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by Visible–Near Infrared
Reflectance Spectroscopy
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Maria D. Antunes and Rui Guerra

Abstract

As non-climacteric, citrus fruit are only harvested at their optimal edible
ripening stage. The usual approach followed by producers and packinghouses to
establish the internal quality and ripening of citrus fruit is to collect fruit sets
throughout ripening and use them to determine the quality attributes (QA) by
standard and, in many cases, destructive and time-consuming methods. However,
due to the large variability within and between orchards, the number of measured
fruits is seldom statistically representative of the batch, resulting in a fallible
assessment of their internal QA (IQA) and a weak traceability in the citrus supply
chain. Visible/near-infrared reflectance spectroscopy (Vis–NIRS) is a nondestruc-
tive method that addresses this problem, and has proved to predict many IQA of a
wide number of fruit including citrus. Yet, its application on a daily basis is not
straightforward, and there are still several questions to address by researchers in
order to implement it routinely in the crop supply chain. This chapter reviews the
application of Vis–NIRS in the assessment of the quality and ripening of citrus fruit,
and makes a critical evaluation on the technique’s limiting issues that need further
attention by researchers.

Keywords: nondestructive, Vis–NIRS, citrus fruit, quality, ripening

1. Introduction

Citrus fruit are grown commercially in more than 50 countries around the world
and are major commodities in the international trade [1, 2]. In Europe, the excep-
tional characteristics met by some of these produces have granted them the
Protected Geographical Indication (PGI), such as the lemons (Citrus limon (L.)
Osbeck) of Menton in France, Sorrento, Amalfi and Syracuse, and the Sicilian blood
orange (Citrus � sinensis) in Italy, the “Algarve Citrus” in Portugal, or the
“Valencianos Citrus” in Spain.

As non-climacteric, citrus fruit are only harvested at their optimal edible ripen-
ing stage, and are required to meet the expectations of the current consumer who
demands for fruit not only with the best appearance, flavor, and nutritional
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properties, but that also comply with safety, traceability, and the sustainability of
the cultural practices used. Like any other commodity, citrus fruit are subjected to
worldwide standard specifications within the value chain [3] on their quality attri-
butes (QA). Additionally, there are also adjustments to these requirements on
quality and commercial ripening indices, that arise from the respective PGI norma-
tive of each commodity, growing regions and destination markets [4]. The main
external quality attributes (EQA) accounted for citrus fruit are general appearance,
size, weight, and color. Among the internal quality attributes (IQA), soluble solids
content (SSC), titratable acidity (TA), juiciness, maturity index (MI; MI = SSC/
TA), and the absence of internal defects are the most relevant. Although firmness is
not defined quantitatively, it represents an important IQA, since it is a limiting
factor regarding postharvest handling, transport and shelf-life, fruit being expected
to maintain a good consistency through the whole supply chain.

Once fruit attain the expected IQA, additional factors will condition the harvest
of citrus fruit: orchard yield and size, ripening variability, harvest cost, storage
conditions, market prices and consumers’ demand. Although dependent on the
country, producers are provided with three options to handle these constrains: (i)
immediate harvest and marketing; (ii) immediate harvest and cold-storage; or (iii)
delayed fruit harvest. Opting for immediate harvest may result in minimal organo-
leptic quality and low prices, whereas postponing it until favorable market condi-
tions, risks fruit drop, decay and spoilage caused by extreme weather events, pests
and diseases [5]. To prevent some of of these consequences, producers resort to the
regular use of pesticides, which increase the production costs and impact negatively
the environment [6, 7]. Cold-storage is used in some of the major citrus producing
countries, such as Spain or South Africa, and require very strict conditions to avoid
fruit loss caused by chilling and/or freezing injury [8]. Both, cold-storage and har-
vest delay may lead to adverse alterations in the citrus-like flavor, and thus fruit
quality deterioration, even if MI or SSC remains acceptable for marketing [9]. In all
cases, fruit become more susceptible to the occurrence of physiological disorders
that cause internal and/or external defects. Among the most typical physiological
disorders registered through the supply chain of citrus fruit, there is the section
drying, the rind breaking disorder (RBD), the rind pitting disorder (RP), freezing
damage, and granulation, as reported for tangerine (Citrus tangerine Tanaka [10],
‘Nules Clementine’ mandarin (Citrus � clementina) [11], ‘Marsh’ grapefruit (Citrus
� paradisi Macfad.) [12], sweet lemons (Citrus limettioides Tan.) [13], and ‘Honey’
pomelo (Citrus maximaMerr.) [14], respectively. These disorders are difficult to sort
out by visual inspection at harvest, but lead to posterior fruit deterioration, limiting
their quality, shelf-life, price and acceptance by consumers. In fact, there are strict
standards for fruit sorting and grading, which require the detection of some of these
disorders, throughout the supply chain, as established by the California Department
of Food and Agriculture (CDFA). For exemple, it is not permitted to sell oranges
(Citrus sinensis (L.) Osbeck) if, generally, more than 15% of fruits per batch have
considerable freezing damage [15].

Therefore, the ripening of citrus fruit at harvest is a major determinant of their
final quality after the whole postharvest handling processes, the occurrence of
storage disorders, and the produce shelf-life span [16]. It also affects the rate of fruit
loss between the tree and the consumers’ home. Thus, the management and the
decision capacity of the optimal harvest date (OHD) is a critical step in the supply
chain. The current approach followed by producers and packinghouses to establish
it and therefore, to decide on the harvest, is to collect small fruit sets from the
various orchards by the beginning of each variety harvest season, and to use them to
determine QA through standard methods, that in most cases are destructive,
subjective and very time-consuming.
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However, all QA vary greatly inside the same orchard, either in terms of abso-
lute values and/or in terms of spatial and temporal distribution, and even in the
same tree. This has been shown in citrus orchards of ‘Shiranuhi’ mandarin (C.
unshiu � C. sinensis) � C. reticulata [17], ‘Ortanique’ (Citrus reticulata Blanco x
Citrus sinensis (L) Osbeck) [18], mandarin (Citrus reticulata Blanco) [19], and
‘Newhall’ and ‘Valencia Late’ orange [20]. Multiple factors, such as the level of
sunlight exposure and the associated fruit temperature on the tree, fruit yield and
size, tree vigor and age, rootstocks, site-specific nutritional requirements and
micro topographies within the orchard, are reportedly associated to this variability
[21–24]. Furthermore, the location of the orchards and their edaphoclimatic condi-
tions, as well as the cultural practices also induce variability on the fruit maturation
process, leading to different levels of QA and different ripening rates observed for
the same cultivar at different sites [20, 21]. Consequently, the number of tested
fruits with the standard methods is seldom statistically representative of the
orchard, leading to the sub-representation of the effective ripening stage of the fruit
within and between orchards, which results in a limited assessment of their ripen-
ing, heterogeneous fruit quality, a deficient OHD management and a weak trace-
ability in the citrus supply chain [25–27].

Overall, there is the need to upgrade the management and the sustainability of
citrus fruit supply chain with smart and nondestructive technologies that allow a
fast, objective, accurate and extensive assessment of fruit QA and ripening on-tree
and in the following postharvest, to replace conventional methods. Their aim would
be to deliver the best produce to the markets, and contribute to reduce the current
level of food loss around the globe, that involves a large portion of fruit and
vegetables [28–30]. Considering how much of the world’s population lacks food
security, and the importance of these commodities in the provision of essential
nutrients and vitamins, which could prevent malnutrition, that kind of technologies
would comply with the sustainable development goals (SDGs) proposed by the
Food and Agriculture Organization (FAO), International Fund for Agricultural
Development (IFAD), and the World Food Programme (WFP), in the 2030 Sus-
tainable Development Agenda, which supports a global commitment to end pov-
erty, hunger and malnutrition by 2030, creating a #ZeroHunger world [31, 32].

The large number of reports published in the past two decades, show an active,
and highly motivated research concerning the development of various nondestruc-
tive technologies for the assessment of quality and ripening parameters of a wide
variety of fruit, including citrus [16, 33–37]. These techniques are used on inline
sorting systems, on the bench or in the field and come in many forms, prices and
commercial brands. Among them, the visible–near infrared reflectance spectros-
copy (Vis–NIRS), is conceivably one of the most suitable and advanced nonde-
structive technologies currently used to monitoring several horticultural produces.
It has been implemented in applications ranging from the inline automated grading
systems, assessing up to 10–12 fruit per second, to handheld units suitable for field
use, operating in full sunlight and varying ambient temperature [38, 39]. Addition-
ally, it continues to grow stronger as a major investigation topic worldwide, with a
major potential for improvement and contribution to the state of the art of precision
agriculture and agronomic systems management [40].

This chapter comprises a brief explanation of Vis-NIRS fundamentals and a
review of the various reports on its application published since 2012. Reports
published before 2012 were already covered in the last review by [41] and will not
be repeated here, with a few exceptions that represent relevant breakthroughs in
the area. It will further attempt a critical evaluation on the limiting issues that need
further research, to implement it as an effective nondestructive method to assess
these commodities’ quality and optimal ripening.
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The authors invite the reader to complement this chapter with some of the
most outstanding reviews published throughout the years, by the main
researchers working on the subject (but not only in citrus). These reviews com-
prise the principles of the technique, its various methods and the listing of fruit
and the respective QA for which it has provided calibration models [41–45], the
overview on the publications and main research groups in the field [40], various
recommendations for future research activity in the area regarding the adequate
experimental design and the reporting requirements [38], as well as the current
real-life applications available on the market that seem to comply with the
warranted robustness for the technology to be integrated in the supply chain of
many crops, including citrus [38, 39].

2. Fundamentals of visible–near infrared reflectance spectroscopy
(Vis–NIRS)

In this review we will adopt the most common definition that Vis–NIRS covers
the wavelength range 400–2500 nm of the electromagnetic spectrum. The lower
limit is consensual, since it is the onset of the visible range, but the upper limit is
mainly defined by the spectral response of the most common spectrometers. It
comprises the visible (Vis) region (400–750 nm), the more penetrative short wave
NIR (SWNIR), or Herschel region (750–1100 nm), and the near infrared region
(750–2500 nm) of the spectrum [38, 39, 45]. The NIR radiation was discovered by
Friedrich Wilhelm Herschel in 1800, and was first used in agricultural applications
to measure the moisture in grain in the late 1960s [45]. The first Vis–NIRS applica-
tion was commercialized in Japan in 1989 to sort peaches based on SSC in an
automated grading line, but the research on its principles, applications and on the
development of new customized systems, have only followed some decades later,
being quite active nowadays [38–40].

2.1 Interaction of radiation with the fruit

When a light beam from the sun or a tungsten lamp, hits a fruit or any other
sample, the incident radiation may be specularly reflected, absorbed or transmitted,
and the relative contribution of each phenomenon depends on the chemical consti-
tution and physical parameters of the sample (Figure 1) [46]. The spectral distri-
bution of the radiation that penetrates the product change through wavelength
dependent scattering and absorption processes. The photons that enter the fruit
may emerge through multiple scattering in the tissue. Light emerging on the same
side of incidence is described as diffuse reflection, while light emerging on the
opposite side is described as diffuse transmition. Both diffuse modes may be under-
stood in a general sense as ‘transmitted’, according to the initial description. The
emerging diffuse light is collected by a spectrometer, originating the term diffuse
reflection spectroscopy. The spectral features depend on the chemical composition of
the product, as well as on its light scattering properties which are related to the
sample microstructure. Fruit and vegetables are turbid media, in which scattering
events dominate over absorption in the visible (400–750 nm), and particularly in
the SWNIR and NIR ranges of the electromagnetic spectrum (750–2500 nm) [44]
(see Figure 1).

In thin rind fruit most of light interaction takes place on the flesh and the skin
has mainly a modulation effect upon the spectra. In most citrus, however, most of
light interaction occurs in the thick rind and few photons probe the flesh. Thus, the
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assessment of IQA depends on the interplay between pulp and skin biochemistry
and their optical properties [47–49].

Absolute quantification of diffuse reflected light (for example, as spectral radi-
ance [W�sr�1 m�2 Hz�1]) is of little use, because it depends obviously on the
characteristics of the light source. The calculation of reflectance avoids that subjec-
tivity, since it normalizes the absolute measurement of the sample’s reflection by
that of a reference material, usually a near perfect reflector (‘white’) in the wave-
length range under study. It should be stressed, however, that even the reflectance
depends on the collection geometry (solid angle of collection, viewed area, etc.).
Common choices for the reference material include Spectralon or Teflon, with
nearly 100% reflection in the Vis-NIR. Reflectance R λð Þ is calculated according to
the Eq. (1) presented below.

R λð Þ ¼
S λð Þ �D λð Þ

Ref λð Þ �D λð Þ
� 100, (1)

where S stands for the Sample counts, D for the Dark counts, Ref for the
Reference counts and λ is the wavelength. Here, counts refer to the digitized output
of the spectrometer, which are proportional to the spectral radiance measured in a
specific geometry. The dark counts are obtained with the spectrometer closed and
represent the electronic noise, which must be subtracted from the sample and
reference measurements.

2.2 ‘Point’ and imaging measurements

Vis-NIRS is most commonly applied on specific ‘points’ of the fruit, by observ-
ing a small area, which produce an average spectrum for that specific site. This is
called point measurements. But Vis-NIRS can also be applied on extensive sections
across the fruit, throughmultispectral and hyperspectralmeasurements, which create
an image of the measured sections for each wavelength band [44]. The main
difference between multi- and hyperspectral modes are the number of wavebands
used. Multispectral imaging uses a set of filters and a common digital camera to
deliver typically no more than ten bands, while hyperspectral cameras merge imag-
ing and spectral separation in the optical hardware to produce hundreds of

Figure 1.
When light hits a fruit, the photons may be reflected at the fruit surface (specular reflection) or enter the fruit
tissue. In the latter case, a succession of scattering events takes place, where the photons change direction. Some of
them reemerge, originating diffuse reflection (or transmission, not represented), and the other are eventually
absorbed.
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contiguous wavebands. Another way to look into hyperspectral images is to think
that it yields the reflectance spectrum for each spatial position of a sample (i.e., for
each pixel of the image) [44]. Both techniques, although costly, have been shown to
successfully assess several IQA, diseases and defects in several fruit, including citrus
fruit [50, 51]. Yet, extensive investigation is needed to allow both the acquisition
and image processing software to be implemented in real-time systems. Thus, this
chapter will only address the systems that perform ‘point’ measurements, based on
their much wider spread, cost-effective and friendly use through the supply chain,
and particularly under field conditions. Further information on the principles and
applications of multispectral and hyperspectral Vis-NIRS technologies could be
found in the reviews by [44, 50].

2.3 Instrumentation and measurement setup

There are currently, a large variety of both commercial and lab-made
customized Vis-NIRS systems, with various shapes, sizes, and prices, that
operate in many spectral ranges, and have reportedly allowed the assessment of
several QA, the content of critical compounds and the diagnostic and/or prediction
of disorders in a wide sort of fruits, including citrus (Tables 2–4). Nevertheless,
most of the current commercial fruit applications of Vis-NIRS are based on the use
of silicon-based spectrophotometers comprising the Vis-SWNIR region (400–
1100 nm), because of their accessible prices and the larger light penetration depth
in this band, in comparison to the significantly more expensive InGaAs-based
devices (900–2500 nm), that do not add too much value to the quality assessment
procedure [39].

From handheld, benchtop, to inline automated grading system, all Vis-NIRS
devices comprehend the following fundamental components: an optical spectrome-
ter, a light source (usually a tungsten halogen light bulb) and collection optics
(optical fibers, lenses, integration spheres, dedicated probes). The current spec-
trometers typically include a connection for an optical fiber, an entrance slit (that
defines the spectral resolution), a diffraction grating to separate the light into its
spectral components, mirrors for collimation and focusing, and a light sensing
device that is usually a one-dimensional CCD (Charge-Coupled Device) or CMOS
(Complementary Metal-Oxide Semiconductor).

The Vis-NIR spectra may be acquired according to three principal geometrical
configurations, as depicted in Figure 2: the reflectance mode (a), the transmittance
mode (b), and in the interactance mode (c). The reflectance mode is susceptible to
receive specularly reflected light, which may be a disadvantage, since only a frac-
tion of the collected photons probes the fruit interior. In the transmittance mode the
photons probe necessarily the fruit interior; however, the optical signal may be
weak and noisy. The interactance mode is a tradeoff between the two previous
modes: by using a contact probe it avoids specularly reflected photons and receives
only those traveling through the fruit flesh. Also, the distance between light injec-
tion and collection is small, insuring a good optical signal. However, this is also a
disadvantage, since the probing depth into the fruit pulp is shallow.

The choice of the geometry is thus of the utmost importance for obtaining good
results, and should account for the fruit and the assessed QA. The penetration of
NIR radiation into fruit tissue decreases exponentially with the depth, which is
quite critical in thick rind fruit such as citrus [50]. Furthermore, the choice of the
detection mode might be influenced by the spectral range used, as report by [48], in
which both interactance and reflectance modes produced similar models to assess
the SSC of ‘Sunkist’ navel oranges in the Vis-SWNIR range, but the participation of
Vis region degraded this assessment in the transmittance mode. in general, to detect
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the internal defects, the transmittance mode should be chosen, while the other two
modes are quite reliable regarding other IQA (Tables 2–4).

2.4 Typical Vis-NIRS spectrum and its interpretation

All studies on the use of Vis-NIRS to assess the fruit QA start by acquiring the
reflectance (R) spectra, which is then converted to the respective absorbance log
(1/R) spectra (Figure 3). The main spectral differences observed in a wide variety
of fruit are in the visible region, namely in the 400–750 nm range. This is due to
changes in the pigments’ content through ripening, namely chlorophylls, caroten-
oids and anthocyanins present on the fruit rind [38]. In fruit that change from green

Figure 3.
(a) Average reflectance spectra of a set of 255 ‘Valencia Late’ oranges and 239 ‘Rocha’ pears acquired in the
Vis/NIR range in the interactance mode; (b) Average absorbance spectra of the same set of fruit. The nominal
positions of the most important absorption bands are indicated in the curves. The number is the order of the
transition, ν stands for stretching vibration, δ for bending vibrations and the sum indicates combination bands
(for example, 3ν+δ(O–H) represents the combination band of the second overtone of stretching with the
fundamental bending in O–H); (c) Savitzky–Golay [52] filter of second derivative order applied to the
absorbances. The bands are again indicated; (d) to (f) Same as in (a) to (c) but in the NIR range, with the
spectra acquired in reflectance mode.

Figure 2.
Setup for the acquisition of Vis-NIR reflectance spectra in (A) reflectance, (B) transmittance, and
(C) interactance modes. Based on [45].
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to yellow/orange/red colors through ripening, the spectral information on the pig-
ments’ absorption range, may provide accessory indirect correlations with IQA such
as firmness, as found in ‘Rocha’ pear (Pyrus communis L.) [53]. This, however, is not
so clear in citrus fruit because their color change do not correlate with their matu-
rity and depends on the orchards’ location climate [6]. Otherwise, the pattern of the
absorption spectra in the NIR range is quite similar among the various fruit species,
although position and magnitude of the peaks are fruit specific, even among citrus
fruit varieties [41]. The magnitude of the peaks and minima are also dependent on
the acquisition mode used, but in general the same features are present and the
landscape of the spectra is similar among the same fruit as reported for ‘Sunkist’
oranges [48].

The spectra in the NIR range convey information mainly related with vibrational
bands (stretching and bending) of the relevant functional organic groups, such as
O–H, C–H, C–O and C=O. The compilation of the main wavebands present in citrus
fruit, namely, O-H and C-H vibration absorptions are presented graphically in
Figure 3. These groups exist in all fruit organic molecules, but variations associated
with water and storage reserves may induce slight changes in the spectra that may
be related with the IQA. Vibration states are quantized and the transitions between
states are said to be fundamental or overtones. The fundamental transitions
(corresponding to a fundamental band) refer to the transition from the ground state
to the first excited state, and take place mainly in the infrared range, that is above
2500 nm. In this range, the absorption peaks are distinguishable and correlate
directly to specific compounds, allowing a better assessment of organic compounds
such as vitamin C, citric acid or sucrose, as reported in ‘Valencia’ orange [54]. In
contrast, the overtone bands correspond to transitions to higher excited states, with
a large number falling in the NIR range. For example, the first overtone band
corresponds to the transition from the ground state to the second excited state. A
very crude approximation is that the n-th overtone frequency is close to (n-1) times
the fundamental frequency. Thus, a general rule is that overtones have higher
frequencies and lower amplitudes than the fundamental. For example, the funda-
mental frequency for O–H stretching (1ν) is around 2700 nm, which means that is
beyond the range of the most common NIR dispersive-type spectrometers. How-
ever, the overtones are within their instrumental range: 2ν at 1420 nm (first over-
tone, strong intensity band), 3ν at 970 nm (2nd overtone, medium intensity) and 4ν
at 750 nm (3rd overtone, low/very low intensity band). The quoted values are only
indicative of a typical band central value. Indeed, the vibrations are dependent on
the chemical environment, which results in a frequency spread of the bands.
Finally, it is important to refer the combination bands. These correspond to the
superposition of vibration motions. For example, the fundamental bending mode
(1δ) of water at 6300 nm (infrared range) may combine with the fundamental
stretching mode at 2700 nm (1ν), to generate a combination band around 1900 nm
[ν+δ (O–H)]. Having in mind that the fruit tissue is composed by many different
organic molecules, it is easy to understand that the spectral landscape of fruit NIR
reflectance is a continuum, due to band superposition, as previously shown by [54],
when comparing NIR and medium infrared spectroscopies (MIR), to assess several
compounds in ‘Valencia’ oranges. Summarizing, the NIR spectra of a fruit contains
mainly overtones and combination bands of stretching and bending vibrations of
the main functional organic groups of relevant organic compounds regarding the
fruit IQA, such as O–H and C–H. The large number of possible vibrations and
corresponding bands originates a spectral landscape with very broad and unspecific
features, from which it is nevertheless possible to retrieve useful information. For
instance, [54] obtained better prediction of fructose and reducing sugars when
using NIRS than MIRS.
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The typical Vis–NIR and NIR reflectance and absorption spectra of ‘Valencia
Late’ orange and ‘Rocha’ pear are depicted in Figure 3 [55]. Both fruit spectra were
relatively flat from 700 to 910, followed by strong water absorption peaks around
970, 1450 and 1940 nm. However, the C-H bands may distort slightly the water
peaks, and the analysis of this distortion conveys more information than the main
peaks alone. It is from these patterns associated with the OH and CH vibrations that
it is possible to retrieve the information about sugars. Even the water bands by
themselves may convey information about the sugars, because the concentration of
sugars and water are interdependent [41, 56–58].

In the Vis–NIR range the most prominent feature is the 3ν(O–H) peak at
� 975 nm. This peak is reported in the literature in the range 960–980 nm [57], but
the actual location depends on multiple factors: (i) the degree of OH bonding; (ii)
the temperature; (iii) the presence of other close bands. In other words, within
different chemical environments, the OH group will peak at different wavelengths.
Effect of (iii) is more clearly observed in Figure 3c. Indeed, the smooth 975 nm
peak observed in absorbance has a more fine structure disclosed upon derivation.
Thus, the peak 4ν(CH2) at 930 nm is actually coalescing with the main water peak,
causing a depression in the 2nd derivative left positive peak. The form of this
overlap is a source of information about all organic compounds content, namely
sugars, acids, proteins, etc.

A minor feature, but consistently observed in most fruit, is the slight inflection
around 840 nm, which is caused by the band 3ν+δ(O–H). In this case it is more
clearly observable in the reflectance spectrum, Figure 3a. In this discussion is
important to have in mind that second derivation of a symmetric peaks yields a
negative peak at the same position, with two lateral smaller positive peaks. This is
clearly observed for the 840 nm feature in the 2nd derivative plot, with the negative
peak coinciding with the 3ν+δ(O–H) absorption wavelength. On the contrary, the
peaks of the 3ν(O–H) features do not coincide in the absorbance and 2nd derivative
plots, which clearly indicates spectral overlap.

Similar curves are observed in other cultivars. For example, in ‘Newhall’ orange
[56] the same structure for the second derivative plot was observed, although a
different technique was used, namely the Norris derivative [59].

Concerning the NIR spectra, those from the oranges show three main peaks at
1190, 1450 and 1940 nm, whose origin may be traced to the 3ν(C–H), 2ν(O–H) and
ν+δ(O–H) bands, respectively. However, satellite bands overlap, as in the Vis/NIR
case. The most ‘pure’ peak is the first, around 1200 nm, corresponding to the 3ν(C–
H) band. As is the 840 nm band, absorbance and 2nd derivative peaks coincide. The
other two main peaks are more complex blends of two or more bands. For example,
the second peak around 1450 nm, although dominated by the stronger 2ν(O–H)
band, has contributions from 2ν+δ(C–H) and 2ν+2δ(C–H). Consequently, the 2nd
derivative feature associated with this mix is more complex. The same could be said
about the third peak.

Furthermore, due to several causes, the various peaks, even when they coincide
among different fruit, may present different levels of importance, signified by their
infrared values, with the various IQA. For instance, the combination band of OH
reported at 839 nm correlated highly with SSC in ‘Rocha’ pear samples, but not in
‘Valencia Late’ oranges [55].

3. Chemometrics

As it has been mentioned earlier, Vis–NIR spectra of fresh fruits tend to be
composed by a large superposition of absorption bands. The presence of a
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substantial amount of water in fresh fruit has a big impact in the spectra, dominat-
ing most of the spectral landscape. Therefore, the signals corresponding to the
absorption bands of key chemical compounds such as sugars and acids, become
masked by water and are only discernible as weak fluctuations in the spectrum.
Given the complex interplay between the multiple absorption bands and their weak
amplitudes, most of the times the linear relation between chemical compound
concentration and absorption (Lambert–Beer law) is almost lost. In order to be able
to extract information about chemical concentrations from this type of spectrum,
we have to look for relationships’ patterns between different wavelengths. This is
done resorting to multivariate statistical techniques, that when applied in the field
of analytical chemistry is called Chemometrics. This research field can be consid-
ered as a subset of the broader area of Machine Learning, and pursues the same
goals, i.e., infer critical information from high dimensional data. There is a vast
literature on this subject for those who wish to learn more about Chemometrics.
Here are some suggestions for introductory and advanced levels [60–64]. In this
section, it is presented a brief introduction to the scientific language used in this
area, with the sole objective of familiarize the reader with the main concepts that
are often presented in the literature. In Vis-NIRS of fresh fruit, the input data are
spectra, i.e. one-dimensional arrays of values, each one corresponding to the inten-
sity of light (diffusively reflected or absorbed) at a specific wavelength. Each
spectrum Xn (n ¼ 1, … number of samples) represents a measurement or sample
and each point xi (i ¼ 1, … , number of variables) of the spectrum is usually
referred to as input variables, spectral features or simply as ‘wavelengths’. The
macroscopic properties or QA features that are obtained through laboratory testing
(e.g. SSC, firmness, etc.) are commonly defined as target variables Yn or simply
attributes. Chemometrics consists on the application of mathematical/statistical
methods that allow mapping the spectral features xi into the target variables Y.
These methods can be subdivided into two broad subcategories: unsupervised and
supervised. In the former type of method, only the input variables xi are used and,
the main purpose is to find, for example, trends within the data, clusters that can be
used for classification or other general characteristics of the data set. On the other
hand, supervised methods use both input and target variables and can be used for
classification tasks (e.g. discriminate between different fruit sub-species or origins)
or for quantitative (regression) prediction of attributes that have continuous
distributions (e.g. SSC, firmness, TA, etc.).

3.1 Spectral pre-processing and outlier detection

In order to implement the best calibration model possible to predict the expected
QA, often the spectral data has to be preprocessed before being used. Preprocessing
techniques are used to remove irrelevant information (noise, systematic errors and
faulty samples) that can degrade the performance of the numerical algorithm used
to develop the calibration model. Several preprocessing methods have been created
for this purpose and reviews, such as [61, 65], present a wider scope of these
techniques. A brief summary of the most commonly used methods is presented in
Table 1. For Vis-NIRS, the most common forms of spectral preprocessing can be
stacked into two groups: scatter corrections (SC) and derivative techniques (DT).
Scatter-corrective methods are used to remove the influence of scattered light that
can contaminate the diffuse reflectance spectra. The rationale behind SC techniques
is to remove effects that are unrelated to the chemical composition of the samples
and that just depend on the measurement geometry or samples morphology. On the
other hand, DT are designed to improve signal to noise ratios, eliminate systematic
baseline biases and enhance spectral variations. Another type of preprocessing
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commonly mentioned in the literature is outlier detection. This process consists in
identifying and removing from the data set, samples that are very different from
the rest of the samples. These outliers can be for example, reflectance spectra that
were defectively acquired or fruit with odd properties. The idea is to remove these
samples from the data set, using some pre-defined metric in order to feed the model
only with the most representative samples in the data set that lead to a correct
mapping of the attribute being predicted by the calibration model constructed.

3.2 Clustering

In Vis–NIR spectra of fresh fruit, the common spectrum is often described by
smooth mounds and soft depressions. This means that adjacent wavelengths can be
highly correlated. Therefore, in order to reduce redundancy of information pro-
vided by neighbour features xi, xiþ1, xiþ2, …½ � (also called co-linearity), sometimes it
is beneficial to restrict the number of used input variables. This is often called
dimensionality reduction and is very important for the right operation of certain
calibration models. The simplest way to deal with this problem is by using sub-
sampling, where a certain number of spectral features are discarded, e.g. every 3rd
or 5th point in the spectra. To deal with this problem of dimensionality reduction,
some ‘clever’ algorithms were introduced, the most common being the Principal
Component Analysis (PCA) algorithm, the Hierarchical Clustering Analysis (HCA)
and K-Means. the latest two methods can be used for classification tasks (mapping a

Technique Description

MSC (Multiplicative Scattering

Correction) [66]

Each spectrum Xn is regressed against a reference

spectrum (usually the mean spectrum, Xm) using a least

square method. Then, the corrected spectrum is computed

based on these regression coefficients. There are more

sophisticated variants of this method (e.g. Extended MSC

[67] that try to correct for additional additive effects).

SNV (Standard Normal Variate) [68] Each individual spectrum Xn is normalized to have zero

mean and unit variance. In some cases, this can also appear

as sample standardization.

Smooth derivatives (Savitzky–Golay (SG)

[52] and Norris-Williams (NW) [59]

The spectrum derivative in relation to the wavelength is

computed. Usually the first derivatives remove baseline

effects and the second derivative remove baseline and

linear trends in the spectrum. Smooth derivatives are

computed using an averaging multi point window in order

to be more robust against spurious noise. SG and NW

algorithms are the most common methods to compute

these derivatives.

De-trending This process consists in fitting a polynomial (usually 1st or

2nd order) to the spectrum and subtract it from the signal.

This provides baseline correction.

Scaling Scaling is a sort of umbrella under with we can find

multiple types of data manipulations. The most common

ones are: baseline subtraction, sub-sampling,

normalization on columns (all spectral features in the data

set are scaled between a max and min values) and

normalization on rows (the individual spectral features are

scaled between min and max).

Table 1.
Most common spectral preprocessing techniques.
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cluster to a class) and for outlier detection as well. If samples are too far apart from
the defined clusters (according to some metric such as the Euclidean distance or the
Mahalanobis distance), then this suggests that it might be an outlier.

3.3 Classification and regression models

As we mentioned earlier, depending on the problem at hand, we might need to
implement a classification or a regression model for our data. Multiple Linear
Regression (MLR) is perhaps one of the most straight forward methods to imple-
ment. It expands the application of simple linear regression to the multivariate case
by linearly combining them. Due to its simplicity, this method has some drawbacks,
namely an inefficient applicability in the cases of high co-linearity in the data, and
when the number of features in the data set is higher than the number of samples.
This is often the case of fresh fruit Vis–NIRS datasets and hence its applicability has
been limited. One way of overcoming these limitations, is to use a dimensionality
reduction method, such as PCA and then perform MLR on these lower dimensional
components. This workflow is known as Principal Component Regression (PCR).
Partial Least Square Regression (PLS) is without question the most widely used
method to create calibration models to predict the most QA of fresh fruit
(Tables 2–4). As opposed to PCA, the PLS algorithm takes into account the covari-
ance between input xi and target Y i variables. In the same spirit as PCA, PLS also
projects the data into a latent space, but this time the components are defined along
the direction of maximum variance between xi and Y i. These components are called
latent variables (also named factors by some researchers), are built in order to
model the target variable, and their number is what defines the quality of the PLS
model. In general, a low number of latent variables usually lead to more robust
predictions, but that might not always be the case. A variant of PLS named PLS
Discriminant Analysis (PLS-DA) can be used to deal with classification scenarios
when the target variables Y i are not continuous (e.g. 0, 1 for fruits without and with
defects). The models mentioned so far are can be described as linear because they
rely on a linear combination of multivariate solutions. Besides the easiness of
implementation, they are also classically appreciated in Chemometrics because they
are easy to interpret in terms of feature importance, i.e., after fitting the model to
the data we can back-trace some parameters (e.g. regression coefficients) and find
what wavelengths or spectral bands better contributed to the prediction. In turn,
this allows inferring information about the chemical concentrations and can be used
to identify biological and metabolic behaviors.

In the last couple of decades, non-linear models imported from other areas of
Machine Learning have begun to permeate Chemometrics, and given its high use
case in the literature, Support Vector Machines (SVM) is one of the most popular.
The strategy of this model consists in searching for boundaries that separate two
cluster or classes. The algorithm tries to find the best boundary between classes by
maximizing a distance margin between neighbor samples. It has the advantage that
it can use kernel tricks to transform the data points into another mathematical
space, where these boundaries are easier to establish. SVMs were initially used for
classification tasks, but have been extended to deal with regression problems as well
(SVR). SVR has been used successfully for many datasets, and the most often
mentioned drawback is the complexity of its optimization task. Another popular
type of non-linear models that is often used for classification and regression prob-
lems is Neural Networks (NN). These represent a wide class of algorithms with
many types of architectures and are derived from the field of Artificial Intelligence.
In recent years, classical NN architectures such as the Multi-Layer Perceptron has
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IQA Unit Range (nm) Mode Stat Method Val RMSEP R2 RPD Ref

‘Marsh’ grapefruit

Suc g/kg 400–2500 R PLS I 35 0.94 3.76 [69]

Gluc mg/g 18 0.77 1.80

TPh gGAE/kg 0.37 0.59 1.03

DPPH % 5.8 0.85 2.45

TotCar g/kg 2.9 0.80 1.71

VitC g/kg 400–700 0.20 0.95 3.33

Chl a g/kg 0.79 0.87 2.31

Chl b g/kg 2.8 0.94 3.61

‘Star Ruby’ grapefruit

SSC % 850–2500 R PLS E 0.31 0.90 2.94 [70]

TA g/100 mL 0.07 0.83 2.46

MI SSC/TA 0.45 0.81 2.32

BrimA SSC-TA 0.43 0.86 2.68

‘Trovita’ orange

RateOleoc 400–1000 R PLS I 0.008 0.97 — [71]

DegOleoc 0.005 0.97 —

‘Valencia’ orange

SSC % 900–1800 R PLS E 0.58 0.69 1.87 [72]

VitC mg/mL 1050–2000 I 8.01 0.43 1.33

SSC % 850–2500 R PLS E 0.28 0.93 3.57 [70]

TA g/100 mL 0.02 0.93 3.88

MI SSC/TA 0.61 0.96 4.92

BrimA SSC-TA 0.006 0.96 3.96

Firm N 1000–2500 R PLS E 6.22a 0.85 — [73]

Pectin % 1000–2500 5.04a 0.49 —

VitC mg/L 1000–2500 R PLS I 95 0.50 — [54]

CitAc g/L 3.8 0.56 —

Suc g/L 12 0.56 —

Gluc g/L 6.7 0.67 —

Fruct g/L 5.0 0.66 —

TotSug g/L 12 0.64 —

RedSug g/L 20 0.67 —

‘Shatian’ pomelo

WC % 400–1700 T PLS I 0.49 0.74 — [74]

Granul 0.096 0.97 —

‘Honey’ pomelo

Granul 400–1700 T PCA-NN I 0.97–0.98b — — [14]

sweet lemon

Freeze Binary 400–1100 T SIMCA I > 92%b — — [13]
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IQA Unit Range (nm) Mode Stat Method Val RMSEP R2 RPD Ref

Injury PCA-NN 100%b — —

SVM > 92%b — —

aSEP values.
bThis value corresponds the accuracy of the classification.

Table 2.
Overview of applications of Vis-NIRS to measure the quality attributes of citrus fruit by benchtop devices. List
of symbols in Table 5.

IQA Unit Range (nm) Mode Stat Method Val RMSEP R2 RPD Ref

‘Marsh’ grapefruit

RindPitt 400–2500 R PLS E 5E-4 0.89 — [12]

DM % 400–850 0.30c 0.88 —

‘Ehime Kashi28’ mandarin

SSC % 750–1050 I PLS I 0.59 0.71 — [75]

‘Imperial’ mandarin

SSC % 720–950 I MPLS E 0.6–0.8d 0.5-0.8 1.2-3.4 [76]

DM % 0.6e 0.9e —

SSC % 720-950 I MPLS E 0.4–0.5f 0.6-0.9 — [77]

0.4–0.5g 0.3-0.7 —

0.8–6.8h 0.0-0.8 —

‘Nanfeng’ mandarin

TA g/100 mL 400–1040 T PLS I 0.09 0.41 — [78]

SSC % 0.65 0.85 —

VitC mg/100 mL 2.80 0.64 —

TA g/100 mL BPNN 0.09 0.42 —

SSC % 0.64 0.86 —

VitC mg/100 mL 2.70 0.64 —

‘Nules Clementine’ mandarin

WL g 900–1700 I PLS I 2.76 0.83 2.34 [11]

DMC % 0.92 0.92 3.57

Sucrose mg/g DW 24 0.77 1.4

Glucose mg/g DW 11 0.88 2.86

Fructose mg/g DW 12 0.90 3.23

TotSug mg/g DW 31 0.90 3.15

RBD binary 450–1000 I PLS E 0.36 0.37 — [79]

Orange

SSC % 600–1100 R PLS I 0.73 0.35 — [80]

600–950 0.60 0.66 —

600-1100B VABPLS 0.60 0.67 —
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been increasingly substituted by more modern architectures developed for Deep
Learning. The most promising of these NN are the so called Convolutional Neural
Networks that have been very successful in image recognition tasks.

3.4 The quality of a calibration model

Independent of the type of model that is used for prediction or classification, the
important thing is to find how well it performs on the desired data. To assess the
quality of the predictions made by the calibration models, several metrics are often
used. In a recent review by [38], the author makes a case for the uniformization of
the report of error metrics in future publications. In what follows these recommen-
dations are highligted. The partitioning of the data for model development is very
important. The data set should always be split into two sub-sets, called train and test
sets. The train set, as its name suggests, is used for the calibration model develop-
ment and, once the main hyper-parameters have been established, the model is used
to predict the test set and assess its performance. Model development can be done
with the full train set using a cross-validation strategy or by further splitting it into
calibration and tuning (or assessment or validation) sets. As a note of caution, it is
important to mention that for different areas of Machine Learning the names given
to these data splits can vary and that can lead to some confusion. Otherwise, the test
set should be derived from a different distribution from that of the train, in which
case it is named as external validation set [45]. For example, data from two

IQA Unit Range (nm) Mode Stat Method Val RMSEP R2 RPD Ref

‘Gannan’ orange

SSC % 820–950 I PLS I 0.40 0.77 — [81]

SVM 0.32 0.84 —

SSC % 600–1100 T PLS I 0.55 0.85 2.57 [82]

685-983a SPAPLS 0.57 0.84 2.51

Navel orange

SSC % 580-970b T PPSOPLS I 0.43 0.79 — [83]

‘Valencia Late’ orange

SSC % 400–1000 R PLS I 0.33 0.92 — [84]

TA mg/L 0.07 0.73 —

BrimA SSC-TA 0.37 0.84 —

MI SSC/TA 1.03 0.76 —

‘Page’ tangelo

TA c.a./100 g 400–1000 R PLS I 0.03 0.77 — [85]

SSC % 0.40 0.72 —

aSelected wavelengths in this range.
bSelected wavelength bands in this range.
cCross validation.
dCombinations of cal. and val. Sets.
eCalibration.
fCombinations of cal. and val. sets (harvest day).
gCombinations of cal. and val. sets (orchard location).
hCombinations of cal. and val. sets (season).

Table 3.
Overview of applications of Vis-NIRS to measure the QA of citrus fruit by portable spectrometers/systems under
laboratory conditions. List of symbols in Table 5.
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IQA Unit Range

(nm)

Mode Stat

Method

Val RMSEP R2 RPD Ref

‘Clemenvilla’ mandarin

TA % acid

citric

1600–2400 R MPLS I 0.15 0.56 — [86]

SSC % 0.77a 0.50 —

MI SSC/TA 1.46a 0.53 —

pH 0.11a 0.61 —

MPF N 7.3a 0.45 —

PerTh mm 0.54a 0.51 —

TA % acid

citric

1600–2400 R LOCAL I 0.13a 0.76 2.08 [87]

SSC % 0.71a 0.57 1.51

MI SSC/TA 1.13a 0.79 2.14

pH 0.11a 0.74 1.91

BrimA SSC-TA 0.70a 0.75 2.0

5 cultivars of orange

SSC % 450–1100 I PLS E 0.86 0.56 — [88]

‘Newhall’ orange

SSC % 680–1100 I PLS I/E 1/1.1 � .2 .5/

.3 � .1

1.4/

1.1 � .1

[56]

Juice pH .2/

.27 � .04

.5/

.4 � 0.1

1.4/

1.1 � 0.1

‘Powell Summer’ orange

SSC % 500–1690 R LOCAL I 0.62 0.74 — [89]

MPF N 4.64 0.74 —

PerTh mm 1100–1690 0.58 0.68 —

Juice

Weight

g 18 0.68 —

SSC % 1600–2400 R LOCAL I 0.80 0.81 2.23 [87]

MI SSC/TA 3.56 0.65 1.69

BrimA SSC-TA 0.85 0.82 2.33

‘Clemenvilla’ mandarin and ‘Powell Navel’ orange

JuiceMass g 1600–2400 R LOCAL I 0.92a 0.69 1.77 [90]

PerTh mm 28a 0.72 1.86

SSC % 1600–2400 R LOCAL 0.86a 0.78 2.09 [87]

pH 0.15a 0.72 1.93

TA % acid

citric

0.14a 0.84 2.43

MI SSC/TA 2.98a 0.77 2.08

BrimA SSC-TA 0.84a 0.78 2.15

aCorrected to bias.

Table 4.
Overview of applications of Vis-NIRS to measure the quality attributes of citrus fruit by portable systems
on-tree. List of symbols in Table 5.
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consecutive harvest seasons are used as train set, while the test set uses data from a
third season. A similar situation can be envisaged by using a train set collected from
different orchards or origins, than that used for validation. Yet, given the large
amount of time invested in acquiring this type of data, multi-seasonal or multi-
orchards test data sets are not often found in the literature. In contrast, laboratory
models with homogeneous fruit sets are abundant (Tables 2–4). Currently, the
most common procedure when constructing and validating Vis-NIRS models for
the various fruit QA is to separate a fraction of the available samples as train/
calibration set (usually 80%), and the remaining as test/validation set (usually
20%). Furthermore, the validation samples are typically chosen as the best possible
representation of the whole set and within the variation range of the train set. This
has been applied even when the models comprehend several species and/or culti-
vars, orchard locations and harvest years, which are mixed in the calibration and
validation sets [90]. All studies included in Tables 2–4 that used this approach,
were labeled as internal in the validation column. Internal validation does not
ensure the success of a continuous monitoring application, which is a dynamic and
open process, particularly, if one aims to use the Vis-NIRS in real world applica-
tions, being in inline grading systems or handheld devices. Once the model is
applied to the test set and a final prediction is made, one can assess how well the
model performs by computing several metrics. If the model was developed for
regression, the most used are the root mean squared error (RMSE), bias, the slope,

Colums Rows’ content

IQA: Internal Quality

Attributes

β Car: β carotene; BrimA: Brix minus Acids (SSC-k(TA)); Chl a:

chlorophyll a; Chl b: chlorophyll b; CitAc: Citric Acid;DegOleoc: Degree

of oleocellosis; DMC: Dry Matter Content; DPPH: 2,2-diphenyl-1-

picrylnhydrazyl; DM: dry matter; Firm: Firmness; Fruct: Fructose; Gluc:

Glucose; Granul: Granulation; JuiceVol: Juice Volume; MPF: Maximum

Penetration Force;MI: Maturation Index; Pectin: Pectin Content; PerTh:

Pericarp Thickness; RateOleoc: Rate of oleocellosis; RBD: Rind

Breakdown disorder; RedSug: Reduced Sugars; RindPitt: Rind Pitting;

SSC: Soluble Solid Content; Suc: Sucrose; TA: Titratable Acidity; TAO:

total antioxidant capacity; TotCar: Total Carotenoids; TotSug: total

sugars; TPh: Total Phenolic content; VitC: Vitamin C; WC: Water

Content; WL: Weight Loss

Mode: mode of acquisition R (Reflectance), I (interactance) or T (transmittance)

StatMethod: Statistical

method employed

iPLS: Interval PLS; LAR: Least Angle Regression; LOCAL: Patented

algorithm for PLS regression from a subset of proximal calibration

samples; LS-SVM: Least squares support vector machines; MLR:

Multiple linear regression; MPLS: Modified PLS PCA-NN: Principal

components analysis combined with artificial neural networks; PCA-

BPNN: back propagation neural network (BPNN) based on principal

component analysis (PCA) PLS: Partial Least Squares; PPSOPLS:

piecewise particle swarm optimization (PPSO) algorithm based PLS

SIMCA: Soft independent modelling of class analogy; SPAPLS: Succesive

Projections algorithm coupled with PLS; SVM: Support vector machines;

VABPLS: variable adaptive boosting partial least squares

Val: Model validation type I (internal), CV (cross validation only), E (external)

RMSEP: Root Mean Square Error of Prediction

R2: Coefficient of determination

RPD: Residual predictive deviation

Table 5.
List of abbreviatures used in Tables 2-4.
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the coefficient of determination (R2), and the standard deviation ratio (SDR) or
ratio of performance to deviation (RPD) or residual standard deviation (RSD). If
the model is developed for classification, the advised metrics are accuracy (ACC),
F1 score and receiver operating characteristic (ROC) curve. For completeness, these
metrics are often computed not only for the test set, but also for the calibration, and
tuning sets as well. The comparison between calibration (C), tuning (CV) and test
set (P) error metrics allows to understand how well the model generalizes, i.e. how
the information learned by the model during training transposes to the final exter-
nal validation dataset.

4. Prediction of quality attributes

Vis-NIRS combined with various chemometric methods has produced calibra-
tion models to predict simultaneously multiple QA of various citrus species and
varieties, which are presented in Tables 2–4. These attributes range from fruit size,
weight and color [90] to SSC, MI, external and internal defects, several compounds
such as sugars, acids, pigments and antioxidants. As expected, these models address
predominantly several varieties of orange and mandarin, but also grapefruit, lime,
pomelo, sweet lemon and tangelo. The spectral ranges used cover the whole Vis-
NIRS range. The majority of the Vis-NIRS calibration models were obtained from
samples collected and assessed under controlled conditions in the laboratory,
after fruit temperature equilibration, either with benchtop or handheld devices
(Tables 2 and 3). Despite the large market availability of the latter, presenting
different levels of portability, spectral ranges, sizes, and prices, only a few studies
have focused on its application to assess the quality and ripening of oranges and
mandarins on-tree (Table 4), perhaps due to the complexities involved under field
conditions, and the performance deterioration of calibration models, in spite of the
spectral range used [86–90]. Nevertheless, the QA assessed on-tree (Table 4) com-
prise fruit mass and size, color parameters [86, 89, 90], pericarp thickness, SSC, TA,
firmness, MI, juice pH and mass, and BrimA index, which measures the balance
between sweetness and acidity as described by [12]. Noteworthy, the majority of

the calibration models exhibited R2
<0:8, despite the range used, and did not

include external validation, except for [56, 88].
Grading lines equipped with Vis-NIR sensors are now commercially available

from various companies, to assess both the EQA and IQA of citrus fruit [38–40].
Unfortunately, the scientific evidence about the accuracy of these systems is very
scarce, due to the ‘industrial secrecy’. Nevertheless, there are a few cases of part-
nership among the industrial sector and the research groups to know the real
applicability and their performance in assessing citrus fruit QA by such equipment
[91], in most cases still in the prototype stage, as reported by [92, 93]. Valero [91]
evaluated the performance of a customized NIR equipment installed underneath the
fruit conveyor to sort oranges and mandarins in a Spanish packinghouse. This
system working in a transmittance mode in the 650–970 nm spectral range, only
provided calibration models that could discriminate between low and high values of
SSC for both mandarin (R = 0.76–0.86; SEP � 0.9 °Brix; RPD � 0.74) and orange
(R = 0.87; SEP � 0.7 °Brix; RPD < 1.5). No acceptable models were obtained for TA
in neither species. Miller and Zude [92] evaluated the performance of a Vis-NIRS
system to assess the SSC of ‘Indian River’ red grapefruit and ‘Honey’ tangerine from
Florida in a sorting inline prototype, with R2 ranging from 0.15 to 0.67. The proto-
type percent correct classification averaged 85% for SSC at 10 °Brix and 79% for an
11 °Brix setpoint in the second-year of tests. Otherwise, [93] reported on the devel-
opment and laboratory testing of the nondestructive citrus fruit quality monitoring
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prototype system, which consisted of a light detection and ranging (LIDAR) and
Vis-NIRS sensors installed on an inclined conveyor for mimicking real-time fruit
size and SSC measurement respectively, during harvest. Laboratory tests in ‘Valen-
cia’ orange revealed that the system was applicable for instantaneous fruit size
(R2 = 0.91) and SSC (R2 = 0.677, SEP = 0.48 °Brix) determination.

The various Vis-NIRS calibration models presented in this chapter, show differ-
ent levels of accuracy, prediction and robustness for the various attributes, SSC
being the most successfully IQA assessed at all spectral ranges, independently of the
devices used (Tables 2–4). Both juice pH and vitamin C also seem easily assessed by
devices operating in the Vis-SWNIRS range devices [78, 94, 95], but TA has been
shown to require wavelengths range > 1000 nm [13, 96]. Additionally, calibration
models for firmness have been difficult to obtain, although there are a few excep-
tions reported for several orange varieties, in the reflectance mode and in the ranges
500–1690 nm [89], and 1000–2500 nm [73]. Of course, the calibration models for
specific compounds, such as sugars, acids or antioxidants, require in most cases the
longer NIR spectral range [12, 54, 69].

Both external and internal defects in citrus have been successfully predicted by
Vis-NIRS, such is the case of the section drying in tangerine (transmittance; 780 and
960 nm) [10], oleocellosis in ‘Trovita’ orange (reflectance; 400–1000 nm) [71], the
freeze damage in sweet lemon (half-transmittance; 400–110 nm) [13], the rind
pitting in ‘Marsh’ grapefruit (reflectance; 400–2500) [12] or the granulation in
‘Shantian’ pomelo (transmittance; 400–700) [74]. However, [97] was not able to
predict the external disorder RBD in ‘Nules Clementine’ mandarin (interactance;
range 450–1000 nm).

Among the chemometrics methods used to construct the calibration models, PLS
is still the main linear regression technique used, and the one to produce the best
models for the widest number of QA (Tables 2–4). However, there are some
exceptions, regarding the use of non-linear techniques, which were shown to
deliver calibration models with equivalent or even better prediction and accuracy
for several QA than PLS. Among these, there is the WT-LSSVR, BP-NN and LS-
SMV that provided models with higher prediction capacity for SS in ‘Gannan’
orange [81], SSC, TA and vitamin C in Nanfeng mandarin [78] and in ‘Newhall’
orange [96], respectively. The LOCAL algorithm has also shown to produce better
models than MPLS for firmness and juice mass in ‘Powell Summer Navel’ orange
[89], and in ‘Clemenvilla’mandarin [90]. SIMCA, SVM and particularly PCA-ANN,
also allowed to assess with a total accuracy >98% the freeze damage in sweet lemon
[13] and PCA-GRNN allowed the assessment of the granulation in ‘Honey’ pomelo
at a classification accuracy (CA) > 95% [14].

Independently of the chemometrics technique used, for the majority of the
models presented in Tables 2–4, the train and test fruit sets were chosen from the
same batch, orchards or seasons. Even when the whole data set comprised fruit
from several orchards, harvest season or citrus varieties, the usual approach was to
randomly choose 80% of the whole data set to construct the calibration model and
20% to validate it, as reported by [90, 97]. A truly stringent external validation is
thus required to have a realistic idea of the models’ performance in orchard and/or
cargo batch monitoring. External validation means validation through a dataset
with a different origin (spatial or temporal) relatively to the datasets used in
calibration. Nevertheless, there are some clear examples of this approach, such as
previously reported for mandarin [76, 79, 97–99], orange [12, 56, 70, 72, 73, 79,
88, 97], and grapefruit [12, 70]. Without the effective external validation, it is not
possible to know exactly how well these models would work in real conditions due
to the large variability within the trees, orchards, sites and harvest seasons. Yet, a
certain degree of deterioration of the initial model prediction is expected, which
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would warrant further attention. This has been reported by [56, 77, 88]. Yet, there is
space and potential for improvement beyond the ‘proof of concept’, if one aims to
use these devices on the daily routines of the orchards’ management. This has been
suggested by [56, 78] through model recalibration using a few fruits from the new
harvest season/orchard, or by achieving a strong degree of robustness by
constructing a multi-seasonal and multi-orchard model as reported by [89] for
‘Newhall’ orange, which will be much more advantageous when assessing the
ripening of fruit on-tree.

5. Future research and perspectives

Vis-NIRS has been incorporated by a large number of companies in commercial
applications to be used on inline, benchtop and handheld systems. However, there
are several topics regarding the full potential and limitations of this technology that
require attention and further research in order to provide the consistency warranted
by the daily basis routines of the citrus supply chain when assessing fruit quality
and ripening. Firstly, all researchers engaged in this area should report their results
in a uniform way, particularly in what respects the obtained models’ metrics [38].
This would allow a better understanding on the effective advances and contribu-
tions made by each study. Other models’metrics parameters, such as the prediction
gain, may also be useful, as reported by [100]. Secondly, the calibration models’
robustness must be addressed and solved through a stringent multi-year, multi-
cultivar and multi-orchard validation, such as previously reported by [56]. The
usual approach of validating calibration models with a random fraction of the total
available data set, even when the models comprehend several varieties, orchard
sites and harvest years does not ensure the success of a continuous monitoring
application and delivers unrealistic performance metrics [76, 77]. The usual
recalibration and spiking approaches used to improve the initial calibration models
with a few fruits from independent data sets that will be then assessed, assume that
those fruits used to recalibrate/update the model constitute a faithful representation
of the new population and are common techniques in various commercial devices,
for inline and benchtop systems. However, this becomes quite difficult to apply if
one aims to monitor the on-tree fruit ripening evolution through time, for the fruit
sampled in the first weeks cannot represent those to be measured in the last weeks
of the harvest season. Thirdly, there is a large potential for models’ improvement,
by using the non-linear techniques of machine learning, and those of deep learning.
Fourthly, there is much to understand on the effect of the rind in the assessment of
the pulp IQA in citrus fruit, since the NIR radiation hardly gets to the fruit pulp, and
both biochemical and optical properties have a major role to play in the spectral data
acquired [47, 49, 95, 101, 102]. Fifthly, the calibration models should be able to
predict attributes that are closer to the organoleptic evaluation of the fruit. It is the
case of BrimA index, a better indicator of fruit sweetness that the SSC, which was
satisfactorily predicted in orange, grapefruit and mandarin [12, 87]. Finally, the
handheld devices must really be tested under field conditions, if one aims to assess
the fruit on-tree, which is essential for the OHD decision.

6. Conclusions

The usefulness of Vis-NIRS combined with different chemometric techniques in
the supply chain of citrus fruit is already quite extensive and growing, similarly to
many other commodities. In this chapter the authors only addressed the classic
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spectral ‘point’ measurements, but it is quite clear that both inline, benchtop and
handheld devices are used to assess nondestructively multiple QA in various citrus
species and cultivars, with a clear predominance of orange and mandarin. Among
these attributes, there are both EQA and IQA, as well as defects caused by various
factors, such as physiological disorders. The devices available on the market are
from various brands, operate in various ranges and present a wide variety of prices.
Aside from the “proof of concept” made by many studies, that the authors tried to
comprise as much as possible in this chapter, there are several issues that still need
to be addressed by researchers, a major one being the need for a stringent external
validation of the calibration models, in order to assure robustness and to fulfill with
the essential requirements to include this technology in the daily routines of these
crop supply chain. This is of the utmost importance when considering the assess-
ment of fruit ripening on-tree to determine the optimal harvest date for each
orchard, or sections of the orchard. This is highly significant based on the determi-
nant effect of producing and harvesting the fruit at its best ripening stage, thus
assuring the best quality throughout the whole postharvest and shelf-life. As a
concluding remark, it is very important to add that these devices are of medium and
high cost, and that are not the kind of technology to ‘set and forget’, as reiterated by
[39], which demands not only for a budget to acquire the systems, but also to
maintain them, and to keep the continuous update and improvement of the cali-
bration models, that in most cases need the selling company assistance. Thus, there
must be a cost–benefit that both the producers and packinghouses have to meet
through the added commercial value to citrus fruit by these systems, and the
consumer willingness to pay for fresh fruit graded in terms of IQA such as sugar
content, acidity and nutraceutical properties.
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