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Chapter

An Antioxidant Defense System 
in Radiation-Resistant Bacterium 
Deinococcus geothermalis against 
Oxidative Stress
Chanjae Lee, Min K. Bae and Sung-Jae Lee

Abstract

A radiation-resistant bacterium, Deinococcus geothermalis has various stress 
response mechanisms, including antioxidation. Features that maintain vitality at high 
radiation doses include the following: enzymatic scavengers of ROS such as catalase, 
SOD, and peroxidase; strain-specific DNA repair systems such as Deinococcal unique 
proteins; non-enzymatic responses such as manganese complexes, carotenoids, and 
DNA-binding proteins. This chapter summarizes the primary response mechanism 
by redox balance centered on the cystine transporter. It also reviews action charac-
teristics of DNA-binding protein Dps and a putative LysR family protein, and effects 
on loss of function of the carotenoid biosynthesis genes by transposition of insertion 
sequences. Environmental adaptation and molecular evolution of radiation-resistant 
bacterium are also considered to explain the potentials of molecular behavior induced 
by oxidative stress.

Keywords: cystine ABC transporter, Dps, LysR regulator, oxidative stress,  
redox-potential, transposition

1. Introduction

The radiation-resistant bacterium of genus Deinococcus is an essential resource 
for research to understand responses to oxidative stress and mechanisms for recov-
ering direct double-strand break damage to DNA caused by gamma-radiation [1–3]. 
High gamma-ray resistance is caused by the unique DNA-damage repair proteins 
and various protective mechanisms in these radiation-resistant Deinococcus bacteria  
[4–6]. Many researchers have studied the properties of their unique proteins. 
These studies have expanded our scientific understanding [7–9]. Technological 
advances have recently been made to understand life phenomena through genomics, 
metabolomics, and proteomics studies [10–12]. Despite the remarkable progress 
in recent omics studies, it is still difficult to fully understand these cell recovery 
characteristics from various cellular stress damages. The accumulation of various 
creative research results will eventually lead to a complete understanding of such 
characteristics.

Only 20% of DNA damage is directly caused by radiation. In comparison, 
the remaining 80% is indirectly caused by reactive oxygen species (ROS) such as 
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superoxide and hydroxyl radicals which are chemically reactive molecules that 
can damage cell structures such as cell membrane, proteins, and nucleic acids 
(DNA and RNA) [1, 10]. Bacteria have a natural ROS scavenging system composed 
of enzymatic antioxidants (e.g. catalase, peroxidase, superoxide reductase, and 
superoxide dismutase (SOD)), and non-enzymatic antioxidants (e.g. intracellular 
manganese, pyrroloquinoline quinone, carotenoids), small antioxidant thiols  
(e.g. cystine, bacillithiol, or mycothiol), and DNA-protecting proteins [2, 13–15].

Specific regulators tightly control many stress response defense systems. 
Enzymatic ROS scavengers are regulated by the global transcriptional regula-
tor OxyR, a LysR family regulator [16–20]. OxyR of Deinococcus radiodurans is a 
1-Cys-type that can activate the transcription of genes encoding catalase (katE), 
ferrous iron transporter (feoB), and iron(III) dicitrate transporter (drb0125). It 
is also a repressor of dps and mntH transcription to control antioxidant functions 
and Mn/Fe ion homeostasis [21].

These gene regulation systems are also susceptible to intracellular redox balance 
through specific ABC transporters and chemical modification of low-molecular-
weight (LMW) thiol compounds using unique enzyme reactions. The cystine 
importer is one of the redox controlling ABC transporters [22–25]. It could sense 
the redox balance and affect gene regulation for enzymatic defense through the 
OxyR activation [15, 20]. There are also some exceptional OxyR regulons in 
bacteria [26–28].

This redox balance affects various enzymatic and chemical modification 
processes through a progressive transformation. For example, acetylation is a 
conserved modification used to regulate various cellular pathways such as gene 
expression, protein synthesis, detoxification, and virulence. Acetyltransferase 
enzymes can transfer an acetyl moiety, usually from acetyl coenzyme A (AcCoA), 
onto a target substrate, thereby modulating the activity or stability [29]. Gcn5-
related N-acetyltransferase (GNAT) members can acetylate the amino group of 
an extensive range of substrates. They are classified into three groups: (1) small 
molecule acetyltransferases such as aminoglycosides and mycothiol; (2) peptide 
acetyltrandferases such as the peptidoglycan that is part of the cell wall; and 
(3) protein acetyltransferases such as the histone family [30]. In Gram-positive 
Actinomycetes and Firmicutes, alternative LMW thiols such as mycothiol (MSH) and 
bacillithiol (BSH) play related as glutathione surrogates of Gram-negative bacteria, 
respectively [31].

As antioxidant substances, carotenoid compounds also act as scavengers of ROS. 
Deinococcales species generally have a reddish color phenotype due to carotenoid 
biosynthesis. The metabolic pathway in Deinococcus is well conserved and industri-
ally applicable [32].

As one of bacterial nucleoid proteins in gene expression specificity of growth 
phase-dependent manner, Dps (DNA-binding protein from starved cells) is ini-
tially suppressed at the exponential cell growth phase. It is then expressed in large 
quantities in the stationary growth phase to become the major protein [33, 34]. 
These sequential nucleoid protein transitions and overexpression of a particular 
protein demonstrate the function of a defense mechanism that can protect against 
cell damage during stress due to increased ROS and reduced nutrients that cells can 
consume. Dps proteins are found almost ubiquitously in bacterial genomes. Each 
bacterial genome contains species-specific Dps genes. Dps has multifaceted roles 
such as DNA binding, iron sequestration, and ferroxidase activity in various stress 
responses [35–37]. Dps was described initially in Escherichia coli as a protein that 
could protect the bacteria in a malnourished environment by DNA-binding [38]. 
Dps has a shell-like structure with a spherical hollow cavity in the center. This hol-
low cavity of Dps acts as an iron storage compartment and iron sequestration that 
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is important in iron detoxification and homeostasis. Dps is a small DNA-binding 
protein having approximately 150 to 300 amino acid residues with a positive charge 
along the entire chain. While Dps is a significant protein when it is over-expressed, 
Dps plays another essential role in condensing and protecting the stationary-phase 
nucleoid from severe environmental stress such as oxidative and radioactive dam-
ages [34, 39, 40]. Therefore, many bacteria express more than one Dps depending 
on environmental factors around them. How the condensed DNA is untangled 
when proteins are expressed remains unclear. It merits further studies.

Bacterial insertion sequence (IS) elements consist of a gene encoding trans-
posase (one or two), terminal inverted repeats (TIR), and direct repeats (DR). 
Their lengths are less than 3 kb [41, 42]. According to the database of IS finding 
platform such as ISfinder, IS types vary [43]. IS densities are significantly less 
in chromosomes than in plasmids in bacteria. Perhaps plasmids are the primary 
IS carrier [44]. These IS elements can be transferred by high temperature, 
γ-irradiation, oxidative stress, and substances that could damage DNA and result in 
gene breakdown [45–47]. Regulation of IS transposition is also affected by various 
factors such as transcriptional repressors and inhibitors, ribosome frameshifting, 
methylation, mRNA stability, and target sequences [48–51]. Gene breakdown by 
transposition of IS elements does not just have deleterious aspects. IS-mediated 
gene inhibition offers various advantages such as virulence, antibiotic/xenobiotic 
resistance, metabolism, and small promoter obtained by IS migration in the 
genome of a strain [52].

A comprehensive paper on D. radiodurans’s antioxidant mechanism and 
control systems of specific regulator proteins in response to oxidation stress has 
been published during the preparation of this chapter [53]. Here, we will focus 
on antioxidation mechanisms in Deinococcus geothermalis, a radiation-resistant 
bacterium used within the research destination’s scope [54]. We characterized the 
cystine importer and used transcriptomics analysis to detect the critical players 
in intracellular antioxidant responses. The putative Dps protein and LysR family 
regulator’s functional role was then determined and IS transposition events were 
selected on carotenoid biosynthesis path defect (Figure 1). Understanding the 

Figure 1. 
WordCloud analysis of our owns four published papers [25, 55, 61, 62] by the WordCloud generator 40 quantity 
of MonkeyLearn.
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sophisticated antioxidant system of living organisms is a problematic and chal-
lenging study like a puzzle game.

2. An antioxidant defense system in a radiation-resistant bacterium

2.1 A cystine importer, redox balance and control of gene expression

D. geothermalis contains a cystine importer as a substrate-binding protein 
and a membrane permease Dgeo_1986-87 which is highly expressed at the late 
exponential growth phase [25, 55]. Its intracellular total thiol level is affected 
by the expression level of this cystine importer. Deinococcus has specific genes 
that can repair when DNA is damaged. Using dgeo_1986-87 a cystine importer 
disrupted mutant strain, we have detected the expression levels of unique 
DNA repair proteins, pprA, ddrA, and ddrB. These DNA repair proteins were 
highly up-regulated under oxidative stress conditions induced by 50 mM H2O2 
[55]. However, when cystine importer expression is enhanced in a mutant 
Dgeo_1985R strain, DNA repair proteins are entirely down-regulated [25]. 
The increased intracellular thiol concentration strongly repressed the expres-
sion level of these DNA repair-related unique genes, excluding recA gene in 
Deinococcus through overexpressed cystine transporter. Therefore, unique 
DNA repair proteins in Deinococcus are controlled by redox potential levels. 
If there is a direct controlling system for unique DNA repair genes, maybe it 
is repressed by the reduced redox potential through the cystine transporter’s 
overexpression.

In general, the primary antioxidant enzyme, e.g. catalase, is highly induced 
by an oxidative stress condition. It is positively controlled by a global transcrip-
tional regulator OxyR [16]. In D. radiodurans, the redox sensor OxyR has a single 
cysteine residue in the active site. It controls the expression of catalase and iron/
manganese uptake proteins positively [21]. However, in D. geothermalis wild-type 
and Δdgeo_1986-87 cystine importer disrupted strain, expression level of oxyR is 
strongly induced. OxyR is not proportionally affected on catalase expression level. 
Thus, OxyR is not a positive regulator of catalase.

The strain’s cystine transport has been found to be dependent on the growth 
phase. In other words, some features are often expressed in the latter half of 
the exponential phase. In a mutant with the importer gene removed, it reacts 
relatively sensitive to oxidative stress. However, if the importer is overexpressed, 
its resistance to hydrogen peroxide is increased. A mutant that artificially over-
expression the importer shows increased resistance to hydrogen peroxide without 
being affected by catalase expression, which results from an increase in the content 
of total thiol entering the cell through the cystine importer [15]. Therefore, the 
intracellular reduction state through enhancing thiol contents is a primary defense 
system of D. geothermalis against oxidative stress without induction of enzymatic 
ROS defense factors.

2.2 Hints from transcriptomic analysis

We performed transcriptomic analysis using RNA-Seq technology to define 
functional roles of bacterial TrmB (Dgeo_1985), Dps (Dgeo_0257), a cystine 
importer (Dgeo_1986-87), and LysR family regulator (Dgeo_2840). We con-
structed target gene disrupted mutants. Expression levels of all genes at OD600 
4.0 as a late exponential growth phase in mutants were then compared to those in 
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wild-type D. geothermalis [55]. Data have been deposited in NCBI’s Gene Expression 
Omnibus. They are accessible through GEO series accession number GSE151903.

First, a transcriptomic study was done to compare gene expression levels 
between wild-type and cystine importer deleted mutant of D. geothermalis. Genes 
up-regulated more than 3.0-fold of log value are listed in Table 1. Both CRISPR-Cas 
system gene clusters, Dgeo_0233-38 gene cluster and Dgeo_0956-65 gene cluster, 
were up-regulated 35.1-105.5-fold and 10.3-65.2-fold, respectively. Iron transporter 
Dgeo_2443 and 2444 genes were up-regulated 4.69 and 12.42-fold, respectively. 
Three gene clusters for GCN5, Dgeo_0369-70, 2125, and 2313, were up-regulated 
12.53, 3.73, and 11.2-fold, respectively. Four MFS transporters, Dgeo_0249, 0530, 
1968, and 2330, were up-regulated 3.75, 6.41, 5.57, and 3.22-fold, respectively. Four 
ABC transporters, Dgeo_0543, 0647, 1805, and 2581, were up-regulated 3.34, 6.96, 
8.03, and 3.6-fold, respectively.

Δdgeo_0257 and Δdgeo_2840 mutant strains were revealed many no effect and 
several fluctuated patterns. The CRISPR-Cas system’s slightly upregulated expres-
sion was also found in the LysR family regulator Dgeo_2840 disrupted mutant, but 
not in a putative Dps gene Dgeo_0257 disrupted mutant. In the case of Δdgeo_2840 
mutant, a different iron transporter dgeo_1370 was up-regulated 3.35-fold. 
However, gene expression levels of GCN5 and MFS transporter gene clusters were 
not affected in Δdgeo_0257 or Δdgeo_2840 mutant strain. When the intracellular 
redox potential was reduced through disruption of a cystine importer, why these 
gene clusters with several distinct physiological functions showed dramatic overex-
pression? Do they somehow have a relationship with antioxidant responses? These 
questions are interesting. Future studies in this field of antioxidation research are 
needed. We focused on two antioxidant biosynthesis pathways for bacillithiol and 
mycothiol because these pathways are related to up-regulated GCN5 gene clusters.

Gene clusters Genes △dgeo_1986-87 △dgeo_0257 △dgeo_2840

CRISPR-Cas Dgeo_0233-38 35.1–105.6 — 3.36

Dgeo_0956-65 10.3–65.2 — 4.59–5.46

Iron
transporter

Dgeo_1370 — — 3.35

Dgeo_2443-44 4.69–12.42 — —

GCN5 Dgeo_0369-70 12.53 — —

Dgeo_2125 3.73 — —

Dgeo_2313 11.2 — —

MFS
transporter

Dgeo_0249 3.75 — —

Dgeo_0530 6.41 — —

Dgeo_1968 5.57 — —

Dgeo_2330 3.22 — —

ABC
transporter

Dgeo_0543 3.34 0.35 1.62

Dgeo_0647 6.96 1.54 —

Dgeo_1805 8.03 — —

Dgeo_2581 3.60 0.69 —

RpiR family Dgeo_2822 — — 3.20

Dgeo_2619 0.20 0.29 0.28

Table 1. 
Transcriptomics analysis for some target genes among wild-type and mutants.
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2.3 Mycothiol as a major under oxidation state

D. geothermalis genome contains 28 GNAT proteins [56]. Four GNAT genes, 
dgeo_0369-0370, 2125, and 2313, contribute to its redox-balancing regulation. In 
Δdgeo_1986-87 mutant, these four GNAT genes were up-regulated over 3.0-fold 
(Table 1). Dgeo_2125 is an acetyltrans_3 family member. However, its function has 
not been characterized yet. Dgeo_0370 is a putative phosphinothricin acetyltrans-
ferase, a broad-spectrum herbicide that acts as a competitive inhibitor of gluta-
mine synthetase. Dgeo_0369 is a putative RimI which is a S18 ribosomal protein 
acetylation enzyme. Dgeo_2313 is a putative mycothiol synthase MshD (Table 2). 
Thus, Dgeo_2313 is a gene direct-related to redox potential because mycothiol acts 
as a total thiol balance. Mycothiol is the main LMW thiol in most Actinomycetes, 
including Mycobacterium tuberculosis [31]. MshD and MshC were strongly induced 
in Δdgeo_1986-87 mutant with the absence of hydrogen peroxide. However, when 
hydrogen peroxide was present, MshD expression was strongly down-regulated to 
be under 0.3-fold.

Somehow, intracellular redox potential affects these GNAT regulations. If two 
artificial conditions such as oxidation and reduction are provided, the expression 
levels of redox potential-dependent GNAT genes would be detected. These vari-
able expression levels of GNAT genes will provide stress response control. At the 
moment, the physiological roles of these four GNAT proteins remain unclear. In 
general, proteins in the GNAT superfamily have broad-spectrum physiological 
functions. Their amino acid sequence identities are very low. Thus, predicting their 
functional roles through protein sequence similarities is difficult.

How about expression levels of bacillithiol (BSH) biosynthesis-related genes in 
the transcriptome of D. geothermalis? The genome of D. geothermalis contains BSH 
biosynthesis enzymes BshA (Dgeo_1099; BSH biosynthesis glycosyltransferase), 
BshB1 (Dgeo_2305; BSH biosynthesis deacetylase), BshC (Dgeo_1276; BSH bio-
synthesis cysteine-adding enzyme), and BstA (Dgeo_1829; BSH transferase) as 
Drad BSH-related genes. It also contains BSH reductase (Dgeo_2331; YpdA) and 
bacilliredoxin (Dgeo_1464; YtxJ). Despite all genes involved in BSH biosynthesis 
and degradation pathway, expression levels of these genes were not affected in 
the intracellular oxidation state of Δdgeo_1986-87 strain. However, they might be 
affected by other stressors such as heat shock and hydrogen peroxide treatment.

2.4 Dps and its mysterious roles

D. radiodurans have two paralogous Dps proteins, each known to play a different 
role. DrDps1 (DR2263) binds to both linear and coiled DNA. However, DrDps2 
(DRB0092) preferentially binds to coiled DNA, forming different conformation of 
protein-DNA complexes to protect DNA against ROS, although its protection occurs 
at different iron to protein ratios. The difference between two DrDps could result 
from the fact that DrDps1 has higher iron oxidation rate in the presence of hydrogen 

Genes △dgeo_1986-87 △dgeo_0257 △dgeo_2840

MshA (Dgeo_2307) 0.79 0.98 0.69

MshB (Dgeo_1021) 1.14 1.00 1.10

MshC (Dgeo_1714) 10.78 0.88 1.36

MshD (Dgeo_2313) 11.2 1.21 0.99

Table 2. 
Expression levels of MSH biosynthesis-related genes.
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peroxide and higher affinity to bind DNA than DrDps2 [37]. In summary, DrDps1 
may function in DNA metabolism, while DrDps2 may protect against exogenously 
derived ROS [57].

D. geothermalis has two Dps proteins homologous to Dps proteins of D. radio-
durans. Dgeo_0281 is homologous to DrDps1 (DR_2263). The novel Dgeo_0257 has 
been proposed to be one of Dps DNA-binding proteins in D. geothermalis. It prob-
ably has different roles from DrDps1 homologous protein, Dgeo_0281. Dgeo_0257 
shares 72% amino acid sequence identity to DR_0528 of D. radiodurans, suggesting 
the need for research as another candidate protein of DrDps. The DrDps2 (DR_
B0092) did not share any significant sequence identities with proteins of D. geother-
malis. Dgeo_0281 and Dgeo_0257 share only 11.5% amino acid sequence identity, 
lower than 16% amino acid sequence identity shared between DrDps1 and DrDps2.

We prepared both dps genes disrupted mutant strains, Δdgeo_0257 and 
Δdgeo_0281, and they were more susceptible to H2O2 than the wild-type strain. The 
novel putative Dps Dgeo_0257 might play a role in DNA protection and antioxidant 
reactions such as Dgeo_0281. DNA-binding capacities of purified Dgeo_0257 and 
Dgeo_0281 proteins were then determined by electrophoretic mobility shift assay 
(EMSA). Gel filtration assay was also performed for conformational determination 
[58]. Dgeo_0257 protein has a 5-fold higher DNA-binding affinity than Dgeo_0281. 
Interestingly, both Dps proteins were found to have similar metal-sensing behavior 
(Figure 2). When ferrous ion was present, Dps proteins could not bind to DNA. 
Their DNA-binding activity was found to be non-specific for DNA sequence. To 
determine the physiological functions of these two Dps proteins, we performed 
quantitative real-time (qRT)-PCR analysis for both dgeo_0257 and dgeo_0281 genes 
in wild-type, Δdgeo_0257, and Δdgeo_0281 mutant strains at different growth phase 
in a time-course study. Surprisingly, the dgeo_0281 gene was early expressed at 
OD600 2.0. Its expression then gradually reduced at OD600 4.0 and 8.0. However, 
dgeo_0257 was dramatically induced in a stationary phase at OD600 8.0. Thus, we 
predicted that both Dps proteins of D. geothermalis had growth phase-dependent 
specificity.

2.5 Active transposition of insertion sequences under oxidative stress condition

Various selectable approaches have detected transposition events of ISs. For 
example, ISDra2 was induced by irradiation, causing the thyA (thymidylate syn-
thase) gene to be destroyed in D. radiodurans. As a result, thyA mutant became 

Figure 2. 
Illustration of DNA protection and iron detoxification roles of two Dps proteins in D. geothermalis.
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resistant to trimethoprim [47, 59]. In the case of antibiotic-resistant phenotype, a 
certain IS element was integrated into rsmG gene disrupted by ISTth7 of IS5 family 
in Thermus thermophilus, resulting in streptomycin-resistance [60].

The genome of D. geothermalis contains a total of 73 ISs. Deinococcus species were 
found to have pink or reddish colored colonies. However, D. geothermalis wild-type, 
Dps-like gene disrupted mutant (Δdgeo_0257 mutant), and LysR gene disrupted 
mutant (Δdgeo_2840 mutant) were found to have white-colored colonies under an 
oxidative stress condition. The reason was that phytoene desaturase function of 
Dgeo_0524 as a carotenoid pathway-related gene was interrupted by the transposi-
tion of each IS element: ISDge6 for Δdgeo_2840 mutant, ISDge7 for Δdgeo_0257 
mutant, and ISDge11 for wild-type (Figure 3) [32, 61, 62]. Among down-regulated 
genes in RNA-seq, two genes (dgeo_0928 and dgeo_1785) were disturbed by ISDge5 
in the Δdgeo_0257 mutant strain. A new biomarker for finding transposition loci 
with antibiotic streptomycin-resistance was also used easily to selecting colonies on 
streptomycin contained media. When the ISDge6 element was inserted into the rsmG 
gene (dgeo_2335) encoding ribosomal RNA small subunit methyltransferase and a 
point mutation or frameshift mutation on rsmG gene occurred, mutant strains were 
resistant to 50 μg/ml streptomycin (prepared manuscript). In the current discovery, 
ISDge5, ISDge6, ISDge7, and ISDge11 were all replicating transposition modes through 
PCR detection of target genes. We found that each IS element was transposed, 
explicitly depending on DNA-binding proteins from these active transposition 
events. There is an open question. Although the genome of D. geothermalis contains 
a high copy number of IS elements such as ISDge2, ISDge3, ISDge4, and ISDge13, 
transposition events have not been found yet. Nevertheless, in the case of ISDge2, its 
transposase gene expression was strongly induced by oxidative stress. Thus, it is a 
big challenge to detect DNA-binding protein-dependent IS transposition occurrence. 
We can imagine that when the environmental factor is changed from oxidative stress 
to others such as other source radiations, gravity, pressure, and certain chemicals, 
specialized IS elements might be transposed into other loci in the genome.

3. Conclusion

As a model for oxidative stress response, Deinococcus species is a beneficial 
model organism to understand its survival strategies in the presence of harsh 

Figure 3. 
Brief scheme of metabolic pathway (A) and the ISs integrated loci in the gene cluster for carotenoid 
biosynthesis (B).
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environmental stressors such as ionizing radiation, desiccation, and ultraviolet 
light. It is also a useful model organism to understand DNA damage repair mecha-
nisms and industrial application such as bioremediation of toxic substances. For 
these reasons, many researchers are interested in applying extreme conditions, 
including microgravity and universe exposure outside the international space 
station, to a type strain of D. radiodurans recently. Here, we focused on several 
aspects of oxidative stress defense systems dependent on our research destination, 
for example, intracellular redox balance through a cystine importer, antioxidant 
substance carotenoid biosynthesis, DNA protecting and iron detoxification protein 
Dps, and transposition of IS elements under oxidative stress. We hope this chapter 
will provide an opportunity to open up a new horizon in traditional research as 
we learn about the phenomena linked differently to known antioxidant response 
mechanisms in radiation-resistant strains.
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