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(Healthy) Emotional Brain:  
A Review
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Abstract

The study of the emotional processing in the brain began from a psychological 
point of view in the last decades of the 19th century. However, since the discovery 
of the electrical background of mental activity around 1930, a new scientific way 
of observing and measuring the functioning of the living brain has opened up. In 
addition, Functional Magnetic Resonance Imaging (fMRI) has given neuroscien-
tists a (literally) deeper instrument to perform such measurements. With all this 
technological background, the last decades have produced an important amount of 
information about how the brain works. In this chapter, we review the latest results 
on the emotional response of the brain, a growing field in neuroscience.
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1. Introduction

The study of emotions deals with the physiological and psychological correlates 
of subjective experiences that are evident to conscious human beings. Emotions 
are present and influence our lives and even our perception of reality, making the 
scientific approach to their study, which has only begun in relatively recent decades, 
very difficult.

According to [1], the pseudoscience of phrenology brought the critical idea of 
the physical distribution of psychological functions in the brain, opening the door 
to modern neuroscience that has largely corroborated this assumption.

It is widely assumed that emotions are the subjective representations of naturally 
evolved primarily neural circuits and functions that helped surviving since the very first 
complex animals [2, 3]. This has two main consequences: on the one hand, the physi-
cal localization of emotional circuits is hidden in the ancient brain (the limbic system, 
the amygdalae, and other inner regions). On the other hand, these regions are largely 
connected to more developed areas, such as the cortex or the cerebellum. Therefore, not 
only should external stimuli trigger automatic motor responses, but cognitive informa-
tion can be critical as well as a “brake” on these autonomous reactions (implemented in 
the cerebellum) and can produce more flexible and adaptive responses.

Although much research in this field focuses on damaged brains, this review 
covers the healthy brain that responds to emotional stimuli under laboratory 
conditions.
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1.1 History

The connection between the physical processes of the brain and its biomarkers 
has been assumed since the late 19th century [4].

In 1929, German psychiatrist Hans Berger developed the novel method of 
Electro-Encephalography (EEG), opening a disruptive and scientific way of 
studying the processes of the living brain. Although a vast and unexplored field 
was opened, the first results using EEG to measure emotions did not occur until the 
1960s [5]. However, interest in emotional studies still had to wait some years, till the 
mid-70s’ when some researches began to appear [6, 7].

Since then, the same basic experimental setup has been replicated in research 
until today: a subject connected to the EEG, or to new tomography technologies (as 
in [8]), is exposed to different stimuli while his brain activity is recorded.

Figure 1 shows the historic timeline developing this research field.
Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI), 

two new techniques to access information inside the brain, and not only at scalp 
level, were developed in 1975 and 1979 respectively, and began to yield significant 
results in the 1980s (see, for example, [10]).

1.2 Brain atlases and areas’ references

The brain began to be mapped according to its anatomical differences in 1909 
by Brodmann [11], who defined 52 regions that modern neuroscience considers 
extraordinarily accurate for those years. In fact, today most neuroscientific works 
still provide Brodmann’s nomenclature to specify the areas of activation.

However, it has been shown that it is not precise enough to evaluate some func-
tional characteristics of the brain, so the Montreal Neurological Institute proposed 
in the 1990s a more modern division of the human brain [12], with 1 mm3 templates 
organized in a system of coordinates (X, Y, Z). Today, this brain atlas is considered 
to be a standard.

The main regions in the brain are depicted in the Figure 2.

1.3 Emotional maps

Emotions are subjective feelings, but they must be quantified in some way to allow 
a methodical study. Since the 1980s, there have been two main approaches in the field 
of emotion research: the categorical approach and the dimensional approach.

Figure 1. 
A chronology of major events associated with the development of human brain imaging, from [9], adapted 
with permission.
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The dimensional approach considers that emotions are organized along a few 
psychological dimensions. Step by step, a consensus was established on the repre-
sentation of emotions around a two-dimensional plane, shown in Figure 3.

The debate about the separation of the emotional features of valence and arousal 
flows over the correlation of these two variables. Barret, for example, found weak 
correlation between them [14], and Lang supports this idea, inferring that some 
neural circuits are similarly engaged by motivationally relevant cues independently 
of the valence, while there may be some other hedonic circuits to discriminate 
valence [3, 15]. However, other researchers have found contradictory results [16], 
specifically with respect to valence and arousal of negative stimuli.

This paradigm presents another issue since Miller’s studies [17]. It seems that 
there is a distortion in the linearity of this space: a negativity bias (for equal amount 
of positive or negative stimulus, the negative one produces higher responses) 
and a positive offset (in neutral scenarios, there is a predisposition to appetitive 
responses).

Combinations of different scales have been used to provide representational 
spaces with more dimensions and, allegedly, higher accuracy [16]. Examples of 
these rating scales are the Bivariate Evaluation and Ambivalent Measures (BEAM), 
described in [18] and the three-dimensional space proposed in [19], which distin-
guishes between tension arousal and energy arousal.

Figure 2. 
Basic brain anatomy. 1: Brain stem. 2: Limbic system. 3: Cerebellum. 4: Cerebrum. 5: Occipital lobe. 
6: Temporal lobe. 7: Parietal lobe. 8: Frontal lobe.

Figure 3. 
Emotional map from [13], adapted with permission.
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As an example of categorical approach, we can find the Self-Assessment Manikin 
(SAM): SAM is a non-verbal pictorial assessment technique that directly measures 
the valence, arousal, and dominance associated with a person’s affective reaction to 
a wide variety of stimuli [20].

There is an important body of evidence supporting cross-cultural stability 
in the perception of emotions [21, 22], and the pleasant-unpleasant dimension 
seems to exists in all cultures [23]. Ekman considers a few categories of innate and 
universal emotions (happiness, sadness, anger, fear and disgust) from which all 
other emotions can be derived [24]. The categorical approach that considers some 
discrete emotional maps related to basic adaptive problems, has been shown to be 
cross-cultural or even cross-species (for a review, please refer to [25]).

1.4 Emotional stimuli

As stated in the History section, the setup of most of neuroscientific experi-
ments involves stimuli to elicit emotions (or any other response) in the subject 
under study.

In addition, different stimuli trigger different and specific areas of the brain, so 
the choice of stimuli is crucial for the information expected to be retrieved from the 
experiment.

We will present the most used ones and some points about their effectiveness.

1.4.1 Emotion elicitation techniques

Out of a total of 248 articles, al-Nafjan gathers the type of stimulus used in 
Table 1.

Why using images?
Psychologists have already shown that images have strong effects on the emotions 

of human beings [16]. An important result found in the literature states that simple 
images generate better emotional responses than complex scenes [3, 27].

Please refer to [28] for a deeper review.
Why using music?
The role of music in producing emotional responses is widely accepted and is 

one of its defining features [29]. Moreover, this has been proven to be cross-cultural 
[30, 31], making it a very stable and reliable way to provoke emotions in subjects.

When using audio-visual stimuli, it is important to take into account the pre-
dominance of image over sound [32], in case of ambiguity or emotional conflict.

Technique Number of 

Articles

Domain (Medical, 

Non-Medical)

Visual-based elicitation using images 88 26%, 73.9%

Prepared task 43 25.6%, 47.4%

Audio-visual elicitation using short film video clips 38 18.4%, 81.6%

Audio-based elicitation using music 29 17.2%, 82.8%

Multiple techniques 19 26.3%, 73.9%

Other 17 11.7%, 88.2%

Imagination techniques/memory recall 10 20%, 80%

Social interactions 4 25%, 75%

Table 1. 
Emotional stimuli used according to their nature, from [26].
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Why using words?
It is well known that the brain dedicates exclusive resources, organized hierar-

chically, to word and language processing, such as the areas of Broca and Wernicke, 
which demonstrates their importance in evolution and survival. It has subsequently 
been found that words and language stimuli function as emotional triggers [33, 34].

Others
Among the “other” stimuli in Table 1, researchers have used olfactory [35, 36] or 

food [37] stimulation, for example.

1.4.2 Databases

To ease the replication, comparison and contrast of theories and results, many 
research institutions and authors have developed databases with normalized 
emotional stimuli, which are publicly available. They have labeled stimuli according 
to different paradigms, and they have been tested. Some of the most used ones are 
the following:

• Surrey Audio-Visual Expressed Emotion (SAVEE) Database: Audio-visual clips 
with male actors in different emotions [38].

• International Affective Picture System (IAPS): This database offers a “large set 
of standardized, emotionally-evocative, internationally-accessible, color photo-
graphs that includes contents across a wide range of semantic categories” [39].

• International Affective Digital Sounds (IADS): The same institution and 
researchers have published the International Affective Digitized Sound system 
(IADS), with similar structure, labeling and testing parameters [40].

• Affective Norms for English Words (ANEW): The word-based version of the 
previous couple of databases [41].

• Affective Norms for English Text (ANET): In the case of using text extracts, 
this database “provides normative ratings of emotion (pleasure, arousal, 
dominance) for a large set of brief texts in the English language for use in 
experimental investigations of emotion and attention” [42].

• The Ryerson Audio-Visual Database of Emotional Speech and Song 
(RAVDESS): This is a multimodal database of emotional speech and songs, 
labeled following a discrete emotional space, with neutral stimuli included [43].

• The Montreal Affective Voices (MAV) consist of a set of short vocal interjections 
expressing anger, disgust, fear, pain, sadness, surprise, happiness, sensual 
pleasure, and neutrality [44].

As we have seen, the databases cover language, images, sounds and combina-
tions thereof.

2. Methods

Nowadays, almost all neuroscientific studies and findings are based on two 
non-invasive, biomarkers-free technologies: Electroencephalography (EEG) and 
functional Magnetic Resonance Imaging (fMRI).
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2.1 EEG

The EEG is based on the evidence that massive clusters of neurons fire at the 
same time when they work synchronized, producing tiny voltage changes around 
them (in the range of millivolts to microvolts). The EEG can be measured directly 
on the surface of the brain surface and scalp. In both cases, the system has the 
following elements:

• Electrodes: conductive elements sensitive to voltage variations.

• Amplifier: low-noise, band-filtered amplifier to scale the small voltage 
measured.

• Register: Analog or (nowadays) digital recording of the transformed signals,  
together with time stamps, position information and other contextual 
information.

Important advantages of this technique are its setup (some equipment is por-
table) and its price (actually, the cheapest of the techniques exposed here). In the 
scalp version, it is non-invasive and very safe for the subject.

The main advantage of this technique is the time resolution, around the milli-
second, which measures very rapid changes in scalp potentials. Because of this, only 
the EEG technique allows phase measurements, synchronization computations, 
spectral analysis, or other time-related processing.

In the EEG, the first representational information found was the so-called 
Event-Related Potentials (ERPs), signals produced as a reaction to a stimulus, 
typically within a few hundred milliseconds to several seconds. These signals have 
proven to be stable between users and experiments, and some of them, as the P300 
(positive peak 300 ms after stimulus onset), are universally known and used.

The EEG allows frequency analysis, and its signals can be transformed into 
bands. The spectral power (also called Power Spectral Density -PSD-), i.e., the 
amount of energy in each band-, can be used to obtain important information from 
the raw EEG data.

Since 1977 [45], researchers have proposed a new approach, combining the ERPs 
and the bands, called Event-Related Synchronization (ERS) and Desynchronization 
(ERD), to measure instantaneous responses to stimuli in specific bands, as shown in 
Figure 4.

The main counterparts of this technique are the volume conductance effect 
that makes it difficult to locate internal potential sources [47], and the limitation 
of recording only signals on the surface of the brain (if no electrodes are placed 
inside the brain), which also limits the measurement of internal sources. To par-
tially address this limitation, some novel techniques recreate inner sources from 
their fingerprint on the scalp voltage through complex algorithms, such as the Low 
Resolution Electromagnetic Tomography (LORETA) first proposed in [48], and 
other “reverse problem methods” summarized in [49, 50].

In addition, EEG registers suffer from artifacts (from electrical power networks, 
lighting, muscle movements …) that must be removed or filtered out before the 
recordings can be interpreted. Although some automatic approaches have been pro-
posed, this is a craft task that many researchers still perform manually. Another source 
of noise is the impedance of the electrodes (as they are transductors between the scalp 
and the wires), which must be kept low enough to accurately measure extremely low 
scalp voltages, typically below 50 Ω. This requires the application of a conductive gel, 
cleaning with electrodes with alcohol, washing the hair before the experiment, etc.
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Finally, the EEG system, as a voltage recorder, needs a reference. This does not 
change the relative voltage distribution on the scalp, but depending on the choice, it 
can lead to different absolute measures.

Another important process of standardization of EEG measurements has been 
the definition of electrode positions, which must be constant between studies to 
allow replication and falsifiability. Depending on the number of electrodes, differ-
ent standard configurations are defined, the most used being, in the case of 32, the 
10–20 International configuration of Figure 5.

Figure 4. 
ERD/ERS detection, from [46], adapted with permission.

Figure 5. 
The 10–20 international EEG configuration.
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The names and positions of the electrodes are defined in this standard and 
applied elsewhere. For a larger number of electrodes some other standards can be 
found (see, for example, [51]).

The correlation of EEG signals with emotions is well established, as stated in 
[26]: “ We found that the majority of the 130 articles used event-related potentials, 
whereas 48 articles used Frontal EEG asymmetry in their analysis, six articles used 
event-related desynchronization/synchronization, and four articles used steady-
state visually evoked potentials”.

2.2 fRMI

fMRI began in the 1980s, and soon produced extremely novel results. fMRI mea-
sures differential activations of brain regions [52] according to de-oxy-hemoglobin 
distribution.

fMRI requires a massive magnet (typically around a few tesla), which makes the 
setup extremely space demanding and expensive. Besides, it cannot be used with 
metallic components (nor implanted in the subject’s body) so the presentation of 
the stimuli must be deviated with reflective screens, remote speakers, etc.

The temporal resolution of fMRI is poor, in the range of seconds, which makes 
it useless to record rapid changes or reactions to the stimuli. However, the main 
positive aspect is the spatial resolution and the real three-dimensionality of the 
recording, which generates a map of voxels (volumetric units of information) of 
very few mm3 if a high temporal resolution is not needed (in fact there is a trade-
off between these two parameters; for example, for a voxel size of 3x3x5mm3, 
the sampling rate falls to about 2 s [53]). Unlike the EEG registering technique, 
fMRI has the difficulty of mapping different brains (of different participants) in 
a canonical brain in which the activations and regions can be represented. This 
forces a spatial transformation to standard geometries that implies loses in spatial 
resolution [53].

The functionality of the MRI is given, among others, by the Blood Oxygen Level 
Dependent (BOLD) imaging, which measures differences in oxygenated blood 
flowing through the brain (since oxy-hemoglobin and de-oxy-hemoglobin have 
different magnetic susceptibility), correlated with neural activation.

BOLD techniques have the temporal limitations of the physiological processes 
on which they are based (see [53] for more details). In most studies, fMRI data are 
statistically processed to generate a meaningful representation of changes, in so-called 
Statistical Parametric Maps (SPM), yielding to images as that shown in Figure 6.

2.3 Simultaneous measuring and comparison

Since both EEG and fRMI are based on related physiological processes, it is easy 
to find correlations between them.

These two non-invasive techniques for exploring the interior of the living brain 
are not mutually exclusive, and both have advantages and disadvantages. Therefore, 
both are used in neuroscience research today.

Table 2 summarizes the main characteristics of each one.
In 1996, Gerloff and others [54] combined fMRI and EEG for the first time to 

evaluate the co-registration of both techniques applied to the primary motor cortex 
and the sensory cortex.

Over the past decade, several studies using both techniques have been proposed 
to, among other, find new large-scale brain networks [55], examine some specific 
networks [56–58] or even provide neurofeedback to assist in the regulation of some 
circuits [59].
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Babayan et al. [60] have recently published a large database with combined EEG 
and fMRI data from 227 healthy participants.

Unfortunately, the joint use of both techniques has its drawbacks: the signal-to-
noise ratio (SNR) can be degraded [61] and interferential artifacts can be generated, 
as shown in [62].

For more in-depth in brain data imaging, please refer to the handbook [63].

3. Measuring emotions

The neuronal correlates of emotions present features and effects in various 
dimensions that interact in the living brain.

To help understand the results collected in the scientific literature on emotions, 
we will divide the findings into different categories, although they are mixed and 
sometimes inseparable.

3.1 Timing

Studies dealing with the temporal signals created by the emotional processing 
are, most of the time, based on EEG recordings. The reason is, as explained, the 
temporal resolution of this technique.

Typically, the measurement of an EEG signal follows the scheme of Figure 7.
When recording the brain’s reaction to stimuli, it is important to define a control 

group or baseline with which to compare activations or deactivations. Koelstra [65] 
proposes 5 seconds prior to stimuli as such a baseline.

Figure 6. 
SPM in which the color of pixels is representative of its p-value and, thus, the statistical significance of its 
activation or deactivation when two or more tasks are compared. From G.Konstantina, CC BY-SA 4.0, via 
Wikimedia commons.

Technique Temporal Resolution Spatial Resolution Portability

EEG High Low Mid

fMRI Low High Low

Table 2. 
Features comparison between EEG and fMRI.
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What happens in the reference period is not uninteresting when emotions are 
studied from a neuroscientific approach. It has been proven that if in this period 
the index of asymmetry (the difference in the global activation in each hemisphere, 
calculated as the left over the right) is high, the subject will present a bias towards 
positive stimuli, and vice versa as far as fear is concerned [66].

After the stimulus onset, Wei defines a time range of [0.5–4] s as the temporal 
space in which emotional signals appear [13]. This period has been divided by some 
authors into three sections: Early [400–1100] ms, Middle [1000-3000] ms, Late 
[3000–5000] ms [32].

For example, it is widely established that a high positive ERP, in the range of 
200–300 ms, widely known as P300, is elicited by emotional stimuli (such as emo-
tional words) compared to neutral ones [67–71]. This ERP appears in the occipital-
temporal regions with an arousal-related amplitude (independent of the valence) 
compared to neutral stimuli [72].

As already mentioned, the emotional response is mediated or modulated by differ-
ent neural systems. The P300 has proven to be a modulator of emotional processing 
regardless of valence when presenting emotional versus neutral pictures [5, 67, 73–75]. 
These effects were seen in both pleasant and unpleasant pictures [5, 75, 76].

One of the most stable and reliable neural signatures of emotional processing 
is the so-called Late Positive Potential (LPP), which appears after 1 second of the 
stimulus presentation, and can be traced for up to 6 seconds in the central-parietal 
region [77].

It has been shown that LPP appears with both emotional pictures or words, with 
an amplitude that depends on the arousal intensity [67, 70, 71], being higher in 
emotional (both positive and negatives) images compared to neutral ones [78] and 
not habit-forming [67, 79, 80], although it may decrease somewhat with repetition 
[15]. Another interesting feature of this signal is its ability to appear with very short 
exposures to visual stimuli (down to 25 ms) [3].

The LPP is independent of the characteristics of the stimuli as realism/sym-
bolism, complexity/simplicity, etc. [27, 67] and therefore very reliable: “The late 
positive potential evoked by picture stimuli is a reliable, replicable index of their 
motivational relevance” [3], correlated with the self-reported arousal [3].

For all these reasons, the LPP has been labeled as the “motivational significance” 
of a stimulus [81].

The LPP has been localized in the central-parietal region, but also in the second-
ary visual processing sites in the lateral occipital cortex [82] with visual stimuli.

Summarizing the findings of time-analysis of EEG signals correlated with emo-
tional processing, we can say that the P300 and LPP track emotional processes [78]. 
There is a golden rule that says that valence is processed before arousal [83], since it 

Figure 7. 
Typical EEG signal during a stimulus-based experiment, from [64], adapted with permission.
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has been shown that the early ERP components are correlated with valence [28, 84]. 
In contrast, the long-term ERP components are correlated with the arousal [85–87].

Hajcak et al. [67] illustrate the temporal and spatial evolution of the different 
signals.

3.2 Mapping

The fMRI has shown the processing cores in the inner regions of the brain, 
such as the limbic system. In terms of arousal, it was found that the area of greatest 
response in the brain is the amygdalae, a couple of little clusters of nuclei belong-
ing to the limbic system in the temporal lobes, on the internal part of the brain. 
Regarding the role of the amygdalae in emotional processing, survival instincts, 
memory, etc. Lang et al. found that this area responds to the intensity of emotional 
stimuli, and has a central role in enhancing sympathetic reactivity to such stimuli 
[15]. But the amygdalae do not react independently of the valence of the stimuli: 
the preferred stimuli selectively activated the right amygdala, in relation to aversive 
ones in some experiments [88, 89].

Valence has also been correlated with specific limbic neural circuits closely 
connected to the amygdalae: the mesolimbic reward system, in which the nucleus 
accumbens (NAc) is particularly relevant in the processing of reward and pleasure 
evoking stimuli (the reward, motivation and addiction circuits) [90, 91]. Another 
study extends this list of central processing centers to the Ventral Tegmental Area 
(VTA) and the hypothalamus, working together as a tripartite network that man-
ages the responses to the emotional aspects of music [92]. Another reward network 
component is the ventral striatum, which, along with the cingulate cortex, has 
also shown correlations with the arousal of positive emotions when listening to 
music [93, 94].

The relation between the mesolimbic networks and some frontal regions (as 
the Orbito-Frontal Cortex (OFC) and the Interior Frontal Cortex (IFC)), more in 
charge of cognitive processing, has led some researchers to establish a close relation-
ship between “affective” and “cognitive” processing involved in music listening 
[92]. Another hypothesis is that the interactions between the OFC and the NAc may 
be related to the control of emotions [95].

Overall, although it belongs to the cognitive cortex, the role of the OFC in the 
emotional processing is beyond doubt, and is supported by many studies dealing 
with music [32, 92, 96, 97], images [98, 99] or decisions [95]. Close to the OFC, the 
IFC has also been considered relevant, producing a bilateral activation when listen-
ing to music, according to [92].

Other important cortex cores for emotional processing are the parietal and 
temporal areas. The centro-parietal area has shown an activation proportional to 
the arousal of emotional pictures in the first moments (in a range of 300 to 700 ms) 
[3, 92]. Positive centro-parietal signals [300–6000 ms] have shown valence inde-
pendence [3]. Furthermore, the link between the frontal and right parieto-temporal 
areas with the arousal of a stimulus has been also established [100].

It is worth mentioning the anterior insula, belonging to the temporal lobe, which 
has been thoroughly studied and defined as a relay between the limbic (specifically 
the human mirror neuron system) and the motor system (in the cortex) [31, 101], 
and may be the physiological support for subjective states, like pain, hunger, heart 
rate perception or emotional awareness [102–104].

Early lateralization has been found to be correlated with the valence of sounds 
[32], and this effect does not exist with neutral sounds. One of the first findings in 
this field is due to Schwartz [7], who found a lateralization in the brain activity.
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Back to the surface of the cortex, there are areas specially engaged in emotional 
processing, measured with both EEG and fMRI.

In the first case, there is a discussion about which electrodes are the most 
representative of the undergoing emotional processes. For example, we can find 
the work of Wei et al., who proposes moving from F1, F2, T3 and T4 to F1, F2, F7 
and F8 respectively (shifting the registering area from bilateral front-temporal to 
pre-frontal medial areas), obtaining much better predictions [13]. This change is 
also proposed independently (and partially) by Lin et al., stating that fronto-central 
electrodes are specially relevant when measuring theta asymmetry (F7-F8 and 
FC3-FC4) as a correlate of arousal [105].

By focusing on synchronizations between different areas, it has been found that 
there is a phase synchronization between frontal and right temporo-parietal areas 
depending on the valence and the energetic arousal [106]. In another study [107], a 
beta-band synchronization was found between the pre-frontal and posterior areas 
when observing high-arousal images. Finally, unpleasant images caused a phase 
synchronization in the gamma band according to [108]. Please refer to [109] for 
further details about synchronization.

We have shown the interactions of the limbic system with the cognitive areas of 
the brain, in relation to images, sounds or decisions. But we have also found some 
interactions with other unrelated areas, mainly the motor areas, when empathy in 
involved. It seems that in the processing of emotions, many different and special-
ized areas need to interact to account for such a subjective experience. This cross 
modality has been studied in depth. For example, [32] shows that emotional sounds 
modulate visual primary cortex (P1). In the same region, relationships have been 
found between emotional processing cores and visuo-spatial and visuo-motor 
regions [110], or even premotor regions including the intra-parietal sulcus and 
the ventral premotor cortex [111]. The ventral premotor and the posterior parietal 
cortex were elicited during the observation of Classical and Renaissance sculptures 
suggesting, as Di Dio state, “motor resonance congruent with the implied move-
ments portrayed in the sculptures.” [88].

For a final summary, please refer to Table 1 in [87], which provides a detailed 
review of the EEG spatial correlates of emotions.

4. Final considerations and conclusions

It has been shown how the way we react to emotional situations depends on 
very different and scattered areas in the brain. Both initial reactions and the later 
dependencies lay on different systems [112]. Reward calculation and empathy 
have been identified as being involved in fear or appetite reactions, and are 
also the most primitive, but they interact with more evolved areas of the cortex 
that deal with visual and auditory processing, decision making and even motor 
activation.

Many aspects of the emotional brain remain open. For instance, global or syn-
chronized processing networks beyond the cortical surface have yet to be described, 
as the limitations of fMRI and non-invasive EEG do not allow this unknown field to 
be addressed.

Furthermore, it is not clear whether and how gender affects emotional process-
ing. Although responses to musical stimuli, recorded with EEG, have shown no 
significant gender differences in brain frontal regions [100], gender differences 
have been observed during verbal learning tasks [113], in emotional networks in 
adolescents [114] and with esthetic stimuli producing bilateral parietal activation in 
women, but lateralized in men [115].
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Other limitations are due to the stimuli used. Real life involves interaction with 
various external and internal sources of information that modulate our feelings, 
and laboratory conditions barely address such complex situations.

This branch of neuroscience is not new (compared to neuroscience itself), but 
still presents many open doors to be explored.

The way emotions mobilize resources in the brain seems to be large and deep, 
and many other functions (such as memory) depend on it, showing their pre-
eminent position to survive and behave in human (and many other animals’) life.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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