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Chapter

WPT, Recent Techniques for 
Improving System Efficiency
Mohamed Aboualalaa, Hala Elsadek and Ramesh K. Pokharel

Abstract

Wireless power transfer (WPT) technologies have received much more  
attention during the last decade due to their effectiveness in wireless charging for 
a wide range of electronic devices. To transmit power between two points without 
a physical link, conventional WPT systems use two coils, one coil is a transmitter 
(Tx) and the other is a receiver (Rx) which generates an induced current from the 
received power. Two main factors control the performance of the WPT schemes, 
power transfer efficiency (PTE) and transmission range. Power transfer efficiency 
refers to how much power received by the rechargeable device compared to the 
power transmitted from the transmitter; while transmission range indicates the 
longest distance between transmitter and receiver at which the receiver can receive 
power within the acceptable range of power transfer efficiency. Several studies 
were carried out to improve these two parameters. Many techniques are used 
for WPT such as inductive coupling, magnetic resonance coupling, and strongly 
coupled systems. Recently, metamaterial structures are also proposed for further 
transfer efficiency enhancement. Metamaterials work as an electromagnetic lensing 
structure that focuses the evanescent transmitted power into receiver direction. 
Transmitting & Receiving antenna systems may be used for sending power in  
certain radiation direction. Optimizing the transmitter antenna and receiver 
antenna characteristics increase the efficiency for WPT systems. This chapter will 
present a survey on  different wireless power transmission schemes.

Keywords: capacitive coupling, inductive coupling, intermediate resonators,  
magnetic resonance coupling, metamaterial structures,  
power transfer efficiency (PTE), strongly coupled magnetic resonance,  
wireless power transmission (WPT)

1. Introduction

With the spreading of mobile phones, portable and wearable electronic devices 
and changes in the human lifestyle, the need for WPT technology grows to get rid 
of the inconvenience due to using power cables. On the other hand, there are some 
applications where WPT probably the only solution or the most efficient solution 
for their powering for instance implanted biomedical devices, buried sensors, 
some sensors found in a severe environment such as very high temperatures, and 
so forth. One of the first trials for WPT was performed by Nikola Tesla a century 
ago. He wanted to develop a wireless power distribution system. Figure 1 illustrates 
a simplified diagram of a WPT system which simply consists of a transmitter that 
sends the transmitted power through an RF coil or RF resonator. On the receiver 
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side, there is a receiving resonator which can be an antenna or coil to receive the 
incoming wave from the transmitter. Afterward, an impedance matching circuit 
is inserted to ensure maximum power transfer between the receiving resonator 
and the rectifying circuit. Then, the rectifying stage is connected. Many combina-
tions could be used for the rectification purpose such as half-wave, full-wave, or 
any series/parallel diodes combinations. All these rectification circuits are used 
for converting RF power into DC power. In order to achieve smoothing DC output 
voltage as well as blocking the higher-order modes, the rectifying circuit is followed 
by a DC pass filter. The final stage is the device (load) that needs to be charged 
wirelessly. In this chapter, we will focus on the coupled resonators which is the first 
stage for WPT systems.

Wireless power transfer technologies can be divided into different categories 
such as inductive coupling, resonant inductive coupling, capacitive coupling, 

Figure 1. 
WPT system.

Figure 2. 
WPT applications.
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microwaves. Through this chapter, we will cover these technologies with highlights 
on the recent techniques for improving the power transfer efficiency such as using 
intermediate resonators, applying metasurface structures, and so on. Figure 2 
shows the current and potential applications for WPT systems.

2. Inductive coupling WPT

Conventional coils of wire are the simplest way to transmit a wireless power 
between transmitter and receiver. In this case, the system can be represented as a 
transformer where a transmitting coil is analogous to the primary coil, while the 
received coil is equivalent to the secondary coil as revealed in Figure 3. An inductive 
power transfers between the two coils in a form of a magnetic field. The intensity of 
the magnetic field follows Ampere’s law as in (1), where H  is the magnetic field 
intensity that is generated when an electric current, I, passes through an electric 
closed path with a length of l .

 .H dl I=∮  (1)

When the Transmitter has a time-varying current and mounted at an appropri-
ate position from the receiver. Receiver’s coil cuts the magnetic field lines, and an 
induced electromotive force (emf) is generated between the terminals of the 
receiver’s coil as shown in Figure 3. The value of the emf depends on the time-
varying of the magnetic flux (φ ) as characterized by Faraday’s law as in (2). It is 

clear that this WPT technology is valid only for short-range applications for exam-
ple wireless charging pads to recharge cellphones and handheld wireless devices 
such as laptops and tablets, electric toothbrush, shaver’s battery charging, induction 
stovetops and industrial heaters, charging implanted prosthetic devices such as 
cardiac pacemakers and insulin pumps [1].

Figure 3. 
WPT using inductive coupling scheme.
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WPT system performance can be estimated by the power transfer efficiency 
(PTE) which depends on the KQ product. K is the coupling coeffect between 
transmitter and receiver, it is a ratio and varies from 0 to 1 as a maximum value at 
totally power coupling. Q is the unloaded quality factor of the transmitter’s or 
receiver’s coil; Q can be calculated from the coil inductance as in (3), where ω  is the 

angular frequency, L is the coil inductance, and R the loss resistance of the coil. 
While PTE is calculated from (4) [2]. It is clear that increasing the transfer effi-
ciency needs a high value of the KQ product.
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Numerous studies were introduced in the inductive coupling approach [3–9]. 
In [10], a multi-layer spiral inductor is proposed for biomedical applications at 
a frequency of 13.56 MHz which is the license-free industrial, scientific, and 
medical (ISM) band. It uses a stacked structure to achieve a compact WPT, where 
the stacked inductors occupying an area of 10 mm × 10 mm with 1 cm separation 
between transmitter and receiver. The inductance is further increased by stack-
ing the printed spiral inductors on top of each other in such a way that the flow 
of the current always takes the same direction as shown in Figure 4. In [8], a pair 
of printed spiral coils, as illustrated in Figure 5, used in biomedical implanted 
microelectronic devices to maximize the inductive power transmission effi-
ciency. Zixuan et al. [6] introduced an analysis of alternative-winding coils 
for getting high-efficiency inductive power for mid-range WPT. Alternative-
winding coils structure is demonstrated in Figure 6.

Figure 4. 
Multi-layer stacked inductor; (a) top view (b) 3D geometry [10].
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3. Resonant inductive coupling WPT

Resonant inductive coupling or magnetic resonance coupling is another form 
of the WPT technologies in which power is transferred between two tuned reso-
nant circuits, one in the transmitter and the other tuned circuit in the receiver as 
depicted in Figure 7. Each resonant circuit comprises an inductor connected to 
a capacitor to resonate and couple the transmitted power at their resonance fre-
quency. This resonance is responsible for emphasizing the quality factor (Q-factor) 
for the resonant circuit. Therefore, the coupling and the power transfer efficiency 
between the transmitter and receiver increase due to the directly proportional 
relationship between them. Magnetic resonance coupling scheme is applied in mid-
range applications such as charging electric vehicles, charging portable devices, 
biomedical implants, powering busses, trains, RFID, smartcards.

Several studies have invested the resonant inductive coupling technique for 
enhancement the power transfer efficiency of WPT systems [11–13]. In [14], we 
proposed dual open-loop spiral resonators (OLSRs) to improve the magnetic field 
for WPT system. OLSRs are fed through Metal–Insulator–Metal (MIM) capaci-
tive coupling using a 50 Ohm microstrip transmission line as shown in Figure 8. 
A series resonance model is used to achieve resonant inductive as illustrated in 
the equivalent circuit model in Figure 9. The open-loop spiral resonator (OLSR) 
includes the series combination between the MIM capacitor and the spiral-loop 
inductor. Dual OLSRs are used instead of a single OLSR to strengthen the surface 
current on the spiral resonators. Therefore, it helps to intensify the electromagnetic 

Figure 5. 
Design of a pair of printed spiral coils [8].

Figure 6. 
Alternative-winding coils geometry and its current distribution [6].
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field in order to get a high transmission distance or higher power transfer efficiency. 
Figure 10 displays a comparison between the power transfer efficiency for using a 
single and double OLSR. The results show the improvement in PTE in double OLSR. 
The OLSRs WPT system operates at 438.5 MHz with a measured PTE of 70.8% at 
a transmission distance of 31 mm and a design area of 576 mm2. While PTE for a 
single OLSR is 56% at 487 MHz at the same transmission distance.

A printed spiral coil with a planar interdigital capacitor is proposed in [15] as 
shown in Figure 11. It studies the misalignment issues between transmitter and 

Figure 7. 
Resonant inductive coupling WPT structure.

Figure 8. 
OLSR WPT geometry [14].
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Figure 9. 
Equivalent circuit model for OLSR [14].

Figure 10. 
PTE versus frequency of a single and double OLSR [14].

Figure 11. 
Geometry of a printed spiral coil with planar interdigital capacitor [15].
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receiver. Under a perfect alignment, WPT offers a maximum measured transfer 
efficiency of 71.84%. This research uses the integration between the interdigi-
tal capacitor and the spiral coil to get a magnetic resonant resonator with high 
immunity for the misalignment instances. Wang et al. [16] proposed a conformal 
split-ring loop self-resonator which has a self-resonant frequency and its equiva-
lent circuit is a series resonant circuit composed of an inductor-capacitor series 
connection as displayed in Figure 12. This resonator introduces a high transfer 
efficiency of 87.9% at a transfer distance of 22 mm. A resonant inductive link for 

Figure 12. 
(a) Conformal split-ring loop self-resonator, (b) equivalent circuit [16].

Figure 13. 
Spiral coil integrated with lumped capacitor design (a) Transmitter’s resonator, (b) Reciever’s resonator [17].
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powering pacemakers was presented in [17]. The transmitting resonator consists of 
two spirals printed on the top and bottom face of the Arlon substrate as illustrated 
in Figure 13. A surface-mounted capacitor is inserted in a shunt with the printed 
spiral to tune the resonance frequency at the desired value. On the other hand, 
the receiving resonator is a square split-ring resonator. Series–parallel capacitive 
plates are employed with a printed spiral resonator [18] to get satisfactory tolerance 
toward angular and lateral displacement. Figure 14 shows capacitive compensated 
plates, C-shaped and mirrored L-shaped capacitive plates are formed on the top and 
bottom layer of the substrate. Figure 15 presents an asymmetric resonant inductive 
coupled WPT system [19]. This system has a measured power transfer efficiency of 
75% at a transmission distance of 38 mm.

4. Strongly coupled magnetic resonance WPT

Strongly coupled magnetic resonance refers to inserting intermediate resonators 
with a high-quality factor (Q) in the transmission path between transmitter and 
receiver as revealed in Figure 16, these intermediate resonators are used to emphasize 
the transferred magnetic power. This technology is categorized as mid-range WPT.  
In 2007, a group of researchers at the Massachusetts Institute of Technology proposed 
an experiment using a strongly coupled magnetic resonance technique [20].  

Figure 14. 
Capacitive compensated plates design [18].

Figure 15. 
Planar view of the transmitter/Reciever [19].
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They effectively powered a light bulb wirelessly using a power source located 2 m away 
from the light bulb. They obtained a power transfer efficiency of about 40%. The 
experiment is demonstrated in Figure 17, the intermediate resonators are self-resonant.

Figure 16. 
Strongly coupled magnetic resonance WPT.

Figure 17. 
Setup of MIT researchers group experiment [20].
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Recently, several authors [21–27], have utilized from the strongly coupled magnetic 
resonance scheme to enhance the transmission properties of WPT systems. Barreto et 
al. [26] proposed a conformal strongly coupled magnetic resonance system for range 
extension by using U-loop as an intermediate resonator as shown in Figure 18. It pro-
vides a high transfer efficiency reach 70% at a transfer distance equal to the diameter 
of the U-loop (48 cm). Also, this WPT system can maintain efficiencies greater than 
60% regardless of the angular position of the receiver around the U-loop. A multilayer 

Figure 18. 
Conformal strongly coupled magnetic resonance system [26].

Figure 19. 
(a) Geometry of a printed spiral coil, (b) two layers using conductive shorting wall, and (c) three layers using 
conductive shorting wall [23].

Figure 20. 
3-D strongly coupled magnetic resonance WPT [22].
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resonator is discussed in [23], where extra layers of printed spiral coils are inserted 
in the transmitter/receiver resonators to enhance the Q factor and power transfer 
efficiency. Conductive shorting walls are employed for the connection between the 

Figure 21. 
(a) Conventional four-coil system with the transmitter/receiver coils outside the resonators. (b) Wideband 
four-coil system with the transmitter/receiver coils at the center of resonators [24].

Figure 22. 
S21 versus frequency [24].
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multilayer resonators as illustrated in Figure 19. Liu et al. [22] reduced the misalign-
ment sensitivity of strongly coupled WPT systems by applying two orthogonal coils 
together in a 3-D model instead of using planar coils as shown in Figure 20.

Using strongly coupled magnetic resonance WPT systems leads to getting a high 
quality factor (Q ). Nevertheless, this also results in limiting the system bandwidth. 
Therefore, Zhou et al. proposed a wideband strongly coupled magnetic resonance 
WPT system [24] to overcome the shifting problems of the resonance frequency 
that occurs in some practical applications, this, in turn, alleviates the decline in 
the efficiency caused by this shift in the resonant frequency. Figure 21 shows the 
proposed technique, the transmitter and receiver coils are fixed at the center of 
their corresponding intermediate resonators. In this manner, the leakage of mag-
netic flux can be mitigated, and the bandwidth is broadened as shown in Figure 22. 
Broadband and multi-band WPT system using conformal strongly coupled magnetic 
resonance technique is introduced in [25]. A multi-band can be obtained by using 
multiple pairs of loop resonators with various dimensions to resonate at different 
frequencies, for example, in Figure 23, the source loop and load loop are placed 
between two resonators (resonator 1 and resonator 2). Each resonator resonates at 
a different resonance frequency to give a dual-band WPT. The broadband opera-
tion can also be achieved by merging between the resonance frequencies, this can 
be obtained using different values of the capacitance of the loop resonators or use 
resonators with size near each other. Many designs for multi-band and wideband 
WPT systems are proposed in [28–35].

5. WPT utilizing meta-surface structures

Metasurface structures are also used to boost the PTE by confining the magnetic 
field in a narrow channel between transmitter and receiver by combing the evanes-
cent waves from the Transmitter and redirect them into receiver direction due to the 
negative relative permeability characteristics of some kinds of the metamaterial 
surfaces. Metamaterials are artificial periodic structures that have negative reflective 
index characteristics. Metamaterials are classified into three types depending on the 
polarity of the relative permeability and relative permittivity of the structure: double 
negative (DNG), ε  negative (ENG), and µ  negative (MNG), as shown in Figure 24. 

The inductive, resonance inductive, and strongly coupled magnetic resonance WPT 
systems rely on the magnetic field coupling between the transmitter and receiver. 
Thus, the MNG metamaterial category is used with WPT. When the magnetic field 
travels from the transmitter coil and incident on a metamaterial with MNG, the 

Figure 23. 
Configuration for a dual-band conformal strongly magnetic coupling [25].
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outgoing magnetic fields are bent back toward the receiver coil, this increases the 
field strength between the two coils as revealed in Figure 25. Thus, the efficiency is 
enhanced, and the EMF leakage is reduced due to applying these metamaterial 
surfaces in the path between the transmitter and receiver coils. Table 1 summarizes 
different metamaterial structures that are used in WPT systems [36–40].

6. Capacitive coupling WPT

Capacitive coupling is a kind of coupling that depends on the electric field cou-
pling between two plates, so it is also named electric coupling. Capacitive coupling 

Figure 24. 
Metamaterials categories.

Figure 25. 
(a) Metamaterial-based WPT system. (b) equivalent circuit model of applying metamaterial structures with 
WPT.
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Reference Geometry Notes

[36] • A thin metamaterial 

slabs

• Study of three types 

of metamaterials is 

presented: the double 

negative material (DNG), 

the isotropic μ-negative 

material (MNG), and 

indefinite material 
(IM).

[37] • An efficient wireless 

power transfer system 

integrating with negative 

permeability (MNG) 

metasurface is proposed 

for biological applications.

• By using metasurface 

structure, a coupling 

enhancement of 15.7 dB is 

obtained.

[38] • Metamaterials using 

a dual-layer printed 

circuit board (PCB) with 

a high dielectric constant 

substrate is proposed for 

enhancing system effi-

ciency and reduced emf 

leakage in WPT systems

• 44.2% improvement in 

the PTE and 3.49 dBm 

reduction in the electro-

magnetic field leakage at 

6.78 MHz and separation 

distance of 20 cm is 

obtained.

[39] • A study of using 

metamaterial structure 

to compensate the 

degradation in the power 

transfer efficiency due to 

the misalignment issues 

between the Tx and Rx.
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acts as a capacitor where its metal plates one is in the transmitter and the other in the 
receiver and the medium in between represents the dielectric. The power can transfer 
between the two plates in form of a displacement current. Figure 26 shows the WPT 
system for the capacitive coupling technique. As a result of electric field interacts with 
many different materials as well as capacitive coupling method needs very high volt-
ages. Hence, capacitive coupling has only a few practical applications. Capacitive cou-
pling has some special privileges over inductive coupling. The magnetic field is largely 
confined between the capacitor plates, reducing interference, and higher immunity 
for the misalignment issues between the transmitter and receiver. Therefore, capaci-
tive coupling can be used in charging portable devices, smartcards, and transferring 
power between the layers of a substrate in RF integrated circuits. Figure 27 illustrates 
an experiment for capacitive coupling that is executed by Nikola Tesla in 1891 [42]. He 
performed this experiment before his induction WPT demonstration.

In [43], a high-frequency capacitive coupling WPT using dielectric glass lay-
ers is introduced to reduce the coupling impedance and increase the coupling 

Reference Geometry Notes

[40] • A closed-form and 

analytical expressions are 

obtained for efficiency 

improvement with 

metasurface.

Table 1. 
Different metamaterial structures used in WPT systems.

Figure 26. 
capacitive wireless power systems.
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capacitance. Thus, it transfers power easily with high efficiency. Regensburger 
et al. introduced a high-performance capacitive WPT system for electric vehicles 
charging by using interleaved-foil coupled inductors [44]. This system used a 
kilowatt-scale large air-gap to achieve high power transfer density and high transfer 
efficiency at the operating frequency (13.56 MHz). Interleaved-foil air-core induc-
tors provide a better quality factor; this makes them are useful at kilowatt-scale 
power at high frequencies. In [45], multi-loop control that is used to regulate 
the power transfer in capacitive wireless systems by applying variable matching 
networks is discussed. An adaptive multi-loop controller combines continuous 
frequency tracking and matching networks tuning to regulate a current/power 
to the receiving side at the optimal power transfer conditions. In [46–50], hybrid 
structures that combine inductive coupling and capacitive coupling WPT in the 
same system were proposed.

7. Microwave power transfer (MPT)

Microwave power transmission refers to far-field directive powering, where the 
power transmission occurs in the far-field using a well-defined directional transmit-
ter. Microwave power transmission depends on the propagation of electromagnetic 
radiative fields where it is preferred in long-range WPT applications. This sort of WPT 
is useful for space-based solar power satellites (SPS) applications or with intentional 
powering such as using a dedicating source with a well-known direction to power 
a network of wireless sensors, each sensor has its built-in rectenna. One of the first 
applicable trails of MPT was conducted by William Brown et al. in 1965 by powering 
an aircraft using a MPT at an altitude of fifty feet for ten continuous hours [51].

There are many challenges regarding RF-to-DC power conversion efficiency, 
matching circuit design, the dependence of the DC output voltage as well as the 
conversion efficiency on the input power, load impedance, and operating frequency. 
In order to solve these issues, many rectennas have been introduced [52, 53]. Several 
single frequency band rectennas were used for energy harvesting [54, 55], and dual 
and multiband rectennas were discussed in [56–58]. In [59, 60] we proposed a dual-
band rectenna using voltage doubler rectifier and four-section matching network. 
An enhanced-gain antenna with Defected Reflector Structure (DRS) is integrated 
with the rectifying circuit for increasing the rectenna capability for scavenging. 
A voltage doubler circuit is used for the rectification. Moreover, a four-section 

Figure 27. 
Tesla demonstrating wireless power transmission using capacitive coupling, New York, in 1891 [41].
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matching network is employed for the matching between the antenna and the 
rectifier circuit. This matching scheme is used to match between a complex and 
frequency dependent rectifier input impedance and a real impedance of the antenna 
(ZAnt) by using different sections (Sec.#1, Sec.#2, Sec.#3, and Sec.#4) as shown in 
Figure 28.

Also in 2020 [61], we proposed a dual-band rectenna for low power applica-
tions. The rectenna is comprised of a co-planar (cpw) rectifier integrated with 
a rectangular split ring antenna loaded by a meandered strip line. A single diode 
series connection topology is used to miniaturize the losses at low input power 
operation. For maximum power transfer between the antenna and the rectifying 
circuit, the matching circuit that consists of a spiral coil in addition to two short 
circuit stubs is used as shown in Figure 29. The proposed rectenna operates at low 
input power with relatively high measured RF-DC conversion efficiency up to 74% 
at an input power of −6.5 dBm at the first resonant frequency f1 = 700 MHz and 
70% at −4.5 dBm at the second operating frequency f2 = 1.4GHz with a resistive 
load of 1.9 K.

Figure 28. 
Dual-band rectenna using four-section matching network, (a) high-gain received antenna, and (b) integration 
between the receiving antenna and the rectifying circuit [59, 60].
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8. Conclusion

This chapter presents a study of wireless power transfer technologies. A survey 
of employing several techniques such as inductive coupling, resonant induc-
tive coupling, strongly coupled magnetic resonance, and capacitive coupling for 
increasing the power transfer efficiency for WPT systems. Metasurface-based WPT 
systems are also discussed. Many recently published WPT designs are listed with 
a highlight for the used techniques. Microwave Power Transfer (MPT) also intro-
duced, and two rectenna designs are described.

Figure 29. 
Low power rectenna, (a) rectifier geometry, and (b) measurement setup [61].
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