We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 185,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter

Bluetooth Low Energy
Applications in MATLAB

Septimiu Mischie

Abstract

This chapter presents Bluetooth Low Energy (BLE) applications in MATLAB.
Through these applications we acquire measurement data from BLE compatible
sensors to PC. The sensors are CC2541 Keyfob and CC2650 Sensor Tag. The first one
contains an accelerometer and a temperature sensor while the second one contains
more sensors, but inertial sensors and magnetometer are invoked. The PC should be
equipped with a general USB BLE adapter. The most important steps for
implementing a BLE application are presented: scanning, connecting, configuring
and data reading. Following this, more detailed applications are presented: a wire-
less sensor network for temperature measurement with three Keyfob-based nodes,
an application that displays in real time accelerometer data and a heading computed
method using either the gyroscope or the magnetometer of CC2650 Sensor Tag. The
most important MATLAB elements that are used to implement these applications
are different types of variables such as structure, table and object, methods to
implement endless loops and real-time display of acquired data and using
quaternions to handle 3D orientation of a device.

Keywords: MATLAB, Bluetooth low energy, temperature sensors,
movement sensors, callback function, quaternion, 3D orientation

1. Introduction

MATLAB represents a programming language that is used for designing, simu-
lating and testing of different technical systems [1]. This chapter provides examples
of Bluetooth low energy (BLE) applications implemented in MATLAB. In this
section, the main aspects regarding developing a BLE MATLAB application are
presented. First of all, basics about BLE technology are presented [2-5]. BLE means
exchange data between two or more devices by radio waves over short distances.
Mainly, a BLE device can be scanner or advertiser. The advertiser signals its pres-
ence by sending its name and address. The scanner finds advertiser devices and can
connect to one or more of them. Then the advertiser becomes a server and can send
data to the scanner which is now a client. According to BLE architecture, the server
can offer services to the client. Some examples of services are battery service,
accelerometer service and heart rate measurements. Each service contains more
characteristics. The most important attribute of a characteristic is its value, which in
general represents sensor data. In addition, a characteristic has one or more of the
following properties: read, write and notify.

1 IntechOpen

MATLAB Applications in Engineering

Starting with 2019b release, MATLAB has introduced a set of functions that
allow a simple implementation of BLE application [6]. The minimum setup involves
a laptop having an embedded BLE adaptor or a desktop having an USB BLE adapter
and some BLE compatible devices.

Scanning for BLE devices can be done using blelist function. Connecting to one
device can then be done by ble() function, as in the examples of Figure 1.

It can be seen that three BLE devices have been discovered. The connection with
Keyfobde99 is achieved, and b1 is a ble object having 5 fields, the last two being
Services and Characteristics so in previous paragraph was presented. Then, in order
to get data from a BLE device, the characteristics have to be accessed. Figure 2
presents the last part of the Characteristics variable.

A characteristic can be accessed either by service name and characteristic name
or by service universal unique identifier (UUID) and characteristic (UUID) [6].
According to the information from Figure 2 it can be seen that only the second
option can be used because there are more Custom services or characteristics.

>> list=blelist('timecut"',15)

list =

3x5 table
Index Name Address RSSI Advertisement
1 "CC2650 sensorTag" "BOB448BDTEOS5" -50 [1x1 struct]
2 "Multi-Sensor™ "1804EDBEF596" -56 [1x1 struct]
3 "Keyfobde99™ "84DD20C50B29" =71 [1x1 struct]

>> bl=ble ("84DD20C50B29"
bl =
ble with properties:
Name: "Keyfobde99"
Address: "84DD20C50B29"
Connected: 1
Services: [10x2 table]
Characteristics: [29x5 table]

Show services and characteristics

>>

Figure 1.
Using blelist and ble() functions.

>> table=bl.Characteristics(18:26,1:4)

table =
9x4 table
ServiceName ServiceUUID CharacteristicName CharacteristicUUID

"Tx Power" "1804" "Tx Power Level™ "2Ra07"
"Battery Service" "180F" "Battery Level” "2A18"
"Custom" "FFAO" "Custom" "FFAL"
"Custom" "FFAO" "Custom" "FFA2"
"Custom" "FFAO" "Custom" "FFA3"
"Custom" "FFAO" "Custom" "FFRA"
"Custom" "FFAO" "Custom" "FFAS"
"Custom" "FFAO" "Custom" "FFAE"
"Custom" "FFAOQ" "Custom" "FFAT"

>>

Figure 2.

A part of services and characteristics of a ble variable.

Bluetooth Low Energy Applications in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.95814

Furthermore, there is no information about the functionalities of these services or
characteristics. Therefore, to start the application, some information is necessary
that can be obtained using another application such as BLE Device Monitor [7] or
just Wikipedia [8]. Thus, Table 1 presents service name and characteristic name
among to UUID for a part of the positions of Figure 2.

In order to access a characteristic, the characteristic () function can be used, as in
Figure 3. Then, after defining x variable, the returned value can be read by function
read (x).

Another powerful features is DataAvailbleFcn than can be assigned to a charac-
teristics that has the Notify attribute. This can be done as in Figure 4. When a new
data is available, this callback function is called.

Service Name UUID Characteristic Name UUID
Accelerom. service FFAOQ Accelerometer enable FFA1
Accelerometer range FFA2
Accelerometer X coordinate FFA3
Accelerometer Y coordinate FFA4
Accelerometer Z coordinate FFAS5
Period of Reading accelerometer data FFA6
Temperature FFA7
Table 1.

UUID for a service and its chavacteristics.

>>» enable=characteristic(bl, "FFRAO","FFAL") ;

>> write(enable,1); %enable accelerometer

>> x=characteristic(bl, "FFRO","FFA3"); %x axis
>> data x=read(x)

data x =
66

>>

Figure 3.
Using the characteristic() function.

4\ Command Window

>> x.DataAvailableFcn=@displayCharacteristicData x
x =
Characteristic with properties:
Name: "Custom”
UUID: "FFA3"
Attributes: "Notify"

Descriptors: [2x3 table]
DataAvailableFcn: displayCharacteristicData x

Show descriptors

Jx >>

Figure 4.
Create the callback function.

MATLAB Applications in Engineering

Each of the following sections contains an introduction where the basic function
of the program is presented, which is then followed by the program and the results,
mainly in graphical form.

2. BLE network sensors for temperature monitoring

This section presents a MATLAB application that uses three temperature sen-
sors. CC2541 Keyfob [9] is a BLE compatible device that contains an accelerometer.
Among its basic function, the accelerometer contains an 8-bit temperature sensor.
To access the temperature sensor the accelerometer must be enabled first and then
the temperature characteristic can be accessed according to Table 1. The period of
reading temperature is 3 sec. according to the author publication [10].

At the beginning of the program a general scanning is executed and if none of
the desired sensors are discovered the application is stopped through a suitable
message on the screen. To do this, accessing the elements of a variable of table type,
list, is performed.

Then, depending on the discovered number of sensors, which can be from one to
any number (three in this application) the application gets temperature from them
and displays it on a graphic. For this purpose, two structures, s_enable and s_x,
having a variable number of fields have been created. Number of fields will be equal
with the discovered number of sensors. The structure s_x is used to assign a callback
function for each discovered sensor, too. Furthermore, the number of matrix of
small axes which are generated by subplot function is equal with the number of
discovered sensors.

The structure of the program is presented below.

%% % %% %Measure the temperature by one, two or three
%%%%%Key-fob devices%% %% % % % %% % % % % %% % %
clear; close all;

global V_templ;global V_temp2;global V_temp3

global V_timel;global V_time2;global V_time3

global N % the last N temperatures of each sensor

N=20;
V_templ=zeros(1,N);V_temp2=zeros(1,N);V_temp3=zeros(1,N);
d=datetime;
V_timel=repmat(d,N,1);V_time2=repmat(d,N,1);V_time3=repmat(d,N,1);
list=blelist; %scan

L=size(list);

Nr=L(1);

disp(['Total number of BLE devices: ' num2str(Nr)])

if Nr==

return

end

=L

for i=1:Nr

if (list.Address(i)=="84DD20C50B29" | list.Address(i)=="544A165E18AB" |
list.Address(i)=="20C38FD12605")

b(j)=ble(list.Address(i));

=i+L

end

end

Ng=i-1; % Number of Keyfobb devices

Bluetooth Low Energy Applications in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.95814

disp(['Number of Keyfob devices: ' num2str(Ng)])

if Ng==0

disp('No devices')

return

end

s_enable=struct; %initialize the structure

tab="abcdef'; %the fields of the structure

for i=1:Ng

s_enable.(tab(i))=characteristic(b(i),"FFAQ","FFA1");

write(s_enable.(tab(i)).1);

end

s_x=struct; %initialize the structure

for i=1:Ng

s_x.(tab(i))=characteristic(b(i),"FFAQ","FFA7");

s_x.(tab(i)).DataAvailableFcn = eval(['@displayCharacteristicData_temp

num2str(i)]);

end

h=figure(1);

while (ishandle(h))

for i=1:Ng

var =eval(['V_temp' num2str(i)]);

timp =eval(['V_time' num2str(i)]);

subplot(Ng,1,i);plot(timp,var,'*");grid;title(['sensor' num2str(i)]);ylim([O
30])

xlabel('time')

ylabel('temperature, C')

drawnow;

end

pause(3)

end

clear b

%0ne of the three callback functions:

function displayCharacteristicData_templ(src,evt)

global V_templ

global V_timel

sensori
T

L{SO T
220_ LW EE E LR T E S T R T E L L LS
[
2 101
£, | . . .
08:44:30 08:44:45 08:45:00 08:45:15 08:45:30
time Feb 05, 2021
0 30 . . sensor2 . .

N
Q
T

temperature,
N
(=}
T

* H ok ¥ ok F K| x k Kk kF Kok K ok ok K ox k K
1 1 1 1

08:44:30 08:44:45 08:45:00 08:45:15 08:45:30
time Feb 05, 2021

o

sensor3
T

© 30 T T T
gzo— * K kK kK o ok K|k Ok % ok Kk ok Kk Kk g ¥ K %
i
2 10
3
g 0 L . . :
08:44:30 08:44:45 08:45:00 08:45:15 08:45:30
time Feb 05, 2021

Figure 5.
The temperatuves from the three sensors.

MATLAB Applications in Engineering

global N

[templ] = read(src,'oldest’);
timel=datetime(datestr(now,'HH:MM:SS.FFF"));

%update the last N=20 samples of temperature and time
V_templ(1:N-1)=V_templ(2:N);

V_templ(N)=templ;

V_timel(1:N-1)=V_timel(2:N);

V_timel(N)=timel;

end

The program runs in an endless loop and displays the last 20 values of the three
temperatures in a MATLAB figure as in Figure 5. To stop the program, simply close
the figure. In addition, the current date and time is displayed on the figure. One of
the CC2541 Keyfob was on the outside sill of the window and therefore the resulting
temperature was about 5 degree Celsius.

3. Using the accelerometer of CC2541Keyfob

This section presents a MATLAB application that accesses the accelerometer of
the CC2541 Keyfob to read the 8-bit accelerations corresponding to the three axes.
The program is similar to that of the previous section. There are also three callback
functions, one for each axes. The period of reading data is set to 100 ms.

% %% %% %%%%Display in real-time the last samples of three accelerations
%% % % %% % %%0f each axis %% % %% % %% % % %% % %% % % %%

clear all; close all;

b=ble("84DD20C50B29"); %BLE connection with 84DD20C50B29
enable=characteristic(b,"FFAQ","FFA1")

write(enable,l) %enable accelerometer

x=characteristic(b,"FFAQ","FFA3")

y=characteristic(b,"FFAQ","FFA4")

z=characteristic(b,"FFAQ","FFA5")

per=characteristic(b,"FFAQ","FFAG")

read_per=read(per);

write(per,10);%establish the reading period to 10*10ms
read_perl=read(per);

global vector_x;global vector_y;global vector_z

global N; %number of samples

N=200;

vector_x=zeros(1,N;vector_y=zeros(1,N);vector_z=zeros(1,N);

axa =1:N;

x.DataAvailableFcn = @displayCharacteristicData_x; %functii callback,
they are %executed when sensor data are available

y.DataAvailableFcn = @displayCharacteristicData_y;

z.DataAvailableFcn = @displayCharacteristicData_z;

h=figure(1); %create the figure

while(ishandle(h)) %while the figure does exist data is displayed plot(axa,
vector_x*19.62/128,axa,vector_y*19.62/128,axa,vector_z*19.62/128);grid;leg-
end(‘ax','ay','az")

ylabel('accel., m/s2')

xlabel(' The most recent samples')

drawnow;

Bluetooth Low Energy Applications in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.95814

15

- ax
ay
[ty . az |4

accel., m/s2

0 50 100 150 200 250 300 350 400
The most recent samples

Figure 6.
The variation of the three accelerations.

end

clear b %clear the variable that represents the BLE connection or disconnect

%0ne of the three callback functions:

function displayCharacteristicData_x(src,evt)

global vector_x

global N

[data,timestamp] = read(src,'oldest’);

fprintf('Timel %s\n', datestr(now,'HH:MM:SS.FFF'))

if data>128

data=data-256;

end

%update the last N=200 samples of acceleration

vector_x(1:N-1)=vector_x(2:N);

vector_x(N)=data;

end

The program runs in an endless loop and displays the last N=200 samples of each
the three axes. Figure 6 presents a screenshot during the running of the program.
During this time CC2541 Keyfob was moved such as one of the three axes was on
the direction of gravitational force. Thus, most of the time one of the three axes has
the absolute value close to g=9.81 m/s” while the other two are close to zero.

4. Using the movement sensor of CC2650 Sensor Tag

This section presents a MATLAB application that accesses the movement sensor
of the device called CC2650 Sensor Tag. This movement sensor contains an accel-
erometer, a gyroscope and a magnetometer. If the accelerometer of the CC2541
Keyfob which was presented in the third section generates 8-bit data, all of the three
sensors of CC2650 Sensor Tag generates 16-bit data.

The gyroscope is a three axis sensor that measures the angular rate, w(t). By
integrating the angular rate, the angular position a(t) is obtained as

a(t) = Jw(t)dt (1)

Thus, Eq. (1) can be implemented by trapezoidal method by using samples of
o(t) by

MATLAB Applications in Engineering

o) —w—1)
2

alt) =alt—1)+ dt (2)
where dt is reciprocal of sample rate.

This angle is considered in comparison with the initial position of the gyroscope
which is unknown. Using the integration, it generates an error because the gyro-
scope has an offset. That means its output is different to zero when the gyroscope is
still. Thus, by integration it follows that the angle is changed. Therefore this offset
must be removed [11].

The magnetometer measures the magnetic field. Thus, if there are no other
fields, it measures the magnetic field of the earth. When the magnetometer is placed
horizontally, it can measure the angle from the north, /, by

h = atan "y (3)

My

where m, and m,, are its readings. Thus, both gyroscope and magnetometer can
measure the same angle but the magnetometer has a reference which is the north.
For this reason this angle is also called heading. Similar to the gyroscope, the
magnetometer has a drawback too. Thus, its reading must be corrected by a process
called calibration [12]. Basically, this implies a rotation of 360 degrees around its z
axis in both senses followed by computation of calibrated data m,.,; and m,,,

Mycal = Xy - My — Xoff (4)
and
Mycal = Yg -my — Yo ®)
where
R) S
My max — Mx min
and
m + My i
Xo — X < X max X mm)
off g 2)

while Y, and Y, have similar expressions. Also the magnetometer is very sensi-
tive to the magnetic perturbations that can be generated by other materials from its
proximity.

Regarding BLE, CC2650 Sensor Tag offers more services. The service that allows
accessing the accelerometer, the gyroscope and the magnetometer has three char-
acteristics, as shown in Table 2, where also the UUID can be seen. The first one is

Service Name UuID Char Name UUID
Movement FOO0OAAS80 Data FOOOAAS81
Configure sensors FOO0AAS2
Period FOOOAAS3
Table 2.

UUID for the movement service and its characteristics.

Bluetooth Low Energy Applications in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.95814

used to read data. The second one is used to enable the sensors. Each axis of the
gyroscope and accelerometer can individually be enabled while the magnetometer
can be enabled only for all axes. The third characteristic allows to establish the
period of data reading. The data is presented as an 18 bytes string, where each
sensor has a field of 6 bytes, two bytes for each axis, in the order: gyroscope,
accelerometer and magnetometer. Actually UUID contain more digits but only the
different part is presented in Table 2 [8].

Because in this case the MATLAB programs are much longer than previous ones
only some parts of the achieved programs are presented. Mainly, such a program
has three parts:

¢ the first part when the sensor is still for a time while gyroscope data are
gathered to compensate its offset; generally in this part 200 samples are
acquired;

* the second part when the sensor is rotated with 360 degrees in both senses
around z axis while the magnetometer data are gathered to compute the
calibration; in this part also 200 samples are acquired;

* the last part has an indefinite duration when the sensor is moved while real-
time data are displayed on the different figures.

Two programs are achieved, depending of the content of the last part. In this
case there is a script and only a callback function. The period of data reading is
200 ms.

The first program computes and displays basic results from gyroscope and mag-
netometer.

Mainly it computes:

om=[om_x om_y om_z]; %%the vector with gyroscope readings

A=[a_x a_y a_z]; %%the vector with accelerometer readings

M=[m_x m_y m_z]; %%the vector with magnetometer readings

ang_z_g %the angular position (angle) around z axis, by gyroscope
ang_z_m %the angular position (angle) around z axis, by magnetometer

All the time the last N=200 samples of these measurements are available.
A part of the script is presented in the following.

clear;

close all;

global i

i=0; %%this index is used inside the callback function
global ang_z_g; global om_z_prev; global ang_z_m

global offset_x; global offset_y; global offset_z;

ang_z_g=0; om_z_prev=0; ang_z_m=0

offset_x=0; offset_y=0; offset_z=0;
bb=ble("BOB448BD7E05");% the address of CC2650 Sensor Tag
%% %%the scaling constants, according to the range
sca_a=8%9.81/32768; %%the accelerometer range is +-8g
sca_m=4800/32768; %%the magnetometer range is +-4800 uT
sca_om=250/32768; %%the gyroscope range is +-250 deg/s
conf=characteristic(bb, "FOO0AA80-0451-4000-B000-000000000000" ,
"FO00AA82-0451-4000-B000-000000000000");
write(conf,[127 02]) %%enable all 9 axes, 01 111 111

MATLAB Applications in Engineering

10

per=characteristic(bb, "FO00AA80-0451-4000-B000-000000000000" ,
"FOO0AA83-0451-4000-B0O00-000000000000");
coef=20;T=10*coef*0.001; %%period of reading in seconds
write(per,coef) %%coef can be minimum 10
data=characteristic(bb, "FOO0AA80-0451-4000-BO00-000000000000"
"FOO0AA81-0451-4000-B0O00-000000000000");
data.DataAvailableFcn = @displayCharacteristicData_STag;
%A part of the callback function is presented in the following:
function displayCharacteristicData_STag(src,evt)

global i; global ang_z_g; global om_z_prev; global ang_z_m
global offset_x; global offset_y; global offset_z;
[data,timestamp] = read(src,'oldest'); %%read the current data
%%the gyroscope data

if data(2)>128

om_x=data(2)*256+data(1)-2"16;

else

om_x=data(2)*256+data(l);

end

if data(4)>128

om_y=data(4)*256+data(3)-2"16;

else

om_y=data(4)*256+data(3);

end

if data(6)>128

om_z=data(6)*256+data(5)-2"16;

else

om_z=data(6)*256+data(5);

end

om_x=om_x*sca_om;

om_y=om_y*sca_om;

om_z=om_z*sca_om;

%%correct the gyroscope’s offset

if i<=200

offset_x=offset_x+om_x;

offset_y=offset_y+om_y;

offset_z=offset_z+om_z;

i=i+l;

end

om_x=om_x-offset_x/200;

om_y=om_y-offset_y/200;

om_z=om_z-offset_z/200;

om=[om_x om_y om_z]; %%the vector with gyroscope readings
if i>200

%compute the current angle by integration
ang_z_g=ang_z_g+(om_z+om_z_prev)*T/2; %T is reading period
om_z_prev=om_z; %previous value becomes current value
%%the accelerometer data

if data(8)>128

a_x=data(8)*256+data(7)-2"16;

else

a_x=data(8)*256+data(7);

end

if data(10)>128

Bluetooth Low Energy Applications in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.95814

a_y=data(10)*256+data(9)-2"16;

else

a_y=data(10)*256+data(9);

end

if data(12)>128

a_z=data(12)*256+data(11)-2"16;

else

a_z=data(12)*256+data(11);

end

a_x=a_x*sca_a;

a_y=a_y*sca_a;

a_z=a_z*sca_a;

A=[a_x a_y a_z]; %%the vector with accelerometer readings
%%%%%the magnetometer data

if data(14)>128

m_x=data(14)*256+data(13)-2"16;

else

m_x=data(14)*256+data(13);

end

if data(16)>128

m_y=data(16)*256+data(15)-2"16;

else

m_y=data(16)*256+data(15);

end

if data(18)>128

m_z=data(18)*256+data(17)-2"16;

else

m_z=data(18)*256+data(17);

end

m_x=m_x*sca_m;

m_y=m_y*sca_m;

m_z=m_z*sca_m;

M=[m_x m_y m_z]; %%the vector with magnetometer readings
if i>400

%%compute the heading angle using magnetometer

AA= m_y*Ysf+Yoff; %Ysf and Yoff are constants for calibration
BB= m_x*Xsf+Xoff; %Xsf and Xoff are constants for calibration
%the part of the program that computes the above constants is not %
presented

ang_z_m=180/pi*atan2(AA,BB) %%the magnetometer-based heading %angle
end

end %%end if i>200

By running the previous program, the last 200 samples of some of the
measurements obtained from the gyroscope and magnetometer are displayed in
real-time.

Thus, the two waveforms of the top of Figure 7 are achieved using the gyroscope
while the other two from the bottom part are achieved using the magnetometer. In
each case the heading is computed. The gyroscope-based angle around z axis or
heading is computed using the angular rate around the z axis, see the second wave-
form. The heading computed by the magnetometer presented in the third waveform is
based on its x and y reading which are presented in the last waveform. It can be seen
that the two waveforms that represent the heading have the same variation, except at

11

MATLAB Applications in Engineering

Heading, (deg) Ang. rate, (deg/s) Heading, (deg
B
T

oy 0 5 10 15 20 25 30 35 40

=]

~ T T T T T T T

%;“ 50 mE

S T

= 2=

2

%_50 I 1 I 1 I I 1

s 0 5 10 15 20 25 30 35 40
Time, (sec)

Figure 7.
Some measurements obtained from gyroscope (the two waveforms at the top) and magnetometer (the two
waveforms at the bottom).

the start. Thus the gyroscope-based heading starts from zero while magnetometer-
based heading starts from about 60 degrees because it indicates the north.

By using the movement sensors, 3D orientation of a device can be computed [13-17].
This can be represented in three ways: quaternion, Direction Cosine Matrix (DCM) and
Euler angles. The last representation means the rotational angles around the three axes,
called pitch, roll and yaw but has a disadvantage because can reach in a singularity state.
DCM does not have a singularity state but needs 3x3 elements. Thus the best represen-
tation is quaternion which represents a complex number having four components [13],

a .a o« . a
q = | cos 5 ey Sin 5 ey sin > e, sin 5 (8)
where a is the rotation angle and e represents the rotation axis.
Using the accelerometer allows only computing pitch and roll angles because a
rotation around z axis does not change any of the three outputs. Thus the four
elements of the quaternion, denoted ¢,.. can be computed by [13]

.
a, +1 ay ayx

— 0|, a,>0
2 V20a: +1) /2(a, +1)
qacc = 1 (9)
a —a, 0

_ y x
\ V20 —ay) V2 V20 =a) |

Eq. (9) can be very easily implemented in MATLAB and then the quaternion can
be generated by the function quaternion (). However, in order to compute the third
angle (yaw) the magnetometer or gyroscope readings are necessary and more
difficult equations are generated [13]. Thus, a better solution is using the functions
from Sensor Fusion and Tracking Toolbox of MATLAB [18] that allows estimation
of 3D orientation. The function imufilter() uses only accelerometer and gyroscope

a; <0

12

Bluetooth Low Energy Applications in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.95814

while the function complementaryFilter() uses all the three sensors. Thus the
Figure 8 presents in the top panel the angles obtained by MATLAB implementation
of Eq. (9) while in the bottom panel are presented the results obtained using the
imufilter() function. It can be seen that the waveforms are very similar and also the
angle around z axis is zero for the first or close to zero for the second as expected.
Both imufilter() and complementaryFilter() return the result as an object. Then
the object can be called as a function having the sensor measurements as arguments
and returns a quaternion. If this quaternion becomes the argument of the viewer()
function [16] it follows the display of a cube that moves in real-time that imitates
the moving of the CC2650 Sensor Tag, as in Figure 9. However, two files,

D
o

S

o
T
<
1

Heading, (deg)
N
o

o

Y
o

0 5 10 15 20 25 30 35 40
60 T T T L~ T T T T
.~_ z
D 40F y |
= X
o 20 .
£
3
T 00— R — — i
_20 L 1 1 1] 1 1
0 5 10 15 20 25 30 35 40
Time, (sec)
Figure 8.

The Euler angles computed by Eq. (9), top, and by imufilter(), bottom; the sensor was moved around x and y
axis.

2 2
4
-1 -1
= =
Z o0 g o
a a
N 1 N 1
2 2
2 2 2 2
0 0 0 0
y (East) 2 2 x (North) y (East) 2 2 x (North)
(a) (b)

Figure 9.
The cube that imitates the moving of the CC2650 Sensor Tag, the initial position-left, the position after a 45
degrees rotation around z axis-vight.

13

MATLAB Applications in Engineering

100 T T T T T T T
\ Z
D 50F y|-
2z /_\ X
S ot — e N 5 P T N
o]
3
100 | L L L 1 L 1
0 5 10 15 20 25 30 35 40

Heading, (deg)

0 5 10 15 20 25 30 35 40
Time, (sec)

Figure 10.
The Euler angles computed by imulfilter(), top, and by complementaryFilter(), bottom; the sensor was moved
around all the three axes.

HelperOrientationViewer.m and HelperBox.m, must be in the current folder in
order to use the function viewer() [18].

On the other hand, using the function eulerd(), the quaternion form can be
converted in pitch, roll and yaw angles (Euler angles) that can be represented as
waveforms. This method was used to obtain the results in Figure 8. Now Figure 10
presents the three angles computed using imufilter(), in the top part and
complementaryFilter(), in the bottom part. It can be seen that the angles have the
same variation except that the heading around the z axis starts with zero at the top
and by about 80 degrees in the bottom. This is because the complementaryFilter()
uses the magnetometer and thus indicates the angle with respect to the north.

The program that implements these facilities is very similar to the previous one.
In the following sections, only the new elements are presented.

First the new elements of the script are presented.

viewer = HelperOrientationViewer;

SRate=1/T;

ifilt_imu = imufilter('SampleRate’, SRate);

ifilt_com = complementaryFilter(‘SampleRate’, SRate);
h=figure(1);

while(ishandle(h))

plot(v_om');grid;legend('x','y",'z") %%display the gyroscope readings
drawnow;

if i>200

viewer(gahrs_imu); %%imu quaternions are used to move the cube
end

end

%Then it follows the new elements of the callback function.
%% % % % % % % % % % % % % % % % % Y% quaternion %% % % % % % %% % %

14

Bluetooth Low Energy Applications in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.95814

gahrs_imu=ifilt_imu(A,om*pi/180); %% for imufilter
gahrs_com=ifilt_com(A,om*pi/180,M); %%for complementaryFilter
eulerAnglesDegrees_imu=eulerd(qahrs_imu, 'ZYX','frame’)
eulerAnglesDegrees_com=eulerd(gahrs_com, 'ZYX','frame")

5. Conclusions

The main MATLAB contributions of this chapter are:

* using the new introduced MATLAB functions to access BLE devices and to
implement a BLE sensors network

* using the table type MATLAB to check if the desired sensors are among the
discovered BLE devices

* using the structure type MATLAB having a variable number of fields to handle
the discovered number of BLE devices

* retaining and updating the most recent samples of different measurements
corresponding to BLE sensors and display them in real-time

* using the quaternions to handle the 3D orientation of an object

* using the new introduced MATLAB functions from Sensor Fusion and
Tracking Toolbox to determine the parameters that describes 3D orientation

¢ displaying the cube that imitates in real-time the moving of CC2650 Sensor Tag
* as a future work, the MATLAB can be used to estimate the position of an object

along with 3D orientation; in this way the tracking of an object can be
completed.

Author details

Septimiu Mischie
Politehnica University Timisoara, Timisoara, Romania

*Address all correspondence to: septimiu.mischie@upt.ro

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited. [@)er |

15

MATLAB Applications in Engineering

References

[1] Katsikis V, editor. MATLAB. A
fundamental tool for scientific
computing and engineering
applications. Volumel. IntechOpen;
2012. DOI: 10.5772/2557, Volume 2.
IntechOpen; 2012. DOI: 10.5772/3338,
Volume 3 IntechOpen; 2012. DOL:
10.5772/3339

[2] Mohamad Omar Al Kalaa, Refai H.
Bluetooth Standard v4.1: Simulation the
Bluetooth Low Energy Data Channel
Selection Algorithm. In: Proceedings of
Globecom 2014 Workshop —
Telecommunication Standards — From
Research to Standards. P. 729-733

[3] Afaneh M. Bluetooth5 & Bluetooth
Low Energy. A Developer’s Guide, e-
book, 2018. Available from: https://
www.novelbits.io/bluetooth-5-develope
rs-e-book/ [Accessed: 2020-12-02]

[4] Bluetooth. Available from https://

www.bluetooth.com/ [Accessed:
2020-12-02]

[5] Wu Taiyang, Redoute .M, Yuce M. A
wireless Implantable Sensor Design with
Subcutaneous Energy Harvesting for
Long-Term IoT Healthcare
Applications. In IEEE Access, vol. 6,
2018, p.35801-35808.

[6] MATLAB Bluetooth Low Energy.
Available from https://www.math
works.com/help/matlab/bluetooth-

low-energy-communication.html
[Accessed: 2020-12-02]

[7]1 BLE Device Monitor. Available from
https://processors.wiki.ti.com/index.
php/BLE_Device_Monitor_User_Guide
[Accessed: 2020-12-02]

[8] CC2650 Sensor Tag. Available from
https://processors.wiki.ti.com/index.
php/CC2650_SensorTag_User%?27s_
Guide [Accessed: 2020-12-02]

16

[9] CC2541 Keyfob, Available from
https://www.ti.com/tool/
CC2541KEYFOB-RD [Accessed:
2020-12-02]

[10] Mischie S. On the Development of
Bluetooth Low Energy Devices. In:
Proceedings of COMM 2018, Bucharest.
p.339-344

[11] Mischie S. A MATLAB Graphical
Interface to evaluate CC2650 Sensor
Tag. In: Proceedings of 22°¢ IMEKO-
TC4 International Symposium, Iasi,
Romania, 2017

[12] Fang J, Sun H, Zhang X, Tao Y. A
novel Calibration Method of Magnetic
Compass Based on Ellipsoid Fitting.
IEEE Trans. on Instrumentation and
Measurement, vol. 60, no.6, June 2011,

p. 2053-2061

[13] Valenti R, Dryanovski I, Xiao J. A
Linear Kalman Filter for MARG
Orientation Estimation Using the
Algebraic Quaternion Algorithm. In
IEEE Trans. On Instrumentation and
Measurement, vol. 65, no.2 2016,

p. 467-481, DOI:10.1109/
TIM.2015.2498998

[14] Yadav R.H, Bhattarai B., Gang H.S.
Pyiun J.Y. Trusted K Nearest Batesian
Estimation for Indoor Positioning
System. In IEEE Access, vo. 72019,
p.51484-51498. DOI: 10.1109/
ACCESS.2019.2910314

[15] Manos A., Kleian I., Hazan T.
Gravity-Based Methods for Heading
Computation in Pedestrian Dead
Reckoning. In Sensors 2019, 19(5), 1170.
DOI: 10.3390/519051170

[16] Li G., Geng E. Ye Z.,, Xu Y., Lin J.,
Pang Y. Indoor Positioning Algorithm
Based on the Improved RSSI Distance
Model, In Sensors 2018, 18(9), 2820.
DOI:10.3390/s18092820

Bluetooth Low Energy Applications in MATLAB
DOI: http://dx.doi.org/10.5772/intechopen.95814

[17] Thomas C, editor. Sensor Fusion.
Foundation and Applications.
IntechOpen 2011. DOI: 10.5772/680

[18] MATLAB. Sensor Fusion. Tracking
Toolbox, 2020. Available from https://
www.mathworks.com/products/sensor-

fusion-and-tracking.html [Accessed:
2020-12-02]

17

