
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



1

Chapter

Microglial Plasticity Contributes 
to Recovery of Bone Marrow 
Mononuclear Cells during 
Experimental Stroke
Edna Cristina S. Franco, Marcelo Marques Cardoso, 

Celice Cordeiro de Souza, Michelle Castro da Silva, 

Carolina Ramos dos Santos and Walace Gomes-Leal

Abstract

Brain stroke is an acute neural disorder characterized by obstruction (ischemic) or 
rupture (hemorrhagic) of blood vessels causing neural damage and subsequent func-
tional impairment. Its pathophysiology is complex and involves a multitude of patho-
logical events including energetic collapse, excitotoxicity, oxidative stress, metabolic 
acidosis, cell death and neuroinflammation. Despite its clinical importance, there 
is no effective pharmacological therapies available to diminish secondary damage 
avowing functional deficits. Considering the failure of pharmacological approaches 
for stroke, cell therapy came as promising alternative. Different cell types have been 
investigated in different experimental models with promising results. An important 
issue regarding the transplantation of stem cells into the damaged CNS tissue is how 
the pathological environment influences the transplanted cells. It has been established 
that an exacerbated inflammation in the pathological environment is detrimental to 
the survival of the transplanted stem cells. This prompted us to develop an experi-
mental strategy to improve the therapeutic actions of bone marrow mononuclear cells 
(BMMCs) transplanted into the acute phase of brain stroke by modulating microglial 
activation with minocycline. In this chapter, we first review the basic pathophysiology 
of ischemic stroke with emphasis on the role of microglia to the pathological outcome. 
We then review the experimental approach of modulating microglia activation in 
order to enhance therapeutic actions of BMMCS for experimental stroke. We suggest 
that such an approach may be applied as an adjuvant therapy to control excessive 
neuroinflammation in the pathological environment allowing acute transplants and 
improving therapeutic actions of different kind of stem cells.

Keywords: stroke, stem cells, cell therapy, minocycline, neuroinflammation, 
neuroprotection

1. Introduction

The central nervous system (CNS) is affected by acute and chronic neural 
disorders. In acute neural disorders, like stroke, spinal cord injury (SCI) and brain 
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trauma, neuronal and glial loss happens quickly with inexorable cell loss and 
functional impairment [1–5]. In chronic neurodegenerative diseases, including 
Parkinson’s, Huntington’s, Alzheimer’s diseases and Amyotrophic Lateral Sclerosis 
(ALS) progressive cell loss occurs over decades with inexorable functional loss and 
sensory-motor and/or cognitive declines [1, 5].

Stroke is an acute neural disorder and leading cause of death and functional 
impairment worldwide [1, 5]. Recent epidemiological data point out that occurred 
1.12 million cases of stroke in 2017 in European Union countries, with 9.53 million 
survivors, approximately half a million deaths, and 7 million people with perma-
nent sequelae [6]. According to this study there will be about 40,000 new stroke 
cases in Europe by 2047, and an increase of about 27% in the number of people 
living with sequelae of some type of stroke [6].

Similar data were published by the American Heart Association (AHA), which 
showed that about 7 million Americans over the age of 20 had strokes between 2013 
and 2016 with a prevalence that increases with advancing age in both sexes [7]. The 
same study shows that more than 3.4 million Americans over the age of 20 will have 
a stroke by 2030, an increase of 20.5% in prevalence compared to 2012.

Stroke is a vascular disorder characterized by obstruction (ischemic) or rupture 
of blood vessels (hemorrhagic). Following this primary pathological event, further 
outcomes are diverse and characterized by a multitude of factors, excitotoxicity, 
oxidative stress, metabolic acidosis, periinfarct depolarization, apoptosis and 
uncontrolled neuroinflammation, which contributes to cell death and functional 
impairment in both experimental animals and humans [1–5, 8–10].

There are no effective pharmacological treatment or cell therapy approved for 
stroke [2, 5, 8]. Approved clinical therapy is restricted to thrombolysis by using 
the recombinant tissue plasminogen activator (tPA) for ischemic stroke, which is 
limited by its narrow therapeutic window [11–13]. In the clinical practice, people 
with stroke arrive at the hospital usually several hours after the onset of symptoms, 
outside the therapeutic window for the use of thrombolytic agents (alteplase), 
mainly in low income countries with a limited public health system.

Numerous experimental studies have shown the inefficacy of several tested 
neuroprotective agents, including glutamatergic antagonists, calcium antagonists, 
antioxidants, magnesium for inducing neuroprotection in animals [14, 15]. This 
fact raised considerable skepticism regarding the possibility of finding an effective 
neuroprotective agent for neurological human diseases [14, 15].

Considering the limitations of pharmacological approaches, it is believed that 
cell therapy is considered a promising therapeutic approach for inducing neuro-
protection, cell replacement and functional improvement following both acute and 
chronic neural disorders [16–20]. This is confirmed by several studies using experi-
mental models of neural disorders, including stroke [21].

Different types of stem cells from different sources (umbilical cord blood cells, 
bone marrow stem cells, neural stem cells, induced pluripotent stem cells) have 
been tested in different experimental stroke models rendering neuroprotection and 
functional impairment [16–20].

Although embryonic stem cell transplantation is considered a promising future 
therapeutic approach for neural disorders, technical and ethical-legal restrictions 
have hindered its clinical use [16–20]. Stem/progenitor cells derived from adult 
sources, including bone marrow derived stem cells (BMSCs), have been trans-
planted in both acute and subacute phase after stroke affording considerable degree 
of neuroprotection [22–26].

An important issue regarding the transplantation of stem cells into the dam-
aged CNS tissue is how the pathological environment influences the transplanted 
cells. In disorders like stroke and trauma, an intense inflammatory response is 
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elicited with both cellular and humoral components belonging to innate and 
adaptive immune systems.

It has been previously shown that bone marrow mononuclear cells (BMMCs) 
transplanted into the intact adult rodent brain are rejected by components of the 
CNS inflammatory response [27]. In addition, it has been shown that brain macro-
phages impair survival and integration of embryonic stem cells transplanted into 
the acute phase of brain trauma [28]. This prompted us to develop an experimental 
strategy to improve the therapeutic actions of BMMCs transplanted into the acute 
phase of brain stroke by modulating microglial activation with minocycline [22, 
23]. Using this approach, we were successful in improving therapeutic actions of 
BMMC transplanted into both ischemic cortex [22] and striatum {Cardoso, 2013 
#27 in adult rats.

In this chapter, we will first review the basic pathophysiology of ischemic stroke 
with emphasis on the role of microglia to the pathological outcome. We then review 
the experimental approach of modulating microglia activation in order to enhance 
therapeutic actions of BMMCS for experimental stroke. We suggest that such an 
approach may be applied as an adjuvant therapy to control excessive neuroinflam-
mation in the pathological environment allowing acute transplants and improving 
therapeutic actions of different kind of stem cells.

2. Stroke pathophysiology

2.1 Overview

The pathophysiological events of stroke are extremely complex and involve 
different mechanisms [1–5, 8]. Following metabolic collapse in the brain function, 
ischemic injury results in a complex sequence of pathophysiological events that 
include metabolic acidosis, excitotoxicity, peri-infarction depolarization, oxidative 
stress, programmed cell death and neuroinflammation [1–5, 8].

Several events are related to cell death after stroke. The interruption of blood 
flow generates an energy collapse in the cells, followed by ionic imbalance, with 
intense Ca2+ influx, exacerbated release of glutamate and oxidative/nitrosative 
stress. All of these events are correlated and lead to cell death, triggering an intense 
inflammatory response in the ischemic environment, which has a dubious role, as it 
can contribute to both tissue repair and to intensify the injury [9, 10, 29].

The brain tissue requires a high energy demand for its optimal functioning, 
being responsible for 20% of all the body’s oxygen consumption. In addition to the 
energy needed to maintain cellular homeostasis, the synaptic transmission process 
requires a large amount of ATP, which is obtained from the oxidation of glucose 
in the mitochondria oxidative phosphorylation chain. Therefore, the glucose and 
oxygen reduction in the ischemic environment has severe deleterious effects on the 
nervous tissue [30].

After ischemia, the alteration of several physiological, biochemical, molecular 
and genetic mechanisms results in cell death and impaired neuronal function 
(Figure 1). In the ischemic core, cell death occurs predominantly from necrosis 
minutes after ischemia. Initially, the interruption of blood supply leads to a reduc-
tion in oxygen and glucose reaching neurons, which compromises the process 
of oxidative phosphorylation in mitochondria and drastically reduces the ATP 
production [1, 5, 30].

This reduction impairs the functioning of ATP-dependent ion pumps, such 
as the Na+/K+ pump, causing an imbalance in the ionic potential and generating 
the cell membrane depolarization. In addition, impaired mitochondrial function 
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generates the production of superoxide radicals, reducing antioxidant activity and 
causing oxidative stress, which in turn results in the oxidation of proteins and lipids 
in the cell membrane and DNA fragmentation, ultimately leading to cell necrosis 
[30]. On the other hand, the events that lead to cell death in the penumbra area are 
more complex and can extend for weeks after ischemia [30–32].

In general, the oxygen and glucose reduction generates an imbalance in the ionic 
potential of the membrane, which causes the intense influx of Ca2+ and the release 
of glutamate, events that are interspersed in a positive feedback loop and lead to 
cell death due to excitotoxicity. Since, in this pathological environment in which the 
mechanisms of intracellular Ca2+ control are compromised, cell death programmed 
by apoptosis and/or total cell collapse may occur, leading to necrosis [33]. The main 
events triggered by the scarcity of glucose and oxygen that lead to cell death in the 
center and in the ischemic penumbra are described in Figure 1.

2.2 Cell death after stroke

Several mechanisms of cell death can be triggered after ischemia, including 
necrosis and apoptosis, which can occur interchangeably according to changes in 
the ischemic environment. Necrosis, predominant in the ischemic core, is char-
acterize by the cytoplasm vacuolization, cell edema, plasma membrane rupture 
and pro-inflammatory cytokines release [30–33]. Apoptosis is strictly regulated, 
demands energy, being predominant in the ischemic penumbra area, and it is 
characterized by cell retraction, chromatin density and condensation increased 
nuclear membrane rupture and formation of the apoptotic bodies, but maintaining 
the membrane cellular integrity [33, 34].

Apoptosis occurs intrinsically, by mitochondrial signaling, or extrinsically, by 
cell death receptors stimulating, such as tumor necrosis factor α (TNF-α), TRAIL 
receptors (TNF-related apoptosis-inducing ligand) and FAS (CD95/APO1). In both 
processes, it is necessary to activate the cysteine-aspartate protease family proteins, 
called caspases [35]. This activation involves the Bcl-2 family proteins, which 
includes pro-apoptotic proteins (Bax and Bak) and anti-apoptotic proteins (Bid and 

Figure 1. 
Overview of stroke pathophysiology. The primary pathological event is abrupt reduction of blood flow resulting 
in oxygen level shortage, mithochondrial damage and ATP depletion. Metabolical colapse induce formation 
of reactive oxygen species (ROS) leading to protein and lipid oxidation and cell death. Control f excitatory 
neurotransmitter levels is lost leading to increased calcium intracelular levels, pathological activation of lipases, 
proteases and further cell death.
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Bcl-2) acting at external mitochondrial membrane maintenance and Ca2+ regula-
tion in the mitochondria and endoplasmic reticulum [33]. After stroke, neuronal 
death from apoptosis occurs primarily intrinsically due to mitochondrial damage 
and cytochrome c release in the cytosol [33, 35].

Another process present in stroke is the autophagy, a programmed cell death 
in which cell degradation is carried out by lysosomes in response to severe cell 
damage when the cell is submitted to environmental stress. This can occur in three 
ways: mediated by chaperones, microautophagy and macroautophagy, the most 
observed in stroke. In general, autophagy is blocked by activated mTOR (target of 
rapamycin) and induced by AMP-activated protein kinase (AMPK) and rapamycin 
that inhibits mTOR. The moderate autophagy activation is a beneficial and anti-
apoptotic process, including the mitochondria removal from damaged cells. On the 
other hand, this process becomes deleterious and pro-apoptotic when intensified in 
the ischemic environment, being related to the inflammatory process [33].

Two mechanisms of cell death present in stroke are not fully described: 
necroptosis and pyroptosis. Necroptosis has characteristics similar to necrosis, 
such as cell edema, plasma membrane rupture and pro-inflammatory cytokines 
release, however, it is not a completely passive process and it is activated through 
the receptors of cell death, such as TNF-α, and inhibited by the necroptosis-
inhibiting factor-1 (Nec-1) [35]. Pyroptosis is trigger by caspase-1, being char-
acterized by DNA damage, plasma membrane rupture and pro-inflammatory 
factors release [36].

The different mechanisms of cell death that occur after stroke are correlate in a 
complex process. Although there is a predominance of certain types in the ischemic 
core and others in the ischemic penumbra, some pathways occur simultaneously 
in both area, playing a beneficial, harmful or dubious role. Thus, the results of the 
interaction between these mechanisms is directly relate to the inflammatory process 
after ischemia and will define the affected cells survival [33].

2.3 Neuroinflammation

Neuroinflammation is an important component of the pathophysiology of 
acute and chronic neural disorders [9, 10, 22, 37]. After stroke and trauma, 
an intense inflammatory response is initiated with both humoral and cellular 
components [9, 10, 23, 38–42].

The cellular components of neuroinflammation belong to both innate and adap-
tive immune systems [9, 10]. In experimental models of stroke [9, 10, 38, 41, 42] 
and trauma [40, 43], neutrophils are recruited from blood vessels to the lesion site, 
peaking at 24 h post-damage onset. In latter survival times, macrophages dominate 
the pathological environment peaking between 3 and 7 days after trauma [40, 43] 
or ischemia [23, 38, 41, 42] in adult rodents.

Macrophages are derived from both resident microglia and blood monocytes 
recruited from the blood stream [44, 45]. An intense microglial activation is 
observed in the first week after spinal cord trauma [40, 43] and experimental stroke 
in both cortex [22], striatum [9, 10, 23, 41, 42].

Microgliosis is accompanied by intense astrocytosis that differs in its temporal 
profile in different compartments of the CNS [39]. In our previous studies, we 
demonstrated that astrocytes are activated more quickly in the white matter (WM) 
than in gray matter (GM) after excitotoxic injury to the spinal cord [39].

The inflammatory response in the CNS has a dubious nature, contributing to 
events of tissue repair and regeneration, as well as contributing to the exacerba-
tion of the injury process [9, 10]. This is most evident when considering the role 
of microglial/macrophage cells. It has been shown that microglia inhibition with 
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minocycline induces neuroprotection, decreases axonal loss and programmed cell 
death after traumatic injury [46–48] or ischemia [23, 49–51].

Considerable neuroprotection is obtained after blocking recruitment of hema-
togenous macrophages after experimental spinal cord trauma [52]. Some studies 
suggest that treatment with minocycline is safe and can benefit people in the acute 
phase of ischemic stroke [53–56]. This fact is even more relevant considering that 
minocycline, despite having pleiotropic effects, has an important action on microg-
lial activity [23, 49–51] and that, in humans, microglial activation is an important 
component of neuroinflammatory events [57–59].

Despite the above data, it is known that microglial/macrophage cells can induce 
neuroprotection after trauma [60–63] or ischemia [64–67]. Recently, we suggested 
that this dubious action is influenced by the pathological environment and that 
ligands can activate different receptors in the microglial membrane, activating their 
harmful and/or protective actions [9, 10].

3. The dual role of microglia after stroke

Neuroinflammation is one of the main components of the pathophysiology of 
CNS diseases [9, 10, 68–70]. After the stroke, a complex range of humoral and cel-
lular responses occurs, with different consequences for the neuropathological devel-
opment [9, 10, 68–70]. Neutrophils, lymphocytes and macrophages are recruited to 
the lesion site, in addition to the concomitant activation of microglia and astrocytes 
[9, 10]. Concomitantly, an intricate network of humoral responses is developed, 
characterized by the release of several pro and anti-inflammatory cytokines, with 
specific roles, depending on the moment after the injury [71].

Neuroinflammation has beneficial and harmful effects after stroke and other 
neural disorders [9, 10]. The main component of the inflammatory response that 
occurs after acute neural disorders are the microglia cells, the macrophages resid-
ing in the CNS, myeloid cells derived from progenitors of the Yolk sac embryonic 
structure [72, 73].

Microglial cells are components of the innate immune system that patrol the 
CNS in normal situations using stochastic movements of its thin and long branches 
in order to protect it from harmful events [74, 75], movements that depend on 
endogenous ATP [76].

During development, these cells phagocytose in excess synapses, contribut-
ing to the maturation of neural circuits, an action that depends on interleukin 33 
released by astrocytes [77]. Like cells of the innate immune system, microglial 
cells are the first line of defense of the CNS against viruses, bacteria and other 
pathogens, removing them during phagocytosis infection or by releasing powerful 
pro-inflammatory agents, nitric oxide, proteases, free radicals in addition to other 
lytic agents [78–80].

It is well established that after stroke, trauma and other diseases of the CNS, 
microglial cells have a dubious action, contributing to exacerbation of the injury 
and repair [9, 10]. The inhibition of microglial activation with tetracycline mino-
cycline decreases the infarction area neuroinflammation, both in the cortex and in 
the striatum, after experimental occlusion of the middle cerebral artery (MCAO) 
[51]. Modulation of microglial activation improves the therapeutic effects of bone 
marrow mononuclear cells, transplanted intravenously after focal ischemic lesion 
in the cortex [23] or striatum [23]. Paradoxically, the presence of microglial cells of 
the BV2 cortical lineage in organotypic culture reduces neuron death after glucose 
and oxygen deprivation [65]. In this same experimental model, microglial cells are 
highly beneficial for phagocytosing polymorphonuclear cells [66]. After MCAO in 
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mice, ablation of microglial proliferation worsens the inflammatory process and 
induces higher levels of programmed cell death after focal ischemia [67].

We have proposed that “friendly fire hypothesis” to explain the dual role of 
microglia after stroke and other neural disorders [9–10]. According to the friendly 
fire hypothesis microglia used their biochemical machinery normally used to fight 
infections during sterile inflammation in neural disorders like stroke, trauma and 
even over the course of chronic neurodegenerative diseases [9, 10]. According 
to this notion danger signals released by stressed, damaged or dying cells might 
bind the same pattern recognition receptors (PRRs), or even different receptors, 
normally activated by pathogen-associated molecular patterns (PAMPs) present 
in the microglia cell membrane culminating in secondary cell damage [9, 10]. This 
is supported by our preliminary findings showing that in the presence of bacterial 
infection ischemic damage is larger than in the absence of infection [9].

4. Stem cell therapy for stroke

Currently, there are no effective pharmacological treatments for stroke [14, 15]. 
Conventional therapy is restricted to thrombolysis by using the recombinant tissue 
plasminogen activator (tPA) [11, 13]. Few patients with ischemic stroke are benefited 
from thrombolytic therapy, mainly because of its narrow therapeutic window [11, 13]. 
In clinical practice, people with stroke arrive at the hospital, usually several hours after 
the onset of symptoms, outside the therapeutic window for the use of thrombolytic 
agents (alteplase), mainly in low-income countries with deficient the health systems.

Numerous experimental studies have shown promising results of experimental 
drugs, including glutamatergic antagonists, calcium antagonists, antioxidants, 
magnesium and many others as neuroprotective agents in experimental animals 
[14]. However, despite the experimental success of these drugs, their application 
as neuroprotective agents in humans has been totally ineffective [14, 15]. This fact 
gave rise to great skepticism regarding the possibility of finding an effective neuro-
protective agent for neurological diseases in humans [2, 81].

Considering the failure of translational research for achieving an effective 
neuroprotective agent, cell therapy came up as promising approach for inducing 
neuroprotection, cell replacement and functional improvement after acute and 
chronic neural disorders, depending on cell type [8, 17, 21, 26].

Different types of stem cells from different sources (umbilical cord blood cells, 
bone marrow stem cells, mesenchymal stem cells, neural stem cells, immortalized 
cell lines, induced pluripotent stem cells (IPSCs) were used in experimental stroke 
models to afford neuroprotection, cell replacement and subsequent functional 
recovery [8, 17, 21, 26]. Although embryonic stem cell transplantation is considered 
a promising treatment for neurodegenerative diseases, technical and ethical-legal 
restrictions have hindered its clinical use [8, 17, 21, 26].

An alternative source of cell therapy involves the use of adult progenitor cells 
derived from bone marrow, including mesenchymal stem cells or their faction – the 
bone marrow mononuclear cells [22–25, 82]. Both mesenchymal and mononuclear 
bone marrow cells (BMMCs) are highly anti-inflammatory and neuroprotective in 
experimental models of stroke [22–25, 82, 83].

5. Bone marrow mononuclear cells and stroke

BMMCs are adult stem cells that can also be divided, basically, into two types: 
hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), originating 
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hematopoietic and mesenchymal lineages, respectively [84, 85]. Both groups rep-
resent cellular sources that can be easily obtained and isolated from bone marrow 
aspirates, in addition to be an autologous source for therapies [22–24].

While HSCs originate in blood cells, MSCs can differentiate into various cell 
types of mesenchymal origin, including osteocytes, chondrocytes, adipocytes and 
myocytes [86]. In addition, the latter type of stem cells has an important supporting 
role (stroma) for HSCs in the bone marrow [86]. The mechanisms of action of HSCs 
and MSCs when they come into contact with injured tissue are not yet fully under-
stood. It is currently suggested that these cell types can differentiate into glial and 
even neural lines [86]. Some studies mention that they can form glial and neuronal 
cells from various inducing mechanisms, such as chemical, genetic and physiologi-
cal manipulations [86].

Other studies emphasize the trophic functions of these two cell types. It is known 
that HSCs can secrete neurotrophic growth factors such as angiopoietin-1, which has 
an angiogenic function [87]. There are also reports that MSCs may have an immuno-
suppressive function, which can reduce the acute inflammatory response, as well as 
reduce the reactivity of activated microglia/macrophages and astrocytes [22, 23, 88]. 
In addition, MSCs can promote axonal regeneration or positively influence func-
tional plasticity through the modulation of an inflammatory medium that allows 
axonal growth [89]. They can synthesize some neurotrophic cytokines that stimulate 
neural growth, including BDNF (brain-derived neurotrophic factor), NGF (neural 
growth factor and VEGF (vascular endothelial growth factor).

Mesenchymal stem cells and bone marrow mononuclear cells promote improve-
ment of functional deficits in animal models of stroke when administered intrave-
nously, intra-arterially and intra-cerebrally [22, 23, 88, 90, 91], although most the 
injected cells to non-neural organs, mainly spleen [92–96].

Evidence from preclinical studies indicates that the main mechanism of cell 
therapy does not correspond to cell replacement directly, but to the trophic, anti-
inflammatory and immunomodulatory effects that occur in the acute phase and 
that persist until the transplanted cells die [22, 23, 88, 90, 91].

The route of administration of these cells can be determined by choosing the 
time for transplantation, according to the therapeutic purpose. For example, intra-
vascular transplants may require earlier delivery as the cells use acute inflammatory 
signals to reach the injured area [92–96]. On the other hand, intra-parenchymal 
injection could be beneficial in a later administration in order to favor the survival 
of these cells since the acute inflammatory environment causes damage to the 
transplanted cells [92–96].

6. Minocycline and neuroprotective actions

Minocycline is a second generation semi-synthetic tetracycline, commonly used 
as an antibiotic, but which has a considerable anti-inflammatory and neuroprotec-
tive effect in experimental models of stroke and trauma [46, 50, 51, 97, 98]. This has 
been first demonstrated by Yrjanheikki and colleagues using experimental models 
of both global [50] and focal [51] ischemia. Following MCAO in rats, minocycline 
treatment induced a 65% decrease in the cortical infarct area and a 45% reduction 
in the primary ischemic area [51]. The authors attributed these effects mainly to 
inhibition of microglial activation. From these initial studies, several other studies 
have shown the neuroprotective effects of minocycline after ischemia and several 
other diseases in the CNS [98–100].

The treatment of rodents submitted to acute SCI with minocycline reduced 
secondary oligodendrocyte degeneration, increased axonal regeneration and 
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modulated cell death due to apoptosis [46]. Minocycline treatment increases 
endogenous neurogenesis in the adult brain after experimental stroke [101]. We 
have shown that minocycline protects striatal white matter following acute excito-
toxic brain injury [102] and that modulation of microglial activation enhances the 
therapeutic actions of BMMCs into the acute phase of experimental stroke [22, 23].

Part of the success of minocycline may be associated with the chemical structure 
of this drug [103]. The molecular organization of minocycline allows it to be up 
to 5 times more lipophilic than the other tetracyclines [99, 103]. This facilitates 
the molecule to easy crosses the blood brain barrier (BBB) [99, 103]. In addition, 
minocycline is quickly and easily absorbed, well tolerated in high doses and has 
an average half-life superior to other drugs with similar biological action [56, 99, 
103]. These characteristics make minocycline a therapeutic promise for several CNS 
diseases, including ischemic stroke {Yong, 2004 #917. These characteristics make 
minocycline a therapeutic promise for several CNS diseases, including ischemic 
stroke {Yong, 2004 #917}, ]104].

Although the mechanism of action of minocycline in ischemic stroke is not 
fully elucidated, the drug appears to exert influence on different points of the 
inflammatory response and apoptosis [56, 99, 104]. Minocycline blocks leuko-
cyte activation and infiltration, attenuates the permeability of BBB, inhibits 
matrix metalloproteinase (MMPs), induced nitric oxide enzyme (iNOS), modu-
lates inflammatory mediators, reduces microglial activation and proliferation 
[56, 99, 104, 105]. In addition, it has been reported that minocycline inhibits 
microglial activation by a specific action in a cytokine-like mediator called high-
mobility group box-1 (HMGB-1) [106].

In the apoptotic cascade, minocycline can play a role on the extracellular 
availability of death ligands and/or in the presence of neurotrophic factors in 
the extracellular medium that activate survival receptors in the cell [107–109]. 
Intracellularly, the main target of minocycline is the mitochondria. In this organelle, 
the drug stabilizes the mitochondrial membrane and prevents the release of the 
enzyme cytochrome-c and downstream caspase-3 activation [107–110].

7.  Modulation of microglia activation with minocycline to enhance 
neuroprotection after BMMC transplants

There is an issue on what is the best time window to transplant stem/progeni-
tor cells after acute neural disorders as the intense inflammatory present in the 
pathological environment might impair survival of the transplanted cells [27–28]. 
It has been shown that an exacerbated immune/inflammatory response may impair 
survival of stem cells transplanted in both normal [27] and pathological tissue 
[28]. This has been observed in non-neural tissue, as in the case for transplants of 
exogenous stem cells for myocardial repair [111].

Recent studies using a neuronal relay approach for spinal cord injury (SCI) have 
considered possible detrimental effects of inflammatory response on fetal [112], 
embryonic [113] and even induced-pluripotent stem cells (IPSCs) [114]. In this 
experimental paradigm authors transplant the stem/progenitor cells only 10 days 
after experimental trauma to avoid the detrimental effects of inflammatory reaction 
on the transplanted neural progenitor cells [112–118].

It has been confirmed that uncontrolled activated microglia may be detrimental 
contributing to bystander neuronal damage after stroke [9, 10]. We raised the 
hypothesis that modulation of microglial activation in the ischemic environment 
would enhance the therapeutic effects of BMMCs transplanted into the acute phase 
of both cortical [22] and striatal [23] stroke. We then transplanted BMMCs into 
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the acute phase of stroke in adult rats and concomitantly treated ischemic rats with 
minocycline during six days after BMMC transplants at 24 h from stroke induction 
[22–23]. We compared ischemic animals concomitantly treated with BMMCs and 
minocycline with animals treated with minocycline or BMMCs [22–23].

The results have shown that concomitant treatment of ischemic animals with 
BMMCs and minocycline afforded better neuroprotection and functional recovery 
(Figures 2–3) than single treatment with BMMCs or minocyline alone [22–23]. In 
this experimental paradigm, modulation of microglial activation with minocycline 
into the acute phase stroke improved the therapeutic actions of both BMMCs 
and minocycline indicating a therapeutic synergism. The results also suggest that 
exacerbated microglial activation may impair the therapeutic actions of stem cells 
transplanted into the acute phase of stroke [22–23].

We further confirmed the suitability of both BMMCs and minocycline as neuro-
protective agents using an intracerebral route of transplantation in an experimental 
models of striatal stroke [24]. We have shown that the direct brain injection of 
BMMCs into the acute phase of striatal stroke induces better neuroprotection and 
functional recovery than the intravenous route, although this experimental approach 
is less invasive the surgical intra-striatal injection [22–24]. In the same study, we have 
obtained very important information on the peculiarities of minocycline and BMMCs 
as neuroprotective agents [24]. Both BMMCs and minocycline reduced the number 
of ED1+ cells, but BMMCs were more effective in reducing it. BMMCs also induced a 
more pronounced reduction in the number of apoptotic cells (active caspase+ cells) 
than minocycline. Both treatments were equally effect in reducing neuronal loss [24].

Figure 2. 
Modulation of microglia activation with minocycline enhances therapeutic actions of BMMCs transplanted 
into the acute phase of cortical stroke. Concomitant treatment BMMC/minocycline (D, H, L) reduces the 
number of activated microglial (ED1+), apoptotic cells (caspas-3+) and increases the number of adult 
neurons (NeuN+) compared to saline (A, E, I) minocycline (C, G, K), BMMC (B, F, J) at 7 days post-injury. 
(P < 0.05, ANOVA-Bonferroni, as compared to vehicle* or other groups#). Sections B, C, E and F were 
counterstained with cresyl violet. Arrows indicate immunolabeled cells. Scale bar: 100 m. From reference [22].
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The results suggest that modulation that minocycline and BMMCs are promising 
neuroprotective agents for experimental stroke and their concomitant use affords 
better neuroprotection and functional recovery than their single used [22–23]. In 
addition, intracerebral injections afford better therapeutic actions for BMMCs, 
although this experimental procedure is more invasive than the intravenous route 
[24]. The therapeutic synergism of the concomitant use of minocycline and BMMC 
is an important rationale to be explored in future investigations and a promising 
therapy for human stroke. It points out to the fact that a proper modulation of an 
exacerbated neuroinflammation in the ischemic environment is a suitable approach 
to enhance neuroprotection following transplants of stem cells into the acute phase 
of stroke and trauma.

8. Conclusion

In this chapter, we reviewed the pathophysiology of experimental stroke and 
the use of BMMCs as a promising approach to afford neuroprotection and func-
tional recovery after transplants into the acute phase of brain ischemia. We have 
emphasized that transplanted progenitor/stem cells are affected by the pathologi-
cal environment, including an exacerbated neuroinflammation. We have shown 
that a proper modulation of microglial activation of minocycline enhances both 
neuroprotection and functional recovery of BMMCs transplanted at 24 h after both 
cortical and striatal experimental stroke [22–23]. This approach can be used as an 
adjuvant therapy to enhance survival and efficacy of different kind of stem cells 
transplanted into the acute phase of stroke. In addition, this would reduce the time 
window of transplantation, which can be very important in the case of stroke, an 
acute neural disorder in which damage develops quickly.
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