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Chapter

How to Solve the Traveling
Salesman Problem
Weiqi Li

Abstract

The Traveling Salesman Problem (TSP) is believed to be an intractable problem
and have no practically efficient algorithm to solve it. The intrinsic difficulty of the
TSP is associated with the combinatorial explosion of potential solutions in the
solution space. When a TSP instance is large, the number of possible solutions in the
solution space is so large as to forbid an exhaustive search for the optimal solutions.
The seemingly “limitless” increase of computational power will not resolve its
genuine intractability. Do we need to explore all the possibilities in the solution
space to find the optimal solutions? This chapter offers a novel perspective trying to
overcome the combinatorial complexity of the TSP. When we design an algorithm
to solve an optimization problem, we usually ask the critical question: “How can we
find all exact optimal solutions and how do we know that they are optimal in the
solution space?” This chapter introduces the Attractor-Based Search System (ABSS)
that is specifically designed for the TSP. This chapter explains how the ABSS answer
this critical question. The computing complexity of the ABSS is also discussed.

Keywords: combinatorial optimization, global optimization, heuristic local search,
computational complexity, traveling salesman problem, multimodal optimization,
dynamical systems, attractor

1. Introduction

The TSP is one of the most intensively investigated optimization problems and
often treated as the prototypical combinatorial optimization problem that has pro-
vided much motivation for design of new search algorithms, development of com-
plexity theory, and analysis of solution space and search space [1, 2]. The TSP is
defined as a complete graph Q ¼ V,E,Cð Þ, where V ¼ vi : i ¼ 1, 2, … , nf g is a set of
n nodes, E ¼ e i, jð Þ : i, j ¼ 1, 2, … , n; i 6¼ jf gn�n is an edge matrix containing the set
of edges that connects the n nodes, and C ¼ c i, jð Þ : i, j ¼ 1, 2, … , n; i 6¼ jf gn�n is a
cost matrix holding a set of traveling costs associated with the set of edges. The
solution space S contains a finite set of all feasible tours that a salesman may
traverse. A tour s∈ S is a closed route that visits every node exactly once and returns
to the starting node at the end. Like many real-world optimization problems, the
TSP is inherently multimodal; that is, it may contain multiple optimal tours in its
solution space. We assume that a TSP instance Q contains h ≥ 1ð Þ optimal tours in S.
We denote f(s) as the objective function, s ∗ ¼ min s∈ Sf sð Þ as an optimal tour and S ∗

as the set of h optimal tours. The objective of the TSP is to find all h optimal tours in
the solution space, that is, S ∗

⊂ S. Therefore, the argument is
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arg min
s∈ S

f sð Þ

� �

¼ S ∗ ¼ s ∗1 , s
∗

2 , … , s ∗h
� �

(1)

Under this definition, the salesman wants to know what all best alternative tours
are available. Finding all optimal solutions is the essential requirement for an opti-
mization search algorithm. In practice, knowledge of multiple optimal solutions is
extremely helpful, providing the decision-maker with multiple options, especially
when the sensitivity of the objective function to small changes in its variables may
be different at the alternative optimal points. Obviously, this TSP definition is
elegantly simple but full of challenge to the optimization researchers and
practitioners.

Optimization has been a fundamental tool in all scientific and engineering areas.
The goal of optimization is to find the best set of the admissible conditions to
achieve our objective in our decision-making process. Therefore, the fundamental
requirement for an optimization search algorithm is to find all optimal solutions
within a reasonable amount of computing time. The focus of computational complex-
ity theory is to analyze the intrinsic difficulty of an optimization problem and the
asymptotic property of a search algorithm to solve it. The complexity theory
attempts to address this question: “How efficient is a search algorithm for a
particular optimization problem, as the number of variables gets large?”

The TSP is known to be NP-hard [2, 3]. The problems in NP-hard class are said
to be intractable because these problems have no asymptotically efficient algorithm,
even the seemingly “limitless” increase of computational power will not resolve
their genuine intractability. The intrinsic difficulty of the TSP is that the solution
space increases exponentially as the problem size increases, which makes the
exhaustive search infeasible. When a TSP instance is large, the number of possible
tours in the solution space is so large to forbid an exhaustive search for the optimal
tours. A feasible search algorithm for the TSP is one that comes with a guarantee to

find all best tours in time at most proportional to nk for some power k.
Do we need to explore all the possibilities in the solution space to find the

optimal solutions? Imagine that searching for the optimal solution in the solution
space is like treasure hunting. We are trying to hunt for a hidden treasure in the
whole world. If we are “blindfolded”without any guidance, it is a silly idea to search
every single square inch of the extremely large space. We may have to perform a
random search process, which is usually not effective. However, if we are able to
use various clues to locate the small village where the treasure was placed, we will
then directly go to that village and search every corner of the village to find the
hidden treasure. The philosophy behind this treasure-hunting case for optimization
is that: if we do not know where the optimal point is in the solution space, we can
try to identify the small region that contains the optimal point and then search that
small region thoroughly to find that optimal point.

Optimization researchers have developed many optimization algorithms to solve
the TSP. Deterministic approaches such as exhaustive enumeration and branch-
and-bound can find exact optimal solutions, but they are very expensive from the
computational point of view. Stochastic optimization algorithms, such as simple
heuristic local search, Evolutionary Algorithms, Particle Swarm Optimization and
many other metaheuristics, can find hopefully a good solution to the TSP [1, 4–7].
The stochastic search algorithms trade in guaranteed correctness of the optimal
solution for a shorter computing time. In practice, most stochastic search algorithms
are based on the heuristic local search technique [8]. Heuristics are functions that
help us decide which one of a set of possible solutions is to be selected next [9]. A
local search algorithm iteratively explores the neighborhoods of solutions trying to
improve the current solution by a local change. However, the scope of local search is
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limited by the neighborhood definition. Therefore, heuristic local search algorithms
are locally convergent. The final solution may deviate from the optimal solution.
Such a final solution is called a locally optimal solution, denoted as s0 in this chapter.
To distinguish from locally optimal solutions, the optimal solution s ∗ in the solution
space is usually called the globally optimal solution.

This chapter studies the TSP from a novel perspective and presents a new search
algorithm for the TSP. This chapter is organized in the following sections. Section 2
presents the ABSS algorithm for the TSP. Section 3 describes the important data
structure that is a critical player in solving the TSP. Section 4 discusses the nature of
heuristic local search algorithm and introduces the concept of solution attractor.
Section 5 describes the global optimization features of the ABSS. Section 6 discusses
the computational complexity of the ABSS. Section 7 concludes this chapter.

2. The attractor-based search system for the TSP

Figure 1 presents the Attractor-Based Search System (ABSS) for the TSP. In this
algorithm, Q is a TSP instance with the edge matrix E and cost matrix C. At
beginning of search, the matrix E is initialized by assigning zeros to all elements of
E. The function InitialTour() constructs an initial tour si using any tour-
construction technique. The function LocalSearch() takes si as an input, performs
local search using any type of local search technique, and returns a locally optimal
tour s j. The function UpdateE() updates the matrix E by recording the edge config-
uration of tour s j into the matrix. K is the number of search trajectories. After the
edge configurations of K locally optimal tours are stored in the matrix E, the
function ExhaustedSearch() searches E completely using the depth-first tree search
technique, which is a simple recursive search method that traverses a directed graph
starting from a node and then searches adjacent nodes recursively. Finally, the ABSS
outputs a set of all best tours S ∗ found in the edge configuration of E. The search
strategy in the ABSS is straightforward: generating K locally optimal tours, storing
their edge configurations in the matrix E, and then identifying the best tours by
evaluating all tours represented by the edge configuration of E. The ABSS is a simple
and efficient computer program that can solve the TSP effectively. This search
algorithm shows strong features of effectiveness, flexibility, adaptability, scalability
and efficiency. The computational model of the ABSS is inherently parallel, facili-
tating implementation on concurrent processors. It can be implemented in many
different ways: series, parallel, distributed, or hybrid.

Figure 1.
The ABSS algorithm for the TSP.
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Figure 2 uses a 10-node instance as an example to illustrate how the ABSS
works. We randomly generate K ¼ 6n ¼ 60 initial tours, which edge configurations
hit all elements of the matrix E (marked as black color), as shown in Figure 2(a). It
means that these 60 random tours hit all 45 edges that represent all 181440 tours in
the solution space. We let each of the search trajectories run 5000 iterations and
obtain 60 locally optimal tours. However, due to the small size of the instance, most
locally optimal tours have identical edge configurations. Among the 60 locally
optimal tours, we find only four distinct locally optimal tours as shown in
Figure 2(b). Figure 2(c) shows the union of the edge configurations of the 60
locally optimal tours, in which 18 edges are hit. Then we use the depth-first tree
search, as illustrated in Figure 2(d), to identify all five tours in the edge configura-
tion of E, which are listed in Figure 2(e). In fact, one of the five tours is the globally
optimal tour. This simple example indicates that (1) local search trajectories con-
verge to small set of edges, and (2) the union of the edge configurations of K locally
optimal tours is not just a countable union of the edge configurations of the these
tours, but also include the edge configurations of other locally optimal tours. The
ABSS consists of two search phases: local search phase and exhaustive search phase.

Figure 2.
A simple example of the ABSS algorithm. (a) Union of the edge configurations of 60 random initial tours, (b)
four distinct locally optimal tours, (c) union of the edge configurations of the 60 locally optimal tours, (d) the
depth-first tree search on the edge configuration of E, and (e) five tours found in E.
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The task of the local search phase is to identify the region that globally optimal tour
is located (i.e. the village hiding the treasure), and the task of the exhaustive search
phase is to find the globally optimal tour (i.e. find the hidden treasure). The
remaining sections will briefly explain the features of the ABSS.

In all experiments mentioned in the chapter, we generate symmetric TSP
instances with n nodes. The element c i, jð Þ of the cost matrix C is assigned a random
integer independently drawn from a uniform distribution of the range [1, 1000].
The triangle inequality c i, jð Þ þ c j, kð Þ≥ c i, kð Þ is not assumed in the instances.
Although this type of problem instances is application-free, it is mathematically
significant. A TSP instance without triangle inequality cannot be approximated
within any constant factor. A heuristic local search algorithm usually performs
much worse for this type of TSP instances, which offers a strikingly challenge to
solving them [2, 3, 6, 10, 11]. We use the 2-opt local search technique in the local
search phase. The 2-opt neighborhood can be characterized as the neighborhood
that induces the greatest correlation between function values of neighboring tours,
because neighboring tours differ in the minimum possible four edges. Along the
same reasoning line, the 2-opt may have the smallest expected number of locally
optimal points [12]. The local search process randomly selects a solution in the
neighborhood of the current solution. A move that gives the first improvement is
chosen. The great advantage of the first-improvement pivoting rule is to produce
randomized locally optimal points. The software program written for the experi-
ments use several different programming languages and are run in PCs with
different versions of Window operating system.

3. The edge matrix E

Usually the edge matrix E is not necessary to be included in the TSP definition
because the TSP is a complete graph. However, the edge matrix E is an effective
data structure that can help us understand the search behavior of a local search
system. General local search algorithm may not require much problem-specific
knowledge in order to generate good solutions. However, it may be unreasonable to
expect a search algorithm to be able to solve any problem without taking into
account the data structure and properties of the problem at hand.

To solve a problem, the first step is to create a manipulatable description of the
problem itself. For many problems, the choice of data structure for representing a
solution plays a critical role in the analysis of search behavior and design of new
search algorithm. For the TSP, a tour can be represented by an ordered list of nodes
or an edge configuration of a tour in the edge matrix E, as illustrated in Figure 3.
The improvement of the current tour represents the change in the order of the
nodes or the edge configuration of a tour.

Observing the behavior of search trajectories in a local search system can be
quite challenging. The edge matrix E is a natural data structure that can help us
trace the search trajectories and understand the dynamics of a local search system.
An edge e i, jð Þ is the most basic element of a tour, but contains a piece of informa-
tion about each of n� 2ð Þ! tours that go through it. Essentially, the nature of local
search for the TSP is an edge-selection process: preservation of good edges and
rejection of bad edges according to the objective function f sð Þ. Each edge has an
implicit probability to be selected by a locally optimal tour. A better edge has higher
probability to be included in a locally optimal tour. Therefore, the edges in E can be
divided into three groups: globally superior edges, G-edges, and bad edges. A
globally superior edge is the edge that occurs in many or all locally optimal tours.
Although each of these locally optimal tours selects this edge based on its own
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search trajectory, the edge is globally superior since the edge is selected by these
individual tours from different search trajectories going through different search
regions. The globally superior edges have higher probability to be selected by a
locally optimal tour. A G-edge is the edge that is included in a globally optimal tour.
All G-edges are globally superior edges and can be treated as a special subset of the
globally superior edges. The edges that are discarded by all search trajectories or
selected by only few locally optimal tours are bad edges. A bad edge is impossible to
be included in a globally optimal tour. A locally optimal tour usually consists of
some G-edges, some globally superior edges and a few bad edges.

The changes of the edge configuration of the matrix E represent the transfor-
mations of the search trajectories in a local search system. When all search trajecto-
ries reach their end points, the final edge configuration of E represents the final
state of the local search system. For a tour sk, we define an element e i, jð Þ of E as

e i, jð Þ ¼
1 if the element e i, jð Þ is in the tour sk

0 otherwise

�

(2)

Then the hit-frequency value eij in the element e i, jð Þ is defined as the number of
occurrence of the element in K tours, that is

eij ¼
X

K

k¼1

e i, jð Þk (3)

When K search trajectories reach their end points, the value eij þ eji
� �

=K can

represent the probability of the edge e i, jð Þ being hit by a locally optimal tour. We
can use graphical technique to observe the convergent behavior of the search
trajectories through the matrix E. The hit-frequency value eij can be easily
converted into a unit of half-tone information in a computer, a value that we
interpret as a number Hij somewhere between 0 and 1. The value 1 corresponds to
black color, 0 to white color, and any value in between to a gray level. Let K be the
number of search trajectories, the half-tone information Hij on a computer screen
can be represented by the hit-frequency eij in the element e i, jð Þ of E:

Hij ¼
eij
K

(4)

Figure 3.
Two representations of a tour: an ordered list of nodes and an edge configuration of a tour.
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Figure 4 illustrates a simple example of visualization showing the convergent
behavior of 100 search trajectories for a 50-node instance. Figure 4(a) shows the
image of the edge configurations of 100 random initial tours. Since each element of
E has equal chance to be hit by these initial tours, almost all elements are hit by
these initial tours, and all elements have very low Hij values, ranging from 0.00 to
0.02. When the local search system starts searching, the search trajectories con-
stantly change their edge configurations, and therefore the colors in the elements of
E are changed accordingly. As the search continues, more and more elements
become white (i.e. they are discarded by all search trajectories) and other elements
become darker (i.e. they are selected by more search trajectories). When all search
trajectories reach their end points, the colored elements represent the final edge
configuration of the search system. Figure 4(b) and (c) show the images of edge
configuration of E when all search trajectories completed 2000 iterations and 5000
iterations, respectively. At 5000th iteration, the range of Hij values in the elements
of E is from 0.00 to 0.42. The value 0.42 means that 42% of the search trajectories
select this element. Majority of the elements of E become white color.

This simple example has great explanatory power about the global dynamics of
the local search system for the TSP. As search trajectories continue searching, the
number of edges hit by them becomes smaller and smaller, and better edges are hit
by more and more search trajectories. This edge-convergence phenomenon means
that all search trajectories are moving closer and closer to each other, and their edge
configurations become increasingly similar. This phenomenon describes the glob-
ally asymptotic behavior of the local search system.

It is easily verified that under certain conditons, a local search system is able to
find the set of the globally optimal tours S ∗ when the number of search trajectories
is unlimited, i.e.

lim
K!∞

P S ∗
⊂ S½ � ¼ 1 (5)

However, the required search effort may be very huge – equivalent to enumer-
ating all tours in the solution space. Now one question for the ABSS is “How many
search trajectories in the search system do we need to find all globally optimal
tours?” The matrix E consists of n n� 1ð Þ elements (excluding the diagonal ele-
ments). When we randomly construct a tour and record its edge configuration in E,
n elements of E will be hit by this tour. If we construct more random tours and
record their edge configurations in E, more elements will be hit. We define K as the
number of randomly-constructed initial tours, whose edge configurations together

Figure 4.
Visualization of the convergent dynamics of local search system. (a) the image of the edge configurations of 100
initial tours, (b) and (c) the images of edge configurations when the search trajectories are at 2000th and
5000th iteration, respectively.
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will hit all elements of E. We know that all elements of E represent all combinatorial
possibilities in the solution space. Therefore, K is the number of search trajectories
such that the union of edge configurations of ther initial tours covers the entire
solution space. In our experiments, we found that the edge configurations of at most
6n randomly-constructed tours can guarantee to hit all elements of E. From the tour
perspective, K ¼ 6n random tours represent only a small set of the tours in the
solution space. However, from the view of edge-configuration, the union of the
edge configurations of 6n random tours represents the edge configurations of all
tours in the solution space. It reveals an amazing fact: the union of the edge config-
urations of only 6n random tours contains the edge configurations of all n n� 1ð Þ!=2
tours in the solution space. It reflects the combinatorial nature of the TSP: the tours
in the solution space are formed by different combinations of the edges. The union
of the edge configurations of a set of tours contains information about many other
tours because one tour shares its edges with many other tours. One fundamental
theory that can help us explain this phenomenon is the information theory [13].
According to the information theory, each solution point contains some information
about its neighboring solutions that can be modeled as a function, called information

function or influence function. The influence function of the ith solution point in the
solution space S is defined as a function Ωi : S ! R, such that Ωi is a decreasing

function of the distance from a solution point to the ith solution point. The notion of
influence function has been extensively used in datamining, data clustering, and
pattern recognition.

4. The nature of heuristic local search

Heuristic local search is based on the concept of neighborhood search. A neigh-
borhood of a solution si, denoted as N sið Þ, is a set of solutions that are in some sense
close to si. For the TSP, a neighborhood of a tour si is defined as a set of tours that
can be reached from si in one single transition. From edge-configuration perspec-
tive, all tours in N sið Þ are very similar because they share significant number of
edges with si. The basic operation of local search is iterative improvement, which
starts with an initial tour and searches the neighborhood of the current tour for a
better tour. If such a tour is found, it replaces the current tour and the search
continues until no improvement can be made. The local search algorithm returns a
locally optimal tour.

The behavior of a local search trajectory can be understood as a process
of iterating a search function g sð Þ. We denote s0 as an initial point of search and

gt sð Þ as the tth iteration of the search function g sð Þ. A search trajectory

s0, g s0ð Þ, g2 s0ð Þ, … , gt s0ð Þ, … converges to a locally optimal point s0 as its limit,
that is,

g lim
t!∞

gt s0ð Þ

	 


¼ lim
t!∞

gtþ1 s0ð Þ ¼ s0 (6)

Therefore, a search trajectory will reach an end point (a locally optimal point)
and will stays at this point forever.

In a heuristic local search algorithm, there is a great variety of ways to construct
initial tour, choose candidate moves, and define criteria for accepting candidate
moves. Most heuristic local search algorithms are based on randomization. In this
sense, a heuristic local search algoorithm is a randomized system. There are no two
search trajectories that are exactly alike in such a search system. Different search
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trajectories explore different regions of the solution space and stop at different final
points. Therefore, local optimality depends on the initial points, the neighborhood
function, randomness in the search process, and time spent on search process. On
the other hand, however, a local search algorithm essentially is deterministic and
not random in nature. If we observe the motion of all search trajectories, we will see
that the search trajectories go towards the same direction, move closer to each
other, and eventually converge into a small region in the solution space.

Heuristic local search algorithms are essentially in the domain of dynamical
systems. A heuristic local search algorithm is a discrete dynamical system, which
has a solution space S (the state space), a set of times T (search iterations), and a
search function g : S� T ! S that gives the consequents to a solution s∈ S in the
form of stþ1 ¼ g stð Þ. A search trajectory is the sequence of states of a single search
process at successive time-steps, which represents the part of the solution space
searched by this search trajectory. The questions about the behavior of a local search
system over time are actually the questions about its search trajectories. The most
basic question about the search trajectories is “Where do they go in the solution
space and what do they do when they get there?”

The attractor theory of dynamical systems is a natural paradigm that can be used
to describe the search behavior of a heuristic local search system. The theory of
dynamical systems is an extremely broad area of study. A dynamical system is a
model of describing the temporal evolution of a system in its state space. The goal of
dynamical system analysis is to capture the distinctive properties of certain points
or regions in the state space of a given dynamical system. The theory of dynamical
systems has discovered that many dynamical systems exhibt attracting behavior in
the state space [14–22]. In such a system, all initial states tend to evolve towards a
single final point or a set of points. The term attractor is used to describe this single
point or the set of points in the state space. The attractor theory of dynamical
systems describes the asymptotic behavior of typical trajectories in the dynamical
system. Therefore, the attractor theory provides the theoretical foundation to study
the search behavior of a heuristic lcoal search system.

In a local search system for the TSP, no matter where we start a search trajectory
in the solution space, all search trajectories will converge to a small region in the
solution space for a unimodal TSP instance or h small regions for a h-model TSP. We
call this small region a solution attractor of the local search system for a given TSP
instance, denoted as A. Therefore, the solution attractor of a local search system for
the TSP can be defined as an invariant set A⊂ S consisting of all locally optimal
tours and the globally optimal tours. A single search trajectory typically converges
to either one of the points in the solution attractor. A search trajectory that is in the
solution attractor will remain within the solution attractor forward in time. Because
a globally optimal tour s ∗ is a special case of locally optimal tours, it is undoubtedly
embodied in the solutioin attractor, that is, s ∗ ∈A. For a h-modal TSP instance, a
local search system will generate h solution attractors A1,A2, … ,Ahð Þ that attract all
search trajectories. Each of the solution attractors has its own set of locally optimal
tours, surrounding a globally optimal tour s ∗i i ¼ 1, 2, … , hð Þ. A particular search
trajectory will converge into one of the h solution attractors. All locally optimal
tours will be distributed to these solution attractors. According to dynamical sys-
tems theory [20], the closure of an arbitrary union of attractors is still an attractor.
Therefore, the solution attractor A of a local search system for a h-modal TSP is a
complete collection of h solution attractors A ¼ A1 ∪A2 ∪ … ∪Ah.

The concept of solution attractor of local search system describes where the
search trajectories actually go and where their final points actually stay in the
solution space. Figure 5 visually summarizes the concepts of search trajectories and
solution attractors in a local search system for a multimodal optimization problem,
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describing how search trajectories converge and how solution attractors are formed.
In summary, let g sð Þ be a search function in a local search system for the TSP, the
solution attractor of the search system has the following properties [23–25]:

1.Convexity, i.e. ∀si ∈ S, gt sið Þ∈A for sufficient long t;

2.Centrality, i.e. the globally optimal tour s ∗i is located centrally with respect to
the other locally optimal tours in Ai i ¼ 1, 2, … hð Þ;

3. Invariance, i.e. ∀s0 ∈A, gt s0ð Þ ¼ s0 and gt Að Þ ¼ A for all time t;

4. Inreducibility, i.e. the solution attractor A contains a limit number of invariant
locally optimal tours.

A search trajectory in a local search system changes its edge configuration during
the search according to the objective function f sð Þ and its neighborhood structure.
The matrix E can follow the “footprints” of search trajectories to capture the
dynamics of the local search system. When all search trajectories reach their end
points – the locally optimal tours, the edge configuration of the matrix E will
become fixed, which is the edge configuration of the solution attractor A. This fixed
edge configuration contains two groups of edges: the edges that are not hit by any of
locally optimal tours (non-hit edges) and the edges that are hit by at least one of the
locally optimal tours (hit edges). Figure 6 shows the edge grouping in the edge
configuration of E when all search trajectories stop at their final points.

In the ABSS, we use K search trajectories in the local search phase. Different sets
of K search trajectories will generate different final edge configuration of E. Suppose
that, we start the local search from a set of K initial points and obtain a edge
configurationMa in E when the local search phase is terminated. Then we start the
local search process again from a different set of K initial points and obtains a little
different edge configurationMb in E. Which edge configuration truly describes the
edge configuration of the real solution attractor? Actually,Ma andMb are structurally

Figure 5.
Illustration of the concepts of serch trajectories and solution attractors in a local search system for a multimodal
optimization problem.
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equivalent because they are different only in the set of bad edges, thusMa precisely
replicates the dynamical properties ofMb. The final edge configuration of the
constructed solution attractor generated from K search trajectories is not sensitive to
the selection of K search trajectories. This property indicates that a heuristic local
search system actually is a deterministic system: although a single search trajectory
appears stochastic, all search trajectories from differeitn initial points will be always
trapped into the same small region in the solution space and the final edge configu-
ration of E will always converge to the same set of the globally optimal edges.

The convergence of the search trajectories can be measured by the change in the
edge configuration of the matrix E. In the local search process, search trajectories
collect all available topology information about the quality of the edges from their
search experience and record such information in the matrix E. The changes in the
edge configuration of E fully reflects the real search evolution of the search system.
A state of convergence is achieved once no any more local search trajectory can
change the edge configuration of E. For a set of search trajectories to be converging,
they must be getting closer and closer to each other, that is, their edge configura-
tions become increasingly similar. As a result, the edge configurations of the search
trajectories converge to a small set of edges that contains all globally superior edges
and some bad edges. Let W denote total number of edges in E, α tð Þ the number of
the edges that are hit by all search trajectories at time t, β tð Þ the number of the edges
that are hit by one or some of the search trajectories, and γ tð Þ the number of edges
that have no hit at all, then at any time t, we have

W ¼ α tð Þ þ β tð Þ þ γ tð Þ (7)

For a given TSP instance, W is a constant value W ¼ n n� 1ð Þ=2 for a symmetric
instance or W ¼ n n� 1ð Þ for an asymmetric instance. During the local search
process, the values for α tð Þ and γ tð Þwill increase and the value for β tð Þwill decrease.
However, these values cannot increase or decrease foreover. At certain point of
time, they will become constant values, that is,

W ¼ lim
t!∞

α tð Þ þ lim
t!∞

β tð Þ þ lim
t!∞

γ tð Þ ¼ Αþ Bþ Γ (8)

Our experiments confirmed this inference about α tð Þ, β tð Þ and γ tð Þ. Figure 7
illustrates the patterns of α tð Þ, β tð Þ and γ tð Þ curves generated in our experiments.
Our experiments also found that, for unimodal TSP instances, the ratio γ tð Þ=W
could approach to 0.70 quickly for different sizes of TSP instances. For multimodal
TSP instances, this ratio depends on the number of the globally optimal points.
However, the set of hit edges is still very small.

Figure 6.
The grouping of the edges in E when all search trajectories reach their end points.
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In summary, we assume a TSP instance Q has a solution space with h ≥ 1ð Þ
globally optimal tours (s ∗1 , s

∗
2 , … , s ∗h ), and correspondingly there exist h set of

G-edges G1,G2, … ,Ghð Þ: A local search system for the Q will generate h solution
attractors A1,A2, … ,Ahð Þ that attract all search trajectories. The edge configuration
of the solution attractor A is the union of the edge configurations of the h solution
attractors. The final edge configuration of E represents the edge configuration of A
with three properties:

1. It contains all locally optimal tours;

2. It contains a complete collection of solution attractors, i.e. A ¼
A1 ∪A2 ∪ … ∪Ah;

3. It contains a complete collection of G-edges, i.e. G ¼ G1 ∪G2 ∪ … ∪Gh.

From this analysis, we can see that the edge matrix E is an extremely useful data
structure that not only collcets the information about search trajectories, but also
convert local search behavor of individual search trajectories into global search
behavor of the search system. The global convergence and deterministic property of
the search trajectories make the local search system always converge to the same
solution attractors and the edge configurations of the search trajectories always
converge to the same set of globally superior edges. The matrix E shows us clearly
where the search trajectories go and where all locally optimal points are located. We
found the village! However, it is still difficult to identify all G-edges among the
globally superior edges. The ABSS uses the exhaustive search phase to find all tours
in the solution attractor. Since the local search phase has significantly reduced the
size of the search space for the exhaustive search phase, the complete search in the
solution attractor becomes feasible.

5. Global optimization feature of the ABSS

The task of a global optimization system is to find all absolutely best solutions in
the solution space. There are two major tasks performed by a global optimization
system: (1) finding all globally optimal points in the solution space and (2) making
sure that they are globally optimal. So far we do not have any effective and efficient

Figure 7.
The α tð Þ, β tð Þ and γ tð Þ curves with search iterations.

12

Theory of Complexity - Definitions, Models, and Applications



global search algorithm to solve NP-hard combinatorial problems. We do not even
have well-developed theory or analysis tool to help us design efficient algorithms to
perform these two tasks. One critical question in global optimization is how to
recognize the globally optimal solutions. Modern search algorithms lack practical
criteria that decides when a locally optimal solution is a globally optimal one. What
is the necessary and sufficient condition for a feasible point si to be globally optimal
point? The mathematical condition for the TSP is ∀s∈ S, f s ∗ð Þ≤ f sð Þ. To meet this
condition, an efficient global search system should have the following properties:

1.The search system should be globally convergent.

2.The search system should be deterministic and have a rigorous guarantee for
finding all globally optimal solutions without excessive computational burden.

3.The optimality criterion in the system must be based on information on the
global behavior of the search system.

The ABSS combines beautifully two crucial aspects in search: exploration and
exploitation. In the local search phase, K search trajectories explore the full solution
space to identify the globally superior edges, which form the edge configuration of
the solution attractor. These K search trajectories are independently and invidually
executed, and therefore they create and maintain diversity from beginning to the
end. The local search phase is a randomized process due to randomization in the
local search function g sð Þ. In this sense, the K search trajectories actually perform
the Monte Carlo simulation to sample locally optimal tours. The essential idea of
Monte Carlo method is using randomness to solve problems that might be deter-
ministic in principle [26]. In the ABSS, K search trajectories start a sample of initial
points from a uniform distribution over the solution space S, and, through the
randomized local search process, generate a sample of locally optimal points uni-
formly distributed in the solution attractor A. The edge configuration of E is actu-
ally constructed through this Monte Carlo sampling process.

Each of the K search trajectories passes throughmany neighborhoods on its way to

the final point. For any tour si, the size of N sið Þ is greater than n
2

� �

! [12]. Let N s0i
� �

denote the neighborhood of the final point s0i of the i
th search trajectory andΩN stranð Þi

as the union of the neighborhoods of all transition points of the search trajectory, then
we can believe that the search space covered by K search trajectories is

N s01
� �

∪ΩN stranð Þ1 ∪N s02
� �

∪ΩN stranð Þ2 … ∪N s0K
� �

∪ΩN stranð ÞK ¼ S (9)

That is, the solution attractor A is formed through the entire solution space S.
The solution attractor A contains h unique minimal “convex” sets Ai i ¼ 1, 2, … , hð Þ.
Each Ai has a unique best tour s ∗i surrounded by a set of locally optimal tours. The

tour s ∗i in Ai satisfies f s ∗i
� �

< f sð Þ for all s∈Ai and f s ∗1
� �

¼ f s ∗2
� �

¼ … ¼ f s ∗h
� �

.
We see that the matrix E plays a critical role to transform local search process of

the individual search trajectories into a collective global search process of the sys-
tem. Each time when a local search trajectory finds a better tour and updates the
edge configuraton of E, the conditional distribution on the edges are updated. More
values are attached to the globally superior edges, and bad edges are discarded. Let
W be the complete set of the edges in E and WA the set of edges in the edge
configuration of the solution attractor A such that g Wð Þ is contained in the interior
of W. Then the intersection WA of the nested sequence of sets is

W ⊃ g Wð Þ⊃ g2 Wð Þ⊃ … ⊃ gt Wð Þ⊃ … ⊃WA (10)
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and lim t!∞g
t WAð Þ ¼ WA. As a result, the edge configurations of K search

trajectories converge to a small set of edges.
The “convexity” property of the solution attractor A allows the propagation of

the minimum property of s ∗i in the solution attractor Ai to the whole solution space
S through the following conditions:

1.∀s∈Ai, f s ∗i
� �

< f sð Þ

2. f s ∗1
� �

¼ f s ∗2
� �

¼ … ¼ f s ∗h
� �

3. min
s∈A

f sð Þ ¼ min
s∈ S

f sð Þ

Therefore the global convergence and deterministic property of the search tra-
jectories in the local search phase make the ABSS always find the same set of
globally optimal tours. We conducted several experiments to confirm this argument
empirically. In our experiments, for a given TSP instance, the ABSS performed the
same search process on the instance several times, each time using a different set of
K search trajectories. The ABSS outputed the same set of the best tours in all trials.

Table 1 shows the results of two experiments. One experiment generated
n ¼ 1000 instance Q1000, the other generated n ¼ 10000 instance Q10000.

Trial number Number of tours in A Range of tour cost Number of best tours in A

Q1000 (6000 search trajectories)

1 6475824 [3241, 4236] 1

2 6509386 [3241, 3986] 1

3 6395678 [3241, 4027] 1

4 6477859 [3241, 4123] 1

5 6456239 [3241, 3980] 1

6 6457298 [3241, 3892] 1

7 6399867 [3241, 4025] 1

8 6423189 [3241, 3924] 1

9 6500086 [3241, 3948] 1

10 6423181 [3241, 3867] 1

Q10000 (60000 search trajectories)

1 8645248 [69718, 87623] 4

2 8657129 [69718, 86453] 4

3 8603242 [69718, 86875] 4

4 8625449 [69718, 87053] 4

5 8621594 [69718, 87129] 4

6 8650429 [69718, 86978] 4

7 8624950 [69718, 86933] 4

8 8679949 [69718, 86984] 4

9 8679824 [69718, 87044] 4

10 8677249 [69718, 87127] 4

Table 1.
Tours in constructed solution attractor A for Q1000 and Q10000.
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We conducted 10 trials on each of the instances respectively. In each trial, the ABSS
used K ¼ 6n search trajectories. Each search trajectory stopped when no improve-
ment was made during 10n iterations. The matrix E stored the edge configurations
of the K final tours and then was searched completely using the depth-first tree
search process. Table 1 lists the number of tours found in the constructed solution
attractor A, the cost range of these tours, and the number of the best tours found in
the constructed solution attractor. For instance, in trial 1 for Q1000, the ABSS found
6475824 tours with the cost range [3241, 4136] in the constructed solution attractor.
There was a single best tour in the solution attractor. The ABSS found the same best
tour in all 10 trials. For the instance Q10000, the ABSS found the same set of four best
tours in all 10 trials. These four best tours have the same cost value, but with different
edge configurations. If any trial had generated a different set of the best tours, we
could immediately make a conclusion that the best tours in the constructed solution
attractor may not be the globally optimal tours. From practical perspective, the fact
that the same set of the best tours was detected in all trials provides an empirical
evidence of the global optimality of these tours. The fact also indicates that the ABSS
converges in solution. Convergence in solutionmeans that the search system can iden-
tify all optimal solutions repeatedly. Always finding the same set of optimal solutions
actually is the fundamental requirement for global optimization systems.

6. Computing complexity of the ABSS

With current search technology, the TSP is an infeasible problem because it is
not solvable in a reasonable amount of time. Faster computers will not help. A
feasible search algorithm for the TSP is one that comes with a guarantee to find all

best tours in time at most proportional to nk for some power k. The ABSS can
guarantee to find all globally optimal tours for the TSP. Now the question is how
efficient it is?

The core idea of the ABSS is that, if we have to use exhaustive search to confirm
the globally optimal points, we should first find a way to quickly reduce the effec-
tive search space for the exhaustive search. When a local search trajectory finds a
better tour, we can say that the local search trajectory finds some better edges. It is
an inclusive view. We also can say that the local search trajectory discards some bad
edges. It is an exclusive view. The ABSS uses the exclusive strategy to conquer the
TSP. The local search phase in the ABSS quickly prunes out large number of edges
that cannot possibly be included in any of the globally optimal tours. Thus, a large
useless area of the solution space is excluded. When the first edge is discarded by all
K search trajectories, n� 2ð Þ! tours that go through that edge are removed from the
search space for the exhaustive search phase. Each time when an edge is removed,
large number of tours are removed from the search space. Although the complexity
of finding a true locally optimal tour is still open, and we even do not know any
nontrivial upper bounds on the number of iterations that may be needed to reach
local optimality [27, 28], decades of empirical evidence and practical research have
found that heuristic local search converges quickly, within low order polynomial
time [1, 8, 27, 29]. In practice, we are rarely able to find perfect locally optimal tour
because we simply do not allow the local search process to run enough long time.
Usually we let a local search process run a predefined number of iterations, accept
whatever tour it generates, and treat it as a locally optimal tour. Therefore, the size
of the constructed solution attractor depends not only on the problem structure and
the neighborhood function, but also on the amount of search time invested in the
local search process. As we increase local search time, we will constructe a smaller
and stronger solution attractor. The local search phase in the ABSS can significantly
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reduce the search space for the exhaustive search phase by excluding a large num-
ber of edges. Usually the local search phase can remove about 60% of edges of the
matrix E in O n2ð Þ.

Now an essential question is naturally raised: What is the relationship between
the size of the constructed solution attractor and the size of the problem instance?
Unfortunately, there is no theoretical analysis tool available in the literature that can
be used to answer this question. We have to depend on empirical results to lend
some insights. We conducted several experiments to observe the relationship
between the size of the constructed solution attractor and the TSP instance size.
Figures 8–10 show the results of one of our experiments. All other similar experi-
ments reveal the same pattern. In this experiment, we generated 10 unimodal TSP
instances in the size from 1000 to 10000 nodes with 1000-node increment. For

Figure 8.
The number of discarded edges at the end of local search phase.

Figure 9.
Relationship between the size of the constructed solution attractor and instance size.
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each instance, the ABSS generated K ¼ 6n search trajectories. We first let each
search trajectory stop when no tour improvement was made during 10000 itera-
tions regardless of the size of the instance (named “fixed search time”). Then we
did the same search procedures on these instances again. This time we made each
search trajectory stop when no improvement was made during 10n iterations
(named “varied search time 1”) and 100n iterations (named “varied search time 2”)
respectively. Figure 8 shows the number of the edges that were discarded at the end
of local search phase. Figure 9 shows the number of tours in the constructed
solution attractor for each instance, and Figure 10 shows the effective branching
factors in the exhaustive search phase.

In Figure 8, we can see that the search trajectories can quickly converge to a
small set of edges. In the fixed-search-time case, about 60% of the edges were
discarded by search trajectories for the 1000-node instance, but this percentage
decreases as instance size increases. For the 10000-node instance, only about 46%
of the edges are discarded. However, if we increase the local search time linearly
when the instance size increases, we can keep the same percentage of discarded-
edge for all instance sizes. In the varied-search-time-1 case, about 60% of the edges
are abandoned for all different instance sizes. In the varied-search-time-2 case, this
percentage increases to 68% for all instances. Higher percentage of abandoned
edges means that majority of the branches are removed from the search tree.

Figure 9 shows the number of tours exist in the constructed solution attractor
for these instances. All curves in the chart appear to be linear relationship between
the size of constructed solution attractor and the size of the problem instance,
and the varied-search-time curves have much flatter slope because longer local
search time makes a smaller constructed solution attractor. Figures 8 and 9 indicate
that the search trajectories in the local search phase can effectively and efficiently
reduce the search space for the exhaustive search, and the size of the solution
attractor increases linearly as the size of the problem instance increases. Therefore,
the local search phase in the ABSS is an efficiently asymptotical search process that
produces an extremely small search space for further exhaustive search.

The completely searching of the constructed solution attractor is delegated to the
exhaustive search phase. This phase may still need to examine tens or hundreds of
millions of tours but nothing a computer processor cannot handle, as opposed to the

Figure 10.
The b ∗ values for different instance size n in our experiment.
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huge number of total possibilities in the solution space. The exhaustive search phase
can find the exact globally optimal tours for the problem instance after a limited
number of search steps.

The exhaustive search phase can use any enumerative technique. However, the
edge configuration of E can be easily searched by the depth-first tree search algo-
rithm. One of the advantages of depth-first tree search is less memory requirement
since only the nodes on the current path are stored. When using tree-search algo-
rithm, we usually use branching factor, average branching factor, or effective
branching factor to measure the computing complexity of the algorithm [30–33]. In
the data structure of search tree, the branching factor is the number of successors
generated by a given node. If this value is not uniform, an average branching factor
can be calculated. An effective branching factor b ∗ is the number of sucessors
generated by a typical node for a given tree-search problem. We use the following
definition to calculate effective brancing factor b ∗ for the exhaustive search phase:

N ¼ b ∗ þ b ∗ð Þ
2
þ … þ b ∗ð Þ

n (11)

where n is the size of the TSP instance, representing the depth of the tree, and N
is total number of nodes generated in the tree from the origin node. In our experi-
ments, the tree-search process always starts from node 1 (the first row of E). N is
total number of nodes that are processed to construct all valid tours and incomplete
(therefore abandoned) tours in E. N does not count the node 1 (the origin node),
but includes the node 1 as the end node of a valid tour. We use Figure 2(d) as an
example. The depth-first search process searches the edge configuration of E and

will generate N ¼ 58 nodes. Therefore, b ∗
≈ 1:3080, that is, 58≈ 1:3080þ

1:30802 þ … þ 1:308010. Figure 10 shows the effective branching factor b ∗ in our
experiment. The low values of b ∗ indicates that the edge configuration of the
solution attractor represents a tree with extremely sparse branches, and the degree
of sparseness does not changes as the problem size increase if we linearly increase
local search time in the local search phase for a large instance. The search time in the
exhaustive search phase is probably in O n2ð Þ since the size of the constructed
solution attractor might be linearly increased with the problem size n and the
number of edges in E is polynomially increased with the problem size. Our experi-
ments shows that the ABSS can significantly reduce the computational complexity
for the TSP and solve the TSP efficiently with global optimality guarantee.

Therefore, the ABSS is a simple algorithm that increases in computational diffi-
culty polynomially with the size of the TSP. In the ABSS, the objective pursued by the
local search phase is “quickly eliminating unnecessary search space as much as possi-
ble.” It can provide an answer to the question “In which small region of the solution
space is the optimal solution located?” in time of O n2ð Þ. The objective of the exhaus-
tive search phase is “identifying the best tour in the remaining search space.” It can
provide an anwer to the question “Which is the best tour in this small region?” in time
of O n2ð Þ. All together, the ABSS can answer the question “Is this tour the best tour in
the solution space?” in time of O n2ð Þ. Therefore, the ABSS is probably with comput-
ing complexity of O n2ð Þ and memory space requirement of O n2ð Þ. This suggests that
the TSP might not be as complex as we might have expected.

7. Conclusion

Advances in computational techniques on the determination of the global opti-
mum for an optimization problem can have great impact on many scientific and

18

Theory of Complexity - Definitions, Models, and Applications



engineering fields. Although both the TSP and heuristic local search algorithms
have huge literature, there is still a variety of open problems. Numerous experts
have made huge advance on the TSP research, but two fundamental questions of the
TSP remain essentially open: “How can we find the optimal tours in the solution
space, and how do we know they are optimal?”

The P-vs-NP problem is about how fast we can search through a huge number of
solutions in the solution space [34]. Do we ever need to explore all the possibilities
of the problem to find the optimal one? Actually, the P-vs-NP problem asks
whether, in general, we can find a method that completely searches only the region
where the optimal points are located [34–36]. Most people believe P 6¼ NP because
we have made little fundamental progress in the area of exhaustive search. Modern
computers can greatly speed up the search, but the extremely large solution space
would still require geologic search time to find the exact optimal solution on the
fastest machines imaginable. A new point of view is needed to improve our capacity
to tackle these difficulty problems. This paper describe a new idea: using efficient
local search process to effectively reduce the search space for exhaustive search. The
concept of solution attractor in heuristic local search systems may change the way
we think about both local search and exhaustive search. Heuristic local search is an
efficient search system, while exhaustive search is an effective search system. The
key is how we combines these two systems into one system beautifully to conquer
the fundamental issues of the hard optimization problems. In the TSP case, the edge
matrix E, a problem-specific data structure, plays a critical role of reducing the
search space and transforming local search to global search.

The ABSS is designed for the TSP. However, the concepts and formulation
behind the search algorithm can be used for any combinatorial optimization
problem requiring the search of a node permutation in a graph.
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