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Chapter

Attenuation of Food Intake by 
Fragrant Odors: Comparison 
between Osmanthus fragrans and 
Grapefruit Odors
Takashi Yamamoto, Kayoko Ueji, Tadashi Inui  

and Haruno Mizuta

Abstract

Odors affect various physiological and mental activities. Previous studies in rats 
have shown that the odors of grapefruit and Osmanthus fragrans (OSM, fragrant 
tea olive) attenuate food intake, leading to a reduction in body weight gain, but it 
is not yet clear whether the causative mechanisms underlying these effects are the 
same for both odors. The first part of the present study revealed that grapefruit 
odor had no effect on the expression of feeding-related neuropeptides, in contrast 
to the previous finding that OSM odor suppresses orexigenic and activates anorexi-
genic neuropeptides in the hypothalamus of the rat. The second part revealed 
that OSM odor activated the parasympathetic nerve, in contrast to the previous 
finding demonstrating that grapefruit odor activates sympathetic nerve activity. 
The third part was performed to confirm the previous findings about the effects 
of OSM odor on appetitive reactions in humans. In human subjects, we found that 
continuous exposure to OSM odor attenuated appetite and consumption of snacks 
(cookies) and improved mood, when evaluated using the POMS (Profile of Mood 
States) data from university students. In conclusion, OSM odor attenuated appetite 
and decreased food intake in humans, and the underlying causative mechanisms 
differed from those mediating the effects of grapefruit odor, specifically in terms of 
the expression of hypothalamic feeding-related neuropeptides and autonomic nerve 
activity.

Keywords: odor, Osmanthus fragrans, grapefruit, feeding behavior,  
feeding-related neuropeptides, autonomic nerve, total mood disturbance

1. Introduction

Overeating leads to obesity, which heightens the risk of several chronic illnesses 
including hypertension, diabetes, high blood triglycerides, heart disease, stroke, 
kidney problems and cancer. One of the causes of overeating is palatability of foods, 
especially those containing sweet and fatty substances, which often promote inges-
tion over homeostatic repletion [1–3]. It is suggested that the palatability-induced 
ingestion is based on a sequential release of brain substances such as β-endorphin, 
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dopamine and orexigenic neuropeptides, corresponding to palatability (liking), 
motivation (wanting), and actual intake (eating), respectively [3–7]. Any attempts 
to suppress actions of one or more of these brain substances could be an effective 
approach to prevent from overeating.

Odors produce various physiological, psychoemotional, and behavioral reactions 
depending on their qualities and hedonic tones [8–15]. Concerning food intake 
behavior, it is our common experience that odors associated with pleasant foods 
enhance appetite, but repellent odors reduce appetite. Interestingly, some fragrant 
odors attenuate ingestive behavior and body weight gain. Studies using rats have 
demonstrated that grapefruit odor inhibits food intake, leading to a reduction in 
body weight gain. It is plausible that this effect is mainly caused by activation of 
sympathetic nerve activity, which enhances energy consumption and suppresses 
appetite [16, 17]. Another example is the odor of Osmanthus fragrans (OSM, fragrant 
tea olive), which also attenuates food intake in rats [18]. This effect, however, is 
suggested to be due to the reduced expression of feeding-related neuropeptides in 
the hypothalamus. More precisely, Yamamoto et al. [18]. demonstrated that OSM 
odor decreased the messenger ribonucleic acid (mRNA) expression of orexigenic 
neuropeptides, such as agouti-related protein (AgRP), melanin-concentrating 
hormone (MCH), neuropeptide Y (NPY), and orexin, and increased the expres-
sion of anorexigenic neuropeptides, such as cocaine and amphetamine regulated 
transcript (CART) and proopiomelanocortin (POMC). It is also suggested that, in 
rats, OSM odor decreased the motivation to eat, food intake, and body weight, as 
well as caused sluggish masticatory movements [19].

OSM is an evergreen shrub that has been grown in Eastern Asia, especially in 
China, for more than 2500 years [20]. It produces small clusters of flowers in the 
late summer and autumn. The flowers are small, pale yellow, yellow, or orange-
yellow and have a strong fragrant scent of ripe peaches or apricots. Because of its 
favorable fragrance, tea, wine, and jam with OSM flowers are traditionally very 
popular and are enjoyed on a daily basis in far-east Asia, especially in Taiwan and 
China. Since it has been traditionally believed to exert good effects on physical 
and mental health, the OSM plant has also been utilized as a Chinese herbal medi-
cine. Among the volatile compounds of the scent of OSM, the essential ones are 
γ-decalactone, β-ionone, dihydro-β-ionone, linalool oxides [18, 21].

Although both grapefruit and OSM odors suppress appetite, food intake and 
body weight gain, the underlying causative mechanisms appear to differ to those 
described above. However, there are a lack of comparative data on the possible 
effects of grapefruit odor on feeding-related neuropeptides and effects of OSM odor 
on autonomic nerve activity. The present study, therefore, was designed to examine 
possible effects of grapefruit odor on the expression of orexigenic and anorexigenic 
neuropeptides in rats. We also examined effects of OSM odor, together with odors 
of lavender, jasmine, and milk on the autonomic nervous activity in humans. 
Finally, we examined how OSM odor affects appetitive reactions in humans.

2. Methods

2.1 Measurement of mRNAs for feeding-related neuropeptides

A total of 18 Wistar male rats were used. They were randomly divided into 
experimental and control groups (n = 9 each). Rats were individually housed in 
plastic cages, with freely available food and water, in a temperature- and humidity-
controlled room (23°C, 60%). All animals were handled in accordance with the pro-
cedures outlined in the Guide for the Care and Use of Laboratory Animals (National 
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Institute of Health Guide), and this study was approved by the institutional com-
mittee on animal research (Animal Research Committee of Kio University).

The experimental rats received grapefruit essential oil as an olfactory stimulus 
with the same method as described in our previous paper [18]. Briefly, a drop 
(100 μl) of the oil was put on a filter paper, which was inserted between two metal 
mesh plates, and placed on the floor of the cage. The control rats were exposed to a 
filter paper containing a drop of water instead of the olfactory stimulus. The brains 
were removed 60 min after the onset of stimulation and the hypothalamus was 
removed, and preserved at −80 degrees. To examine the changes in the expression 
of mRNAs for prepro-orexin, MCH, AgRP, NPY, CART, and POMC, we used the 
same quantitative real time (RT)-PCR technique as that in the previous study [18].

2.2 Effects of odors on autonomic nerve activity

We used the essential oils of lavender, jasmine, milk (these three are products of 
Takasago International Corp. Japan), and Osmanthus fragrans (product of Argeville, 
France) as olfactory stimuli, and distilled water as an odorless control stimulus. To 
examine the effects of odors on autonomic nerve activity, a total of 60 university 
students (20─21 years old, 54 females and six males) were used. They were all in good 
health, without symptoms of nasal congestion, and their olfactory sensitivity was 
within the normal range, as judged using a T & T olfactometer [22, 23]. They were 
randomly divided into four groups (n = 15 each). Subjects in each group sniffed either 
one of the four odors (diluted to 2.5% with triethyl citrate) soaked in filter papers 
fixed in front of each subject’s nose; the control stimulus was prepared in the same 
way. The order of presentation of the odors and control stimuli was counterbalanced 
within the group. Heart rate variation (HRV) was measured with a pulse analyzer 
device (TAS9, YKC Co. Ltd., Tokyo, Japan). This device was designed to evaluate 
autonomic nervous activity using acceleration pulse waves obtained from the tip of 
the index finger of the left hand. HRV was recorded for five minutes for each stimulus 
under the relaxed condition in a seated position following rest for 15 minutes.

The technical procedures and physiological interpretation of the HRV analysis 
have been reported by a number of researchers [24–29] with a useful guideline for 
HRV measurement and physiological interpretation [30]. The heart rate data were 
transferred to a personal computer, and the frequency domain measurements of 
HRV were determined by spectral analysis using fast Fourier transformation. The 
power spectrum was decomposed into its frequency components and quantified in 
terms of the relative power of each component. We used three frequency domain 
variables as an index of HRV. These frequency domain variables included low-
frequency (LF: 0.04─0.15 Hz), high-frequency (HF: 0.15─0.40 Hz) and the ratio of 
LF to HF (LF/HF). The LF component reflects both parasympathetic and sym-
pathetic nervous activities, the HF component reflects parasympathetic nervous 
activity, and the LF/HF ratio is considered an index of sympathetic nervous activity.

2.3 Effects of odors on feeding behavior

We used two odor stimuli (lavender and OSM), which were the same as those 
described in the previous section, and an odorless control stimulus (distilled 
water). To examine the effects of odors on feeding behavior, another cohort of 66 
university students (20─21 years old, 60 females and six males) who belonged to 
one class of a nutritional course from Kio University were used. Experiments were 
conducted every Wednesday in three consecutive weeks.

The time schedule of an experimental day is shown in Figure 1. The experiment 
started at 12:00. After checking the physical condition, the subjects were randomly 
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divided into three groups of 22 subjects. Each subject was served with a box lunch 
and a bottle of water and ate the lunch between 12:15 and 12:50 (Figure 2). Then, 
each subject wore a mask with a small pocked inside in which a filter paper (one 
cm x five cm) was inserted (Figure 3). The filter papers were infiltrated with a 
few drops of 2.5% OSM, 2.5% lavender oil, or non-odor distilled water. Each group 
received either OSM odor, lavender odor, or no odor-containing filter papers during 
a lecture on the first experimental day. Similarly, on the second and third experi-
mental days, each group received a different stimulus (of the three stimuli). Thus, 
every subject received all three stimuli throughout the three experimental days. 
Subjects attended two lectures with a 20-minute intermission from 13:00-to-15:40. 

Figure 1. 
Time schedule of the conducted experiments on Wednesday. Subjects participated in the experiment with 
different odor stimuli on another two Wednesdays for three consecutive weeks.

Figure 2. 
A box of lunch and a bottle of water served on the first experimental day. A different box of lunch was served 
on the second and third experimental days.
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They took off their masks during the intermission and wore the masks again with 
new filter papers just before the second lecture. After stimulation, each subject was 
given a package of snacks, containing 16 pieces of small cookies (Bourbon Petit with 
French Butter flavor, Bourbon Co. Niigata, Japan), and they were allowed to eat 
them freely, as much as they desired (Figure 4). The numbers of leftover cookies 
were counted and compared among the three odor groups.

The following sensory tests were assessed in each subject. To evaluate intensity 
and pleasantness of odors (sensory test 1 in Figure 1), the subjects were asked to 
select the score from one of five values ranging from 1 (very weak), 2 (weak), 3 (neu-
tral), 4 (strong) to 5 (very strong) soon after putting masks and soon after taking off 
masks. To evaluate the level of hunger (sensory test 2), the subjects selected the score 
from one of five values from 1 (not hungry), 2 (slightly hungry), 3 (medium), 4 
(moderately hungry) to 5 (very hungry). To evaluate the sweetness and pleasantness 
of the cookies (sensory test 3), the subjects selected scores from one of five values, 
ranging from 1 (very weak) to 5 (very strong), soon after eating the cookies.

To examine mood changes before and after odor stimulation, we administered the 
Profile of Mood States (POMS), a short-form questionnaire translated into Japanese 
(Kaneko Shobo Co. Ltd. Tokyo, Japan), after finishing lunch (or before odor stimula-
tion) and after taking off the mask (or after odor stimulation). The POMS test con-
sisted of 35 questions about the current mood state. The 35 questions were classified 
into six subscales: T─A (tension and anxiety), D (depression and dejection), A─H 
(anger and hostility), V (vigor), F (fatigue), and C (confusion). The subjects selected 

Figure 3. 
A mask with a filter paper in an inside pocket. The filter paper was soaked with 2.5% Osmanthus fragrans 
(OSM) for the OSM group, 2.5% lavender for the lavender group or odorless distilled water for the control group.

Figure 4. 
A commercially available package of 16 small cookies served as snack after taking off mask.
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the score from one of five values from 0 (not at all) to 4 (extremely). Total mood dis-
turbance (TMD) was calculated by subtracting V from the sum of the other five sub-
scale scores in each subject. Lower TMD scores were indicative of an improved mood.

For the experiments in humans (as described above), the study protocol was 
approved in advance by the Ethics Committee of Kio University and was performed 
in accordance with the Declaration of Helsinki of the World Medical Association. 
All subjects received an explanation of the nature of the research and agreed with 
the study protocol. We did not tell subjects about the names of the odors used in the 
experiments. All subjects signed written informed consent.

2.4 Data analysis

A two-way analysis of variance (ANOVA) was used to compare the expression of 
the feeding-related neuropeptides between grapefruit odor and non-odor conditions. 
To examine the effects of the four odors on the autonomic nerve activity in humans, 
a two-tailed paired t-test was used to compare each odor with the non-odor condi-
tion. With regards to the effects of odors on feeding behavior in humans, intensity 
and pleasantness scores of odors, and sweetness and palatability scores of cookies 
between OSM and lavender odors were analyzed using the Mann–Whitney U test, 
and comparisons of hunger scores and cookie intake among OSM, lavender, and 
control groups were performed using the Friedman test and post hoc Wilcoxon signed 
rank test. Values of P < 0.05 were considered statistically significant. Statistical 
analyses were performed using a software program (IBM SPSS Statistics, ver. 25).

3. Results

3.1 Effects of grapefruit odor on the feeding-related neuropeptides in rats

The expression of mRNAs for the hypothalamic orexigenic neuropeptides, such 
as AgRP, MCH, NPY and orexin, and anorexigenic neuropeptides, such as CART 
and POMC, was measured using a real-time polymerase chain reaction (RT-PCR) 
on the rat hypothalamic specimens taken 60 minutes after the onset of grapefruit 
odor stimulation. The results were compared to those of similar samples taken from 
non-odor control rats. Figure 5 shows the expression of mRNAs for four orexigenic 
and two anorexigenic neuropeptides in the control and experimental groups. 
A two-way analysis of variance (ANOVA) with peptide (gene expression of six 
peptides) and odor (water and grapefruit) revealed a statistically significant main 
effect of peptide [F (5;96) = 8.76, P < 0.001]. However, there were no main effects 
of odor and no peptide-odor interaction.

3.2 Effects of OSM odor on the autonomic nerve activity in humans

The effects of four kinds of odors (lavender, jasmine, OSM, and milk) on auto-
nomic nerve activity, in terms of frequency analysis, are graphically summarized in 
Figure 6. The mean high frequency (HF) component of R-R variation (variability 
of the time interval between R waves), an indicator of the parasympathetic activity, 
was statistically significantly (P < 0.05, paired t-test) higher for lavender and OSM, 
and highly significantly (P < 0.01) lower for milk compared with the comparative 
value for the non-odor control. The mean low frequency/high frequency (LF/HF) 
score, an indicator of sympathetic activity, was significantly (P < 0.05) lower for 
lavender and OSM than for controls.
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Figure 5. 
Effects of grapefruit odor on the expression of mRNAs for feeding-related neuropeptides in the hypothalamus 
of rats. Values are means ± SE. No difference was detected between the grapefruit odor group and the non-odor 
control group (two-way ANOVA, P > 0.05).

Figure 6. 
Effects of odors on autonomic nerve activity. Odors are lavender (L), jasmine (J), OSM (O) and milk (M). 
C, non-odor control; HF, high-frequency component; LF, low-frequency component. Values are means ± SE. 
Asterisks denote that the autonomic activity in the presence of the odor is significantly different from that in 
non-odor condition (two-tailed paired t-test). * P < 0.05, ** P < 0.01. OSM, Osmanthus fragrans.
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3.3 Effects of OSM odor on feeding behavior in humans

3.3.1 Intensity and pleasantness scores of odors

Five minutes after wearing masks with OSM odor, lavender odor or non-odor 
distilled water, the intensity score for the odors was 3.8 ± 0.9 (mean ± standard 
deviation [SD], n = 66) and 4.3 ± 0.7 (n = 66) for OSM and lavender groups, 
respectively. Soon after taking off the masks, the intensity score was significantly 
(Mann–Whitney U test, P < 0.05) lowered to 2.6 ± 1.0 and 2.8 ± 1.0, respectively. 
Five minutes after wearing masks, the pleasantness score for the odors was 2.2 ± 0.8 
and 2.6 ± 1.0 for OSM and lavender groups, respectively, and soon after taking off 
masks, the pleasantness score was elevated to 2.5 ± 0.8 (P < 0.05) and 2.7 ± 0.9 
(P > 0.05), respectively.

3.3.2 Hunger score

Before and after eating cookies, we asked subjects how they evaluated their 
hunger status. The number of subjects was counted at each level, ranging from 
no-hunger (1), slightly hungry (2), medium hunger (3), moderately hungry (4), 
and very hungry (5). Since the numbers of subjects belonging to the no-hunger and 
very hungry groups were so small, we categorized the subjects into three groups: not 
hungry (1 + 2), medium hunger (3) and hungry (4 + 5), and the results for OSM, 
lavender, and control groups are shown in Figure 7–A. The proportion among 
the three levels was significantly (P < 0.05, Friedman test and post hoc Wilcoxon 
signed rank test) different between OSM and control groups before eating cookies, 
indicating that OSM odor reduces hunger in the subjects. After eating, no difference 
was detected among the three groups (Figure 7–B).

3.3.3 Cookie intake

After offering a snack package to each subject, which contained 16 pieces of 
small cookies that could be consumed at will, we counted the remaining cookies. 
The number of leftover cookies varied greatly among the subjects. To examine any 
difference of odor effects on cookie eating, the subjects were divided into three 

Figure 7. 
Proportion of hunger status. The numbers of subjects in the OSM, lavender, and non-odor control groups 
are expressed in three categories of hunger status (1, no-hunger; 2, slightly hungry; 3, medium hunger; 4, 
moderately hungry; 5, very hungry) before and after eating snacks. The hunger status before snack eating was 
different between OSM and control groups (Friedman test, post hoc Wilcoxon signed rank test, P < 0.01). 
OSM, Osmanthus fragrans.
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subgroups: a high-eating group (with leftovers ranging from zero-to-four cook-
ies), a moderate-eating group (leftovers ranging from five-to-nine cookies), and a 
low-eating group (leftovers ranging from 10-to-16 cookies). The number of subjects 
belonging to each subgroup is shown for the three odor conditions in Figure 8. The 
graphical representation suggests that the subjects in OSM group ate less than those 
in control group, and this difference was statistically significant (Friedman test and 
post hoc Wilcoxon signed rank test, P < 0.05). No statistically significant difference 
was detected between either the OSM and lavender groups or between the lavender 
and control groups.

3.3.4 Sweetness and palatability scores

The palatability score for the cookies was 4.1 ± 0.7 (n = 66), 4.1 ± 0.6 (n = 66), 
and 4.2 ± 0.6 (n = 66) (mean ± SD) for OSM, lavender, and non-odor control 
groups, respectively. The sweetness score for the cookies was 3.5 ± 0.8, 3.6 ± 0.7 
and 3.6 ± 0.7, respectively. No statistically significant difference in sweetness or 
palatability was observed among the three groups.

3.3.5 Total mood disturbance score

Total mood disturbance (TMD) scores of the Profile of Mood States (POMS) test 
are shown in Figure 9. The basal mood after lunch (or before putting on the odor 
mask) varied among the three groups: in the two odor (OSM and lavender) groups 
and the non-odor control group, the mean TMD scores were standardized to one. 
The rates of change in mood soon after taking off the mask (or before eating the 
cookie snack) were compared among the three groups. Statistically significantly 
(two-tailed paired t-test, P < 0.01) low TMD scores were detected after exposure 
to OSM odor, indicating a state of improved mood, while no significant difference 
was detected between pre- and post-mask-wearing in both the lavender and control 
groups.

Figure 8. 
The numbers of leftover cookies in the three groups. The numbers of subjects who left a small number (zero-
to-four) of cookies, a moderate (five-to-nine) number of cookies, and many (10─16) cookies are shown for the 
OSM, lavender, and non-odor control groups. The OSM group ate fewer cookies compared with the control 
group (Friedman test, post hoc Wilcoxon signed rank test, P = 0.05). OSM, Osmanthus fragrans.
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4. Discussion

Previous studies in our laboratory have demonstrated that the odor of OSM 
attenuates food intake in rodents [18]. The present study was designed to confirm 
this effect in humans and also to compare the underlying causative mechanisms, 
in terms of autonomic nerve activity and expression of mRNA for feeding-related 
neuropeptides, between the OSM odor and grapefruit odor, which also attenuates 
food intake and body weight gain [16, 17, 31].

4.1 Feeding-related neuropeptides

It is well established that feeding-related neuropeptides in the hypothalamus 
play important roles in the elicitation, maintenance, and cessation of appetite and 
food intake [3, 32, 33]. Previously, our research group revealed that the neural 
information of OSM odor decreased mRNA expression of orexigenic neuropep-
tides (AgRP, NPY, MCH, and orexin) and increased expression of anorexigenic 
neuropeptides (CART and POMC) [18]. These findings are suggested to be, at 
least in part, the causative mechanisms underlying the effects of OSM odor on the 
decreased motivation to eat, sluggish masticatory movements, and the resulting 
reduction in body weight [18, 19]. Since comparative data are not available for the 
grapefruit odor, the present study examined the expression of feeding-related neu-
ropeptides following exactly the same method we have previously used for the OSM 
odor. Consequently, we could not detect any difference in the expression of feeding-
related neuropeptides between the grapefruit odor group and non-odor control 
group, indicating that grapefruit odor essentially had no effect on the expression of 
hypothalamic feeding-related neuropeptides.

4.2 Autonomic nerve activity

Fragrant odors are known to affect the autonomic nerve activity. For example, the 
odors of rose flowers [13, 15], lavender [34–36], and yuzu [37] activate parasympa-
thetic neurons, whereas those of lemon [38], jasmine [39] and grapefruit [13, 17, 38, 40]  
activate sympathetic nerve activity. To our knowledge, there is only one previously 
published study that suggests that the OSM odor stimulates parasympathetic activity in 
humans [41]; therefore, more research is required to confirm these findings.

Figure 9. 
Total mood disturbance (TMD) scores before and after odor stimulation. The relative TMD score is shown 
after odor stimulation when the score before odor stimulation was set at unity. A statistically significant 
difference was apparent for OSM odor between the pre- and post-odor stimulation scores (two-tailed paired 
t-test). * P < 0.05. OSM, Osmanthus fragrans.
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To examine how the OSM odor affects autonomic nerve activity in humans, 
we used the fingertip photoplethysmogram (PPG) to monitor autonomic nervous 
activation. Analysis of fingertip PPG signals is an important tool for assessing pulse 
wave components and their relation to vascular health. Several studies have demon-
strated that the PPG waveform can provide clinical information on the dynamics of 
the autonomic nervous system, as well as the activity of the left ventricle, vascular 
aging, and arterial stiffness [42–44]. Although PPG is easy to set up, convenient, 
simple, and inexpensive, with only a single fingertip sensor, it has been proven that 
electrocardiogram and PPG signal recordings can be interchanged for heart rate 
variation (HRV) analysis including the time and frequency domains [45]. The PPG 
technique is also utilized for the assessment of arterial wall stiffening during aging 
[46] and for the assessment of the index of the periodontal condition [47].

The present HRV analysis on the basis of PPG has revealed that lavender odor 
significantly stimulates parasympathetic nerve activity, which is in agreement with 
previous results [34–36]. Jasmine odor tended to be a sympathetic activator, but the 
effect was not significant, which may have reflected an inter-individual difference 
in the preference for this odor, as suggested by Inoue et al. [48] and Kuroda et al. 
[49]. The important finding is that OSM odor significantly stimulated the para-
sympathetic nerve activity, which is opposite in action to grapefruit odor, which is 
a well-established sympathetic activator in animals [38] and humans [13, 40]. The 
milk odor, which was used as a control (or counter-part) odor for the OSM odor 
[18], tended to stimulate the sympathetic nerve activity.

The differences in the physiological actions between the OSM and grapefruit odors 
(as mentioned above) should be derived from the difference in volatile compounds in 
these odors. There are more than 10 active compounds detected in OSM odor, includ-
ing major volatiles (such as ocimene, ionone, linalool, capraldehyde, and decalactone) 
[21, 50]. The major active volatile compound in grapefruit odor is limonene; addi-
tional compounds include myrcene, pinene, and linalool [51, 52]. It is noted that not 
only the major volatiles but some volatiles with low content also contribute to aroma 
[50]. Further study is required to elucidate the specific role of each compound.

4.3 Effects of odors on cookie intake

To confirm our previous findings in rodents that the OSM odor attenuates 
appetite and food intake, we elaborated on an experimental design in which the 
effect of OSM odor on snack eating behavior was examined in university students. 
Since OSM odor activates parasympathetic nerve activity (as described above), 
we selected lavender odor which also stimulates parasympathetic nerve activity 
for a comparable stimulus. Although sweetness and palatability of cookies were 
not different after exposure to OSM or lavender odors and in non-odor control 
group, we found that the hunger level, TMD score, and the numbers of cookies 
eaten significantly changed in the OSM group, compared with lavender and control 
groups. After exposure to the odors, subjects in the OSM group felt less hungry than 
those exposed to lavender or subjects in the control group, suggesting that appetite 
is reduced after exposure to OSM odor. Consequently, the consumption of cook-
ies after OSM odor was less than that after lavender or non-odor conditions. Such 
effects in feeding behavior are not due to disagreeable feelings to OSM odor because 
pleasantness of OSM odor after exposure was not statistically significantly differ-
ent from that of lavender odor. Moreover, mood states were significantly improved 
after exposure to OSM odor compared with lavender odor or non-odor conditions, 
as shown by the POMS data. Thus, the previous finding that the odor of OSM 
decreases food intake in rodents was modestly confirmed in humans through the 
present experimental paradigm.
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4.4 Application

How could the findings of this present study be utilized in our daily life? As it is 
expected that appetite and meal size could be reduced under the presence of OSM 
odor, you will be more satisfied (satiated) with a smaller meal size that otherwise 
would not fulfill your appetite (Figure 10). Repeating this procedure at every meal, 
you could adjust yourself to eating smaller meals, which could possibly lead to a 
reduction in body weight. To examine this possibility, we performed a pilot study 
[53] where five females were exposed to OSM odor daily from the hour of rising to 
bedtime for 12 days. For delivery of the odor, each subject hung a small case con-
taining a filter paper soaked in OSM essential oils around their neck. At the end of 
the experiment, the subjects showed a reduction in total body fat and body weight, 
compared with five females in the non-odor control group. For a practical use, it is 
necessary to elucidate the most effective and convenient method of odor exposure, 
or exposure duration. A proper use of the OSM odor as well as grapefruit odor could 
be an attractive and promising tool to promote ecological eating and to improve and 
promote good health.

A limitation of our study pertains to the selection of subjects and the duration 
of odor stimulation. The number of subjects was not enough to analyze the results 
in terms of sex differences because the number of male subjects was too small to be 
compared with female subjects. Subjects wore masks with odor continuously for 
70 minutes and another 70 minutes, separated by a 20-minute-intermission without 
masks. Adaptation to odors is a well-known phenomenon: repeated or prolonged 
exposure to an odorant leads to decreases in olfactory sensitivity to that odorant 
[54–56]. According to Inoue et al. [48], five-minutes continuous exposure to the 
odor of jasmine tea affected autonomic nerve responses for more than 60 minutes, 
suggesting that our prolonged odor presentation may have not been necessary. 
Proper duration of exposure and concentration of the odor should be determined 
more precisely in future studies.

Figure 10. 
A model showing that a less amount attains the same satiation level after exposure to the Osmanthus fragrans 
(OSM) odor. Suppose the degree of satiation increases linearly with the amount of food consumed, the amount 
of food intake “a” attains satiation level “a”. after exposure to the OSM odor, the line (relationship between the 
amount of food consumed and the degree of satiation) shifts upward, and the same satiation level “a” can be 
attained by taking less amount of food “b”, indicating that the OSM odor is effective in satisfying appetite with 
a smaller volume, otherwise you will be unhappy because you are not full and want to eat more. A proverb says 
that “moderation in eating is the best medicine”. Inlet picture denotes OSM flowers.
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5. Conclusion

The present human experiments have shown that OSM odor is agreeable and 
elicits sedative effects, improves mood, attenuates hunger, and reduces food intake. 
Grapefruit odor, which has also been shown to attenuate food intake, activates sym-
pathetic nerve activity and had no effects on expression of feeding-related neuro-
peptides in rats, which is contrary to the results obtained for OSM odor, indicating 
the difference of causative neural mechanisms between the two odors. Exposure 
to OSM odor before eating and that to grapefruit odor after eating may be recom-
mended as the effective practical use for preventing from overeating and obesity.
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