layer is composed of a time tag that represents 
the drainage measurement day. For example, the day with first weather monitor-
ing data is considered as the first day, and the corresponding time tag is set to 1. 
Any future time tag for one drainage measurement is the accumulated day number 
adding from the first day to the measurement day. By introducing the concept of 
accumulated day number as the time tag, the geo-bio-chemical evolutions inside 
the waste rock storages no longer have to keep constant in the temporal scale, and 
become potentially time dependent. Thus this hybrid input structure enables the 
proposed neural network to capture the long-term trend of the drainage flow rates 
and drainage chemistries.

The output can be calculated by moving forward in the neural network based 
on Eq. (1). After the output is obtained, it is compared with drainage monitoring 
data (target) including flow rate and chemistry concentration. A cost function is 
then adopted to evaluate the difference between output and target. In this study, 
the mean squared errors (MSE) is used as the cost function, which is the average 
squared difference between calculated outputs and the target. The calculation of 
MSE is as follows,

Figure 1. 
The proposed feedforward neural network structure.
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where io  is the i th calculated output, it  is the i th target, and m  is the number 

of the target for machine learning.
As both of input and target data are different in terms of their scales, it is 

generally required to pre-process them to become normalized before the train-
ing starts. The normalization could accelerate the training process by making all 
undetermined coefficients in the neural network get updated in the same scales. For 
this study, the mean for each data set (total precipitation, mean temperature, flow 
rate, chemistry concentration) is set to 0 and the standard deviation is set to 1. The 
normalization is obtained by following calculations:
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where x  and s  is the mean and standard deviation for the data set of x . n  is 
the total number of data in the set,   denotes Hadamard division, and y  is the 

normalization of x .

In the beginning, all coefficients within the neural network shown in Eq. (1) are 
randomly initiated. During the training process, they are automatically updated 
through a special data iteration technique called backpropagation algorithm, which 
calculates the gradient of the cost function based on comparing target with output. 
The proposed feedforward neural network should be trained with a fair amount 
of observation samples from historical monitoring database so that it can capture 
the correlation between input data and target data. Here an observation sample is 
defined as a combination of input and target from historical monitoring database. 
The training needs assessment to prevent both of underfitting and overfitting with 
various validation methods. The hold-out approach is adopted in this study. Among 
all observation samples, the training observation samples are those for actual 
training, the validation observation samples are for evaluating the generalization 
of the neural network and the training process continues until the generalization 
does not get improved, and the rest are called testing observation samples which do 
not impact on the training process but give independent assessment for the training 
performance.

After the training is completed, both of MSE and R are used to estimate the 
training performance. Here R value measures the correlation between calculated 
results (output) and measured ones (target), which is calculated as follows,
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Theoretically, the lower value for MSE and the closer to 1 for R, the better train-
ing performance.

In theory, a well-trained neural network proposed in this study is able to reason-
ably predict future drainage flow rate and drainage chemistry concentration for 
full-scale waste rock storages as long as the historical weather monitoring database, 
historical drainage monitoring database and the weather forecast onsite are avail-
able. Figure 2 shows the schematic diagram of the general functions for the pro-
posed feedforward neural network approach. There are two processes involved in 
the implementation of the approach. After the training processed is completed, the 
correlation between weather and drainage for the waste rock storage is believed to 
be captured by the proposed neural network, and then the prediction process starts 
to utilize weather forecast to predict future drainage on site.

3. Validation-a case study

3.1 Input, target and neural network parameters

To validate the proposed neural network approach, a full-scale case study is per-
formed to predict real drainage flow rate and drainage chemistry in field condition. 
A real waste rock pile from an anonymous mine site in western Canada is adopted in 
this study. The proposed neural network is trained by historical monitoring data for 
16 years (Year 1 to Year 16). After the training is completed, it will be used to predict 
the drainage in the next 2 years (Year 17 and Year 18). A comparison between real 
measurement and predicted value will be provided.

At this mine site, the drainage flow rates are not directly measured but they are 
calculated based on readings of the water level in v-notch weirs installed at the end 
of the drainage collecting ditch. Thus the v-notch is used as the one actual target of 
neural network training. In the following discussion, the drainage flow rate actually 
refers to the original measurement of v-notch from the weirs. Among all drainage 
chemistry data from this waste rock pile, acidity is selected for this case study as 
another target, because it is directly linked to the lime consumption for contami-
nant treatment. These drainage measurement are generally performed in a dynamic 
time frame at this mine site. During spring freshet and large precipitation periods, 
the measurements are usually more frequent than the remaining time in a year, as 
increased drainage flow rate is observed.

The weather monitoring data at this site is extracted from the website of 
Environment Canada (weather.gc.ca) on a daily basis, including minimum 

Figure 2. 
The functions of the proposed feedforward neural network.
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temperature, maximum temperature, mean temperature, total rain, total snow, 
total precipitation and snow thickness on ground, etc. For this case study, the total 
16 years weather monitoring data have been obtained for the training purpose. As 
mentioned in the previous section, two independent weather parameters measured 
on a daily basis - the total precipitation and mean temperature are selected as the 
inputs for the proposed neural network.

To evaluate how long the weather can impact on the drainage from this waste 
rock pile, two types of input layers are proposed for comparison in the study. When 
a target (flow rate or acidity) is selected to train the neural network, its measure-
ment date is extracted. Daily average input layer consists of 21 neurons including 
the time tag of measurement day, daily total precipitation and daily mean tempera-
ture from previous 9 days and the measurement day, which mainly investigates 
short-term weather impact on the drainage. Furthermore, weekly average input 
layer has 21 neurons including the time tag of measurement day, weekly average 
total precipitation and weekly averaged mean temperature from previous 9 weeks 
and current week to investigate long-term weather impact. The weekly average 
input layer reflects longer weather monitoring data than the daily average input 
layer does, however, high frequent information is filtered in the weekly average 
input layer. The summary of daily average and weekly average input layers can be 
found in Table 1. Here 0 day means the measurement day, 0 week means measure-
ment day and previous 6 days. Finally, both types of input layers are adopted to 
train the neural network to determine which input layer is more competent to 
capture the underlying pattern and make a better prediction.

As the mine site is anonymous, the original monitoring data is confidential and 
not publicly accessed. To protect the site information, only normalized historical 
monitoring data including total precipitation, mean temperature, flow rate and 
acidity from the 16 years are provided in Figure 3. Total numbers of flow rate 
measurement and acidity measurement during the 16 years is 1741 and 320, respec-
tively. It should be noticed that the weather data are extracted on a daily basis and 
any missing data is represented by a gap. The flow rate and acidity is not measured 
in a fixed time frame and the time interval is dynamic, so each measurement data is 
represented by a solid dot in the figure. As some weather data are missing, not all of 
drainage measurements are utilized for the training. Those drainage measurements 
that do not have a complete daily average or weekly average input will be excluded. 
In terms of the hold-out approach to avoid overfitting, 80% of the total observation 
samples are used for training and 20% for validation. No testing data is allocated 

Type of input 

layer

Daily Average Weekly Average

Neuron number 21 21

Description Mean temperature of −9 day

Total precipitation of −9 day

Mean temperature of −8 day

Total precipitation of −8 day

… …

… …

Mean temperature of −1 day

Total precipitation of −1 day

Mean temperature of 0 day

Total precipitation of 0 day

Time tag of measurement day

Mean temperature of −9 week

Total precipitation of −9 week

Mean temperature of −8 week

Total precipitation of −8 week

… …

… …

Mean temperature of −1 week

Total precipitation of −1 week

Mean temperature of 0 week

Total precipitation of 0 week

Time tag of measurement day

Table 1. 
Description of daily average and weekly average input layers.
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Figure 3. 
Normalized monitoring data for the 16 years (year 1 to year 16). (a) Year 1 to year 4; (b) year 5 to year 8;  
(c) year 8 to year 12 and (d) year 13 to year 16.
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in the training process, as a prediction of the drainage in the next 2 years will be 
performed after the training is completed. As the monitoring data of weather and 
drainage during the next 2 years are also available. The real weather data will be 
utilized as the input of the neural network. In real situation, weather forecasting 
data should be adopted for prediction purpose. The predicted drainage flow rates 
and acidities will be compared with the real monitoring values.

As shown in the Figure 1, only a single hidden layer is in the feedforward neural 
network adopted for this case study. So the number of neurons in the hidden layer is 
considered as a hyperparameter for the training process. A grid search is performed 
on 5, 10 and 20 neurons in the hidden layer to find the optimized size. The pro-
posed neural network is trained through Levenberg–Marquardt backpropagation 
algorithm. The adaptive value (damping factor) is set to 0.001 initially, and will 
increase by 10 until the change of above results in a reduced performance value. 
The change is then made to the network and adaptive value is decreased by 0.1. The 
maximum adaptive value is set to 1e10. The maximum epochs before the stop of 
training is set to 1000. However, the training may be stopped early if the MSE on 
the validation vectors stops to improve or remains the same for 6 epochs in a row.

The proposed neural network is implemented through the machine learning 
toolbox built in commercial software MATLAB. The weather monitoring data are 
pre-constructed for both types of input layer through Microsoft Excel Macro before 
exporting into the MATLAB.

3.2 Regression and prediction results

After the training is completed, all training and validation observation 
samples go through Eq. (1) again and then the calculated output is called drainage 
regression. The MSE and R between drainage regression and real measured ones 
(targets) are listed in Table 2 based on a grid search is performed on both of daily 
average input layer and weekly average input layer with 5, 10 and 20 neurons in 
the hidden layer. It is observed that results from the neuron network with weekly 
average input layer are generally better than those obtained from the neuron 
network with daily average input layer, indicating that both of flow rate and 
acidity from this waste rock pile are mainly controlled by long-term weather trend 
rather than short-term one. For flow rate regression, the lowest MSE is obtained 
from both of 10 and 20 neurons in hidden layer, so the neuron network trained 
by weekly average input layer with 10 neurons in hidden layer is selected as the 
successful candidate to predict future drainage flow rates as it has smaller size and 
less undermined coefficients than the network with 20 neurons in the hidden layer. 
For acidity regression, the lowest MSE is obtained from the neuron network with 
weekly average input layer and 20 neurons in the hidden layer, which is selected to 
predict future drainage acidities.

Number of Neurons in the 

Hidden layer

Flow Rate (MSE, R) Acidity (MSE, R)

Daily 

Average

Weekly 

Average

Daily 

Average

Weekly 

Average

5 1.01, 0.62 0.25, 0.93 0.53, 0.65 0.35, 0.78

10 0.99, 0.63 0.18, 0.95 0.55, 0.65 0.41, 0.79

20 0.92, 0.67 0.18, 0.95 0.58, 0.67 0.28, 0.84

Table 2. 
Results of the grid search.
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The comparison between regressions of flow rate and acidity and real  
measurements (target) in temporal scale are provided in Figure 4. It is found 
that the proposed neural network is capable to capture the underlying correlation 
between the drainage and weather, as not only seasonal fluctuations in a year  
but also long term evolution across years are well reflected in the drainage 
regression.

In addition, the successful candidate neuron networks (weekly average input 
layer with 10 neurons in hidden layer for flow rate, and weekly average input layer 
with 20 neurons in hidden layer for acidity) are adopted to predict the future flow 
rate and acidity in the Year 17 and Year 18 based on the input extracted from the real 
weather monitoring data. The prediction and real measurement in temporal scale 
are compared in Figure 5.

It is observed that the general trend for both of flow rate and acidity are well 
predicted by the neural network. The proposed neural network is capable to pre-
dict the time and also the amount of peak flow rates in the spring freshet of both 
years, which is important for site water management. In terms of acidity, the long 
term downward trend shown in Year 11 to Year 16 is reflected in the prediction, 
which matches the trend of real measurement in both years. However, seasonal 
fluctuation has some mismatch. The reason is that the amount of observation 
samples for acidity is much less than those for flow rate, so the acidity predic-
tion is not as good as the flow rate prediction in this case study. The accuracy 
can be improved when more monitoring data are accumulated for the training in 
the future.

Figure 4. 
Drainage regression vs. real measurement for the 16 years (year 1 to year 16). (a) Flow rate and (b) acidity.
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4. Conclusions

A machine learning algorithm based on feedforward neural network is intro-
duced in this chapter to correlate the drainage flow rate and drainage chemistry 
with the field precipitation and temperature for waste rock storages. Comparing 
with traditional predictive models, the neural network approach requires little 
simplification and assumptions of bio-geo-chemical processes involved, in addi-
tional, the cost and time for characterizations can be significantly reduced. The 
advantage of the neural network is that all underlying mechanisms have been 
naturally reflected in the monitoring data, which can be gradually captured during 
the machine learning process.

A case study on a full-scale waste rock storage is performed. The results show 
that the flow rate and acidity of the drainage discharged in the field have strong 
correlations with previous 10 weekly averaged weather data at this site. The 
capability of making prediction of future drainage in the field is also validated. 
However, the structure of input layer, hidden layer number, neurons in the hidden 
layer are all site specific, which may be adjusted for the applications to other waste 
rock storages.

It should also be addressed that the measurements of drainage flow rate and 
drainage chemistry may not always be accurate in the field, furthermore, they 
can fluctuate in a single day depending on the hydrogeological conditions. So the 
monitoring data may not represent the daily average in some cases, which means 
that some mismatch between the prediction and measurement does not necessarily 

Figure 5. 
Drainage prediction vs. real measurement for the next 2 years (year 17 and year 18). (a) Flow rate and  
(b) acidity.
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