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Chapter

The Use of Allelochemicals 
of Aquatic Macrophytes to 
Suppress the Development of 
Cyanobacterial “Blooms”
Evgeny Kurashov, Julia Krylova and Elena Protopopova

Abstract

Harmful algal “blooms”, or HABs, is a hazardous natural phenomenon that 
often occurs under the influence of anthropogenic factors, for example, during the 
anthropogenic eutrophication of water bodies. An increase in the frequency and 
duration of cyanobacterial “blooms” carries a number of serious threats, including 
local and global degradation of water resources and the impact of cyanotoxins. 
There are various methods of fighting cyanobacterial “blooms” - physical, chemi-
cal, the use of bacterial preparations, etc. However, these methods are not effective 
enough and, most importantly, do not allow effectively solving the problem of 
suppressing HABs in water bodies without damage to other components of the 
aquatic ecosystem. Allelopathy is a natural phenomenon for both stimulatory and 
inhibitory effects of one plant upon another including microorganisms that resolves 
this problem. Allelochemicals of macrophytes can be considered as natural algae-
cides and become the basis of a nature-like convergent technology to suppress the 
development of plankton cyanobacteria and prevent HABs in water bodies. In our 
work, we used some allelochemicals of aquatic macrophytes to create a combined 
algicide of the new generation for suppressing the development of cyanobacteria. 
The effectiveness of suppressing cyanobacterial “blooms” is demonstrated by the 
example of field experiments with mesocosms and natural phytoplankton.

Keywords: harmful algal “blooms”, phytoplankton, cyanobacteria, allelopathy, 
allelochemicals, field experiments, mesocosms

1. Introduction

Harmful algal “blooms”, or HABs, is a hazardous natural phenomenon that 
often occurs under the influence of anthropogenic factors, for example, during the 
anthropogenic eutrophication of water bodies. An increase in the frequency and 
duration of cyanobacterial “blooms” carries many serious threats, including local 
and global degradation of water resources and the impact of cyanotoxins [1–3]. This 
problem is especially relevant and acute for millions of small reservoirs widely used 
for various types of water consumption: fisheries and aquaculture, water supply 
for various industries, including agricultural, drinking, and domestic water sup-
ply, recreational purposes, including sporting events. HABs occur when algae or 
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cyanobacteria (most often they are) develop beyond measure and produce harmful 
effects on other hydrobionts, fish, aquatic and terrestrial animals, and birds as well 
as people [4, 5]. HABs disrupt the esthetics of water bodies and render the water 
unsuitable for various kinds of water uses. Economic damage due to HABs can be 
millions of dollars [6, 7].

Widespread HABs is a phenomenon to which special attention should be drawn 
since such “blooms” pose a number of serious threats, including local and global 
degradation of water resources and exposure to cyanotoxins [8–14].

Cyanobacterial “blooms” of water bodies are officially recognized as a global 
problem of modern ecology. Seasonal intense cyanobacterial “blooms” of reservoirs 
bring additional undesirable properties to natural and drinking water, such as a 
specific smell, taste, and the presence of toxins (microcystins). In some regions, the 
importance of this problem has been increasing recently [15]. The Working Group 
on the Evaluation of Carcinogenic Risks to Humans listed cyanotoxins as a carcino-
genic substance harmful to humans [16].

The introduction of biotechnological methods into the practice of water body 
management that have maximum efficiency is one of the tasks of modern science. 
These include, first of all, the so-called convergent nature-like technologies, i.e. tech-
nologies that are based on any natural mechanisms causing this or that effect. These 
are precisely technologies that may be intended to ensure the sustainable development 
of modern countries [17–19].

Such technologies, aimed at managing the development of plankton communi-
ties in general and phytoplankton communities, in particular, may be based on 
such a phenomenon as allelopathy. This natural phenomenon can be very useful for 
effectively preventing and stopping the development of cyanobacterial “blooms” 
in water bodies [20–22]. Many existing methods of combating cyanobacteria [23] 
do not effectively solve the problem of “blooms” of water bodies without damage 
to other components of the ecosystem [3]. Usually, they are associated with serious 
adventitious effects on aquatic organisms and ecological systems [24].

At the same time, the application of the method of metabolic allelopathic 
control of HABs in water bodies during eutrophication is an effective and innova-
tive solution to this problem. This approach preserves and restores water quality in 
water bodies, makes them suitable for multifunctional use, and natural allelochemi-
cals (metabolites of macrophytes and their synthetic analogs) can be an effective 
alternative to existing algicides [20, 22, 25].

In reservoirs where macrophytes are developed (as a rule, at least 30% of 
the projective cover of the water area), water “bloom” is almost never observed. 
These circumstances are the causal basis for the development of nature-like 
technologies for the prevention and suppression of HABs with the help of new 
generation algicides based on allelochemical substances characteristic of aquatic 
macrophytes.

It has become apparent that metabolites-allelochemicals may be functioning in 
the processes of chemical suppressing of planktonic cyanobacteria in the aquatic 
ecosystems. However, data from field experiments are few concerning the effect of 
aquatic macrophyte allelochemicals on cyanobacteria, which is necessary for the 
development of nature-like technologies for preventing and suppressing cyano-
bacterial “blooms”, and therefore they are the objects of “hottest” areas of research. 
Utilization of allelochemicals from aquatic macrophytes or using their synthetic 
analogs to inhibit cyanobacterial overgrowth is an environment-friendly technology 
for suppressing HABs.

Some reviews are focusing on the practice of the application of allelochemicals 
in agriculture [26, 27], but the field of using nature-like allelopathic technology to 
manage aquatic ecosystems is still poorly developed.
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In the present study, we aimed to provide the information on the suppressing 
of cyanobacteria by macrophytes allelochemicals and the possibility to develop 
an algaecide of the new generation as a convergent nature-like technology for 
preventing and stopping the development of HABs in water bodies based on such a 
phenomenon as allelopathy.

2.  Suppression of the development of cyanobacteria by aquatic 
macrophytes

Allelopathy as a natural phenomenon had been repeatedly recorded for a 
very long time in the 3rd century BC in ancient Chinese literature [28]. The term 
“allelopathy” was coined comparatively recently, in 1937 by Austrian plant physi-
ologist Hans Molisch [29], who can be named as the father of allelopathy [30]. 
In general, we can consider allelopathy as an area of science, which investigates 
inhibitory or stimulatory biochemical interactions between the two plant/plant or 
plant/microorganism species.

The recent history of the study of low molecular weight organic compounds, 
which are small molecules (less than 900 amu) and constitute the low molecular 
weight metabolic profiles of organisms, should apparently begin with the discov-
ery of the inhibitory effect of volatile plant excreta on microorganisms by Tokin 
Boris Petrovitch during the experimental work of 1928–1930 [31]. The research 
resulted in a number of publications, in one of which (“Bactericides of plant origin 
(phytoncides)”) [32], the term “phytoncides” appeared. In the future, the doctrine 
of phytoncides was developed, which was reflected in the publication of several 
monographs. The history of research on phytoncides of aquatic and coastal plants 
began in the 40s of the XX century with the works of Gurevich Faiva Abramovich 
(1918–1992) [33], a student of B.P. Tokin. These studies ended in 1973 with the 
defense of a doctoral dissertation “Phytoncides of aquatic and coastal plants, their 
role in biocenoses” [34]. In particular, it was F.A. Gurevich who showed that the 
phytoncidal activity of aquatic plants is closely related to the macrophyte species 
and peculiarities of its development. He also showed that phytoncides are a very 
significant factor in the distribution of hydrobionts in a water body, including 
invertebrates.

At present, we can say that the macrophyte and algal allelopathy is paid much 
less attention than allelopathy in terrestrial ecosystems. Macrophytes and cyano-
bacteria are known to have an antagonistic relationship in different natural and 
experimental aquatic ecosystems [25, 35, 36].

It is a recognized fact that phytoplankton is poorly developed in macrophytic 
lakes. Even if we take into account the opinion that this is due to such factors as 
winning competition for nutrients and shading, then in the overwhelming number 
of cases, the main factor providing suppression of phytoplankton development 
is undoubtedly allelopathic suppression [37]. Apparently, the competition for 
nutrients cannot be recognized as a decisive factor in the outcome of the struggle 
between macrophytes and cyanobacteria, including considering that most aquatic 
macrophytes are rooted, and they usually obtain the main part of the necessary 
nutrients from the bottom sediments, which is characterized by high nutrient 
concentrations [38].

It is well known the phenomenon when shallow-water lakes can change their 
trophic status and the type of lake ecosystem, being either a pure water body with 
well-developed aquatic vegetation or a water body with low transparency, high tur-
bidity, and intensive phytoplankton (mainly cyanobacteria) development. In other 
words, they can shift from one state to another [36, 39–43]. As this takes place, 
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the mutual inhibitory allelopathic activities of macrophytes and phytoplankton 
may lead to the dominance of either macrophytes or phytoplankton [44].

We observed a similar effect in a floodplain lake with a changing trophic state 
in the Volga-Akhtuba interfluve, when cyanobacteria and macrophytes dominated 
in the same water body in different years [36]. Some evidence exists [45–48] that 
allelopathy is a factor affecting the development of phytoplankton (including 
cyanobacteria) in shallow lakes at the projective cover of macrophytes from 20 
to 100%.

The importance of allelopathy as a powerful regulatory mechanism initiates a 
lot of studies devoted to the study of the inhibitory (sometimes stimulating) allelo-
pathic effect of macrophytes on cyanobacteria and algae in aquatic ecosystems  
[49–58]. More than 60 species (67) of macrophytes are known to exhibit allelo-
pathic activity against cyanobacteria. They are presented in Table 1.

According to the principle of allelopathic action, it is possible to prevent or 
mitigate the massive development of Сyanobacteria (blue-green algae), which leads 
to the HABs in water bodies. The implementation of this research direction prom-
ises huge benefits since it will solve the problem of the “blooms” of water bodies 
without negative consequences for other components of the ecosystem [20, 22, 25].

As follows from Table 1, data from laboratory studies, in general, prevail in the 
observation and proof of the effect of macrophyte allelopathy on cyanobacteria. 
These studies are based on laboratory-scale experiments using the co-cultures 
systems, adding plant extracts, or leachate collection. This state of affairs is associated 
with a more complex organization and interpretation of field studies. In this regard, 
data from field experiments and observations, for example with mesocosms, are of 
particular value. Numerous studies (including those included in Table 1) strongly 
suggest that allelopathy might thus be relevant in natural waters and suppress cyano-
bacteria and algae.

There are observations on the differentiation of the inhibitory effect of mac-
rophytes on various species of cyanobacteria and algae. For example, it was con-
cluded that the extracts, exudates, and live material of macroalgae Chara australis 
(Charophyta) exhibited strong inhibitory effects on the cyanobacterium Trichormus 
variabilis (formerly Anabaena variabilis), but no effect was observed on the growth 
of the green alga Scenedesmus quadricauda [82].

The available data allow us to speak about the selective inhibition of various 
species of cyanobacteria by allelochemicals of various species of macrophytes. As 
a result, the allelopathic effect of macrophyte association on cyanobacteria (and 
all phytoplankton) seems to be stronger than the effect of one macrophyte species. 
This is evidenced by the fact that, as has been shown, the allelopathic effect of 
excretions of the association of macroalgae (Chara hispida, C. baltica, C. vulgaris, 
Nitella hyaline) and Myriophyllum spicatum is characterized by a significantly 
stronger effect than the effect of monoculture of macrophytes [83]. Such a com-
bination of selective inhibition of macrophyte allelochemicals and a more strong 
impact of macrophyte assemblages toward the undesired cyanobacteria may be 
useful for biocontrol of HABs in water bodies as well as in aquaculture to remove 
harmful cyanobacteria and leave other algae to be used as food for hydrobionts and 
fish. The author [83] suggested that different allelochemicals produced by different 
macrophytes may exhibit a synergistic effect concerning cyanobacteria. It was also 
noted in [128] that different plants produce different types of allelochemicals and 
in different quantities. These summarized findings are therefore provided with 
more probability the basis for an effective strategy for reducing cyanobacterial 
biomass by introducing into water bodies with mixtures of submerged or floating 
native macrophytes for both restorations of aquatic ecosystems and mitigation of 
the HABs.
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Species of 

macrophytes

Ecological 

form

Study 

scale

Cyanobacteria inhibited

Study Scale

Source

Acorus tatarinowii, 

Acorus calamus, Acorus 

gramineus

EM L Сyanobacteriaas a whole [59, 60]

Arundo donax EM L Microcystis aeruginosa [51, 57, 
61–63]

Brasenia schreberi FM L Anabaena flos-aquae [64]

Cabomba caroliniana SM L Microcystis aeruginosa, 

Dolichospermum flosaquae (formerly 
Anabaena flos-aquae), Leptolyngbya 

tenuis (formerly Phormidium tenue), 
Сyanobacteria as a whole

[65, 66]

Canna generalis EM L Microcystis aeruginosa [67]

Ceratophyllum 

demersum

SM L, F Microcystis aeruginosa, 

Pseudanabaena limnetica (formerly 
Oscillatoria limnetica), Oscillatoriales. 

Anabaena sp., Trichormus 

variabilis (formerly Anabaena 

variabilis), Aphanizomenon 

flos-aquae, Synechococcus elongatus, 
Сyanobacteria as a whole

[58, 
68–78]; 
Our 
data

Chara aspera SM L Anabaena cylindrica, Anabaena 

torulosa, Anabaenopsis elenkinii, 

Microcystis aeruginosa, Microcystis 

flos-aqua, Synechococcus sp., 
Сyanobacteria as a whole

[37, 
79–81]

Chara australis SM L Trichormus variabilis (formerly 
Anabaena variabilis)

[82]

Chara baltica, C. 

canescens

SM L Synechococcus sp. [81, 83]

Chara contraria SM L Anabaena cylindrica, Microcystis 

aeruginosa, Cylindrospermum sp., 
Сyanobacteria as a whole

[79]

Chara fragilis SM L* Oscillatoria limnetica, Сyanobacteria 
as a whole

[71]

Chara globularis SM L Anabaena cylindrica, Anabaena 

torulosa, Anabaenopsis elenkinii, 

Planktothrix rubescens, Microcystis 

aeruginosa, Microcystis flos-aque, 

Cylindrospermum sp., Aphanizomenon 

flexuosum, Сyanobacteria as a whole

[68, 72, 
79, 84]

Chara hispida SM L, F Сyanobacteria as a whole [83, 85]

Chara rudis, Chara 

tomentosa, Chara 

delicatula

SM L Anabaena cylindrica, Anabaena 

torulosa, Anabaenopsis 

elenkinii, Planktothrix agardhii, 

Planktothrix rubescens, Microcystis 

aeruginosa, Microcystis flos-aqua, 

Cylindrospermum sp., Aphanizomenon 

flexuosum, Сyanobacteria as a whole

[79]

Chara vulgaris SM L, F Anabaena torulosa, Anabaenopsis 

elenkinii, Microcystis aeruginosa, 
Сyanobacteria as a whole

[79, 83, 
86, 87]

Cyperus alternifolius EM L Microcystis aeruginosa [67]
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Species of 

macrophytes

Ecological 

form

Study 

scale

Cyanobacteria inhibited

Study Scale

Source

Eichhornia crassipes FM L Microcystis aeruginosa, Microcystis sp., 

Raphidiopsis raciborskii (formerly 
Cylindrospermopsis raciborskii), 

Arthrospira platensis (formerly 
Spirulina platensis), Nostoc linckia 

(formerly Nostoc piscinale), 
Сyanobacteria as a whole

[88–91]

Eleocharis acicularis SM L Сyanobacteria as a whole [66]

Eleocharis microcarpa SM L Anabaena flos-aquae, Oscillatoria 

tenuis

[92, 93]

Elodea canadensis, 

Elodea nuttallii, Elodea 

sp.

SM L, F Microcystis aeruginosa, Anabaena 

spp., Сyanobacteria as a whole
[35, 68, 
78, 94, 
95]

Hydrilla verticillata SM L Dactylococcopsis sp., Microcystis 

aeruginosa

[56, 58, 
96]

Egeria densa SM L Microcystis aeruginosa, 

Dolichospermum flosaquae (formerly 
Anabaena flos-aquae),

[66]

Limnophila sessiliflora SM Microcystis aeruginosa [66]

Myriophyllum 

aquaticum

SM L Microcystis aeruginosa [97]

Myriophyllum 

brasiliense, 

Myriophyllum 

alterniflorum, 

Myriophyllum 

heterophyllum

SM L Microcystis aeruginosa, 

Dolichospermum flosaquae (formerly 
Anabaena flos-aquae)

[98]

Myriophyllum 

elatinoides

SM L Microcystis aeruginosa [99]

Myriophyllum spicatum SM L, F Microcystis aeruginosa, 

Dolichospermum flosaquae (formerly 
Anabaena flos-aquae), Leptolyngbya 

tenuis (formerly Phormidium tenue); 
Сyanobacteria as a whole

[54, 
65, 71, 
78, 83, 
100–104]

Myriophyllum 

verticillatum

SM L Сyanobacteria as a whole [105, 
106]

Najas marina SM L Anabaena sp., Trichormus 

variabilis (formerly Anabaena 

variabilis), Synechococcus elongates, 
Сyanobacteria as a whole

[74, 94]

Nasturtium officinale EM L Microcystis aeruginosa [107]

Nelumbo nucifera FM L, F Microcystis aeruginosa, Сyanobacteria 
as a whole

[108, 
109]

Nitella gracilis, Nitella 

opaca, Nitellopsis 

obtusa, Nitella hyaline, 

Nitella sp.,

SM L, F Nitzschia palea, Anabaena cylindrica, 

Anabaena torulosa, Anabaenopsis 

elenkinii, Microcystis flos-aquae, 

Cylindrospermum sp., Aphanizomenon 

flexuosum, Сyanobacteria as a whole

[68, 79, 
83]

Nuphar lutea FM L, F Сyanobacteria as a whole [110]; 
Our 
data
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Lombardo et al. [129] suggested that lake trophic state and extent of sub-
merged vegetation coverage maybe the most important factors during formation 
in situ macrophyte–phytoplankton patterns at a large scale of natural water 
bodies. In this case, with a larger projective cover, a greater allelopathic effect will 
be achieved [45–48].

Not all macrophytes have the same allelopathic effect on cyanobacteria. 
Macrophytes that have the greatest suppressive effect on cyanobacteria (taking 
into account, among other things, information from Table 1) are such species 

Species of 

macrophytes

Ecological 

form

Study 

scale

Cyanobacteria inhibited

Study Scale

Source

Nymphaea candida FM F Сyanobacteria as a whole Our data

Oryza sativa EM Сyanobacteria as a whole [111]

Phragmites communis EM L Microcystis aeruginosa,  

Phormidium sp.

[108, 
112]

Pistia stratiotes FM L Synechococcus leopoliensis, Microcystis 

aeruginosa,

[113–
115]

Potamogeton crispus SM L, F Trichormus variabilis (formerly 
Anabaena variabilis), Сyanobacteria 
as a whole

[82, 116, 
117]

Potamogeton cristatus SM L Microcystis aeruginosa [58]

Potamogeton oxyphyllus SM L [66]

Potamogeton lucens SM L, F Microcystis aeruginosa, Сyanobacteria 
as a whole

[58, 71], 
Our 
data

Potamogeton 

maackianus

SM L Microcystis aeruginosa [58, 118, 
119]

Potamogeton malaianus SM L, F Microcystis aeruginosa, Oscillatoria sp. [118–
120]

Potamogeton natans SM L, F Microcystis aeruginosa, Сyanobacteria 
as a whole

[78], 
Our 
data

Potamogeton pectinatus SM L Microcystis aeruginos,

Oscillatoria tenuis

[76, 118, 
121]

Ranunculus aquatilis SM/FM L Microcystis aeruginosa [107]

Ruppia maritima SM L Microcystis aeruginosa [122, 
123]

Stratiotes aloides FM L, F Synechococcus elongatus, Microcystis 

aeruginosa, Сyanobacteria as a whole
[49, 68, 
71]

Typha latifolia, 

Typha minima, Typha 

angustata

EM L Dolichospermum flosaquae (formerly 
Anabaena flos-aquae), Romeria 

leopoliensis (formerly Synechococcus 

leopoliensis), Microcystis aeruginosa

[57, 
124–126]

Vallisneria 

denseserrulata, 

Vallisneria spiralis, 

Vallisneria spinulosa

SM L Microcystis aeruginosa [58, 66, 
75, 127]

Table 1. 
The number and relative content (% of total essential oil) of the fatty acids in some species of freshwater 
macrophytes and macroalgae from different water bodies.
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and groups as Cabomba caroliniana, Myriophyllum spicatum, Ceratophyllum 
demersum, Elodea canadensis, Nuphar lutea, Stratiotes aloides, and family 
Characeae ([22, 36, 49, 65, 71, 103, 130], etc).

In the study [131], it was concluded that of all the 15 tested aquatic macrophytes, 
Nymphaea odorata and Brasenia schreberi have the highest allelopathic potential. 
However, this conclusion was obtained in experiments with lettuce sprouts, and not 
with cyanobacteria. These macrophytes inhibited 78% and 82% of lettuce seed-
ling radicle growth and 98% and 68% of L. minor frond production respectively. 
Elakovich S. D. and Wooten J. W. [132] also reported that Nuphar lutea has high 
allelopathic activity.

Similar results were obtained with the macrophytes Potamogeton maackianus, 
Potamogeton wrightii, and Potamogeton crispus, which exhibited different inhibitory 
effects on the two species of algae [128]. There is a view that most allelochemicals 
are released during the early developmental stage of plants. It is assumed that 
during this period, plants are most dependent on stress conditions and competi-
tion with other surrounding plants for resources such as light, nutrients, and water 
[133]. However, in our studies, we found that the active synthesis of allelochemicals 
in aquatic macrophytes can continue even at later stages of plant development [22].

For the sake of completeness, it should be noted that some terrestrial plant 
materials (for example, barley straw) exhibit a strong allelopathic effect on 
cyanobacteria under certain conditions [134–136], which is no coincidence, since 
terrestrial plants also contain numerous allelochemicals [28]. It was shown in [137] 
that salcolin (two enantiomers that differ in their anti-cyanobacterial abilities) 
is the key allelochemical in barley straw’s which exhibits an inhibitory effect on 
cyanobacteria and could be used as an agent in the control of cyanobacterial HABs. 
A review of typical terrestrial allelopathic plants with algistatic or algicidal effects 
is presented in [24].

3.  Anti-cyanobacterial allelochemicals produced by aquatic 
macrophytes

Low-molecular-weight anti-cyanobacterial allelochemicals produced by aquatic 
macrophytes are very diverse. They belong to different classes of chemical com-
pounds and are functionally diverse. Allelochemicals from the following groups 
of chemical compounds are the most important [22, 30, 55]: aldehydes, ketones, 
ethers, terpenes and terpenoids, phytoecdysteroids, fatty acids, sulfur-containing 
compounds, nitrogen-containing compounds, alcohols, lactones, polyacetylenes, 
quinines, phenolics, cinnamic acid and its derivatives, coumarins, flavonoids, 
tannins. These groups include hundreds of allelochemicals inhibiting cyanobacteria 
and algae [24], which should be discussed in detail in a special review.

These allelochemicals can be extracted from the plant biomass, but also their 
synthetic counterparts can be produced and used. This will reduce the consumption 
of natural plant resources. The effectiveness of synthetic allelochemicals can be 
similar to their natural counterparts. Thus, synthetic allelochemicals are a hopeful 
alternative to the use of natural metabolites-allelochemicals against HAB-forming 
cyanobacteria [20, 21].

Realizing that it is impossible to consider all groups of allelochemicals, here 
we will focus on considering only fatty acids and phenolic compounds as the most 
promising (in our opinion) for biotechnological use in the fight against HABs.

Studies of potential biological activities of major low molecular weight organic 
compounds of aquatic macrophytes using the QSAR method [138, 139] have shown 
that fatty acids and gallic acid are characterized by various types of bioactivity with 
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the highest probability of manifestation (Pa > 0.9) that can induce cyanobacteria 
growth suppression. Further studies based on the results obtained suggest clarify-
ing experimental studies of the reaction of various species of cyanobacteria to the 
effects of selected allelochemicals.

As it was received in laboratory experiments conducted with fatty acids for their 
effect on the cyanobacteria Synechocystis aquatilis and Aphanizomenon flos-aquae, 
and which are described in detail in [140], selected allelochemicals (linoleic, hep-
tanoic, octanoic, tetradecanoic, hexadecanoic, and gallic acids) possess inhibitory 
allelopathic activity against cyanobacteria. However, their inhibitory effect was dif-
ferent. The highest values of the Suppression index (SI, defined as the cyanobacte-
rial density in control divided by the cyanobacterial density in an experiment with 
allelochemicals) (SI > 10) were recorded (in ascending order) for hexadecanoic, 
linoleic, tetradecanoic, gallic acids, and a mixture of four allelochemicals (hepta-
noic, octanoic, tetradecanoic and gallic acids).

The highest SI values for Synechocystis aquatilis were obtained when the culture 
of cyanobacteria was exposed to gallic acid (SI = 30) and a mixture of heptanoic, 
octanoic, tetradecanoic, and gallic acids (SI = 35.3). Aphanizomenon flos-aquae was 
found to be more sensitive to the effect of the given mixture of allelochemicals. SI 
for it on the 23rd day of the experiment was 17495 [140].

In works [141, 142] problems have been raised concerning effective algal inhibitors 
and control HABs. To address these issues, the authors suggested using unsaturated 
fatty acid (linoleic acid) in conjunction with alginate – chitosan microcapsule technol-
ogy. They demonstrated that the linoleic acid microsphere had good encapsulation 
efficiency and release property. Besides, linoleic acid sustained-released microspheres 
could inhibit Microcystis aeruginosa (Cyanobacteria) growth to the non-growth state, 
and thus linoleic acid microsphere may be used as a potential candidate for HABs 
control.

Studies on the use of microgranules saturated with an allelochemical or a com-
bination of allelochemicals (for example, a combination of fatty acids and phenolic 
compounds) to suppress cyanobacteria look very promising. The inhibitory agent, 
gradually releasing from the microgranules, prolongs its allelopathic effect on 
cyanobacteria. A sustained-release time of allelochemicals can range from 40 to 
120 days [142–144]. A review of the studies carried out in this direction is presented 
in [128]. Results obtained in different investigations open up new promising areas 
for scientific research and practical use of allelochemicals of aquatic macrophytes.

According to results received in [112], nonanoic acid can inhibit the growth of 
cyanobacteria Leptolyngbya tenuis (formerly Phormidium tenue) and M. aeruginosa, 
whereas, no inhibitory effects of stearic, and palmitic acids was found.

In earlier works [113, 125], it was also found, that three fatty acids (α − linolenic, 
linoleic, and an unidentified C8∶2) inhibited cyanobacteria (particularly T 625 
Romeria leopoliensis (formerly Synechococcus leopoliensis) and T 1444 Dolichospermum 
flosaquae (formerly Anabaena flosaquae)).

The essential oil of some allelopathic plants (Potamogeton cristatus, Potamogeton 
maackianus, Potamogeton lucens, Vallisneria spinulosa, Ceratophyllum demersum, and 
Hydrilla verticillata) was demonstrated to inhibited Microcystis aeruginosa, during 
which fatty acids constituted an important part of the essential oils isolated.

Recently, Wang et al. [95] reported the inhibitory effects of some fatty acids on 
Microcystis aeruginosa. The authors stated that pentadecanoic acid, linoleic acid, 
alpha-linolenic acid, and stearic acid were the most potent allelochemicals from 
Elodea nuttallii along with dihydroactinidiolide and beta-ionone.

We showed [140] that such plants as Potamogeton natans, Nuphar lutea, 
Nymphaea alba, Myriophyllum spicatum, Persicaria amphibia are the most active 
producers of allelochemical fatty acids, and therefore they can have a significant 
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allelopathic effect on cyanobacteria and phytoplankton in total. In these plants, 
the proportion of fatty acids in the content of volatile organic compounds can 
exceed 60–70%.

Our studies of the metabolome of Potamogeton perfoliatus from different habitats 
in Lake Ladoga show that the abundance of cyanobacteria in the associations of this 
macrophyte depends on the content of carboxylic acids in a given plant (Figure 1).

The study by Gao et al. [145] demonstrates that nonanoic acid may be involved 
in synergistic interactions with other allelochemicals, demonstrating a stronger 
allelopathic effect against Microcystis aeruginosa.

Similar results were obtained for octadecanoic acid [146], which may participate 
in synergistic, antagonistic, and additive allelopathic interactions. These find-
ings led to the conclusion that joint effects of different allelochemicals depend on 
various factors such as the chemicals used, their respective proportions, the total 
concentration of the mixture, and the receptor species [146].

In addition to fatty acids, among allelochemicals, special attention should be 
paid to phenolic compounds.

As early as in 1981 [100], the results were published, which demonstrated 
that phenolic compounds extracted from Myriophyllum spicatum exhibit algicidal 
activity against cultured algae and natural phytoplankton assemblages. Later, it was 
found that such aquatic macrophytes as representatives of the genus Myriophyllum 
are able to excrete polyphenol-like allelochemicals to inhibit the growth of green 
algae and cyanobacteria [98]. A number of identified polyphenols (ellagic, gal-
lic, pyrogallic, and catechin) and fatty acids (hexadecanoic acid, stearic acid, 
α-linolenic acid) were shown to significantly suppress the development of HAB-
forming cyanobacteria species [147, 148].

Additionally, a study [78] has revealed that the major allelochemicals identified 
in tested macrophyte ethyl acetate extract of Nasturtium officinale included quer-
cetin, tannic acid, and gallic acid. Also, findings are the combinations of different 
types of polyphenols, such as pyrogallic acid, gallic acid, and ellagic acid may have 

Figure 1. 
Dependence of the concentration of cyanobacteria (BGA, cells/ml) on the concentration of fatty acids  
(Cca, μg/g.dr.w.) in Potamogeton perfoliatus in Lake Ladoga.



11

The Use of Allelochemicals of Aquatic Macrophytes to Suppress the Development…
DOI: http://dx.doi.org/10.5772/intechopen.95609

an additive or synergistic effect on cyanobacterium Microcystis aeruginosa and the 
joint action of phenolic allelochemicals may be an important allelopathic pattern 
of submerged macrophytes to inhibit the growth of HAB-forming cyanobacteria in 
natural aquatic ecosystems [53, 146, 148–150].

In a study [54] during the investigation of contributions of five allelochemicals, 
(+) catechin, eugeniin, and ellagic, gallic, and pyrogallic acid, in the allelopathic 
effects of Myriophyllum spicatum on the cyanobacterium M. aeruginosa it was 
observed that these compounds, on average, may provide up to 50% of the allelo-
pathic effects of M. spicatum. According to results received in [112], four phenols 
(sinapic, syringic, caffeic, and gallic acids) inhibited the growth of cyanobacteria 
Leptolyngbya tenuis (formerly Phormidium tenue) and M. aeruginosa. The inhibitory 
effect of pyrogallic acid and gallic acid produced by M. spicatum in relation with 
cyanobacteria was also demonstrated in [53, 114].

It is beyond question that there is a huge amount of scientific material regard-
ing the allelopathic properties of fatty acids and gallic acid ([52, 54, 56, 67, 88, 103, 
112, 113, 118, 119, 124–126, 146, 148, 151–166], etc.). This circumstance gives every 
reason to use them to create a new generation of algicides based on allelochemi-
cal substances of aquatic macrophytes. The use of this information, as well as the 
results of our researches [36, 138, 140], formed a prerequisite for the development 
of a new generation algicide based on allelochemicals of aquatic macrophytes 
against cyanobacteria. It is precisely fatty acids (heptanoic, octanoic, tetradecanoic 
acids) and gallic acid that were included in its composition [167].

4. Mesocosm study of the effects of allelochemicals on cyanobacteria

Evidence of suppression of the development of phytoplankton, including 
planktonic cyanobacteria, in real natural conditions by traditional observations, 
even in the most obvious cases [36], is nevertheless indirect and often contradictory 
[48, 168]. Taking this into account, the way of assessing the effect of allelochemicals 
on cyanobacteria in experiments with mesocosms in natural conditions is more 
promising and makes it possible to obtain results corresponding to natural aquatic 
ecosystems.

A good example is a field study by Hilt et al. [169] in which the authors found an 
allelopathic effect of the macrophyte Myriophyllum verticillatum on natural phy-
toplankton (including cyanobacteria) in Lake Krumme Lake (Berlin, Germany). 
In a mesocosm study [170] in Laguna Blanca lake in Manantiales (Maldo-nado, 
Uruguay) it was observed that macrophytes species (Egeria densa and Potamogeton 
illinoensis) seem to exert strong biological effects on phytoplankton biomass, and 
they are able to keep phytoplankton biomass low through allelopathic influence, 
even in the absence of zooplankton grazing.

In another mesocosm study [171], similar results were obtained, demonstrating 
that another species of the genus Myriophyllum (Myriophyllum spicatum) under 
conditions of 85 l mesocosms during 13 days of exposure had an only short-term 
inhibitory effect on total phytoplankton and green algae, whereas consistent nega-
tive effects (allelopathic) were detected concerning M. aeruginosa.

After the development of an algicide containing fatty acids (heptanoic, octanoic, 
tetradecanoic acids) and gallic acid, the rationale for the use of which is presented 
in detail in [140], we conducted the first experiments with this algicide with natural 
phytoplankton communities under conditions mesocosms.

In the field experiments, mesocosms with a volume of 700 liters were used. 
The experiments were carried out on two ponds on the territory of St. Petersburg 
(Russia): at Pulkovo Pond (pond 1; coordinates 59.835899, 30.328642) and Aviator’s 
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Pond (Pond 2; coordinates 59.868343, 30.300443). The depth of the ponds at the 
location of the experiments was about 3 m. The mesocosms were filled with water 
from the pond, then algicide was added to them in an amount so that its concentra-
tion in the water of the mesocosms was 1 mg/l.

In Pulkovo Pond, the experiment was carried out from June 25 to July 5, 2019. In 
the Aviatorov Pond, the experiment was carried out from July 2 to July 16, 2019. The 
temperature and light conditions in the mesocosms corresponded to those in the water 
of the pond outside the mesocosms. The change in water temperature in the surface 
layer of the studied ponds is shown in Figure 2.

The results of the algicide impact on the phytoplankton of pond 1 are shown in 
Figures 3–6.

As can be seen from Figure 3, in the water of pond 1, both the abundance and 
the biomass of all phytoplankton increased during the experiment. At the same 
time, this was not observed in the mesocosm. In the first three days, a decrease in 
phytoplankton biomass without a change in its abundance occurred. Subsequently, 
the abundance and biomass of phytoplankton in the mesocosm remained approxi-
mately at the same level as they grew in the pond. By the end of the experiment 
(on the 11th day), the phytoplankton biomass in the pond exceeded that in the 
mesocosm by about 5 times, and the abundance - by almost 12 times. The great-
est differences were observed on the 8th day of the experiment; the difference in 
biomass and abundance was 7 and 20 times, respectively. Thus, the action of an 
algicide based on fatty acids and gallic acid inhibited the growth of phytoplankton.

The data of phytoplankton analysis are confirmed by the data on the measure-
ment of optical density in the pond and the mesocosm (Figure 4). By the end of the 
experiment, an increase in optical density in the pond and a significant decrease 
in optical density in the mesocosm were observed (Figure 4). By the end of the 
experiment, the difference was about 2.3 times. This was also noticeable visually: 
the water in the mesocosm was more transparent than the water in the pond sur-
rounding the mesocosm (Figure 5).

It is interesting to trace how the quantitative indicators of cyanobacteria in the 
pond and the mesocosm changed. Dolichospermum solitarium (formerly Anabaena 
solitaria) was the dominant cyanobacterial species in the pond (and at the begin-
ning of the experiment in the mesocosm). This species belongs to cyanobacteria 

Figure 2. 
Change in water temperature (o C) in the surface layer of the investigated ponds.
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capable of causing the phenomenon of HABs [172]. A decrease in both the number 
and biomass of cyanobacteria both in the pond and in the mesocosm was observed 
on the third day of the experiment. Moreover, in the mesocosm, this decrease 
was more pronounced. Subsequently, an increase in the number and biomass of 
cyanobacteria both in the pond and in the mesocosm was observed. However, it 
was more intense in the pond. By the end of the experiment (on the 11th day), the 
biomass of cyanobacteria in the pond exceeded that in the mesocosm by about 2.5 
times, and the number - by 1.5 times. The greatest differences were observed on the 
8th day of the experiment, the difference in biomass and abundance was 4.4 and 39 
times, respectively. At the end of the experiment, the same species Dolichospermum 
solitarium remained the dominant species in the composition of cyanobacteria. At 
the same time, Cuspidothrix ussaczevii (formerly Aphanizomenon elenkinii) began 
to dominate in the mesocosm among cyanobacteria. This species is also included in 

Figure 3. 
Changes in the abundance and biomass of total phytoplankton in pond 1 and the mesocosm under the influence 
of algicide with a concentration of 1 mg/l.

Figure 4. 
Change in the optical density of the water mass in pond 1 and the mesocosm when exposed to algicide with a 
concentration of 1 mg/l.
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the bloom-forming Cyanobacteria from water bodies of the North-Western Russia 
list [173]. However, C. ussaczevii is less toxic than D. solitarium, for which toxigenic 
strains producing delayed-action toxins have been isolated [174].

Thus, the action of an algicide based on fatty acids and gallic acid prevented the 
growth of the number of cyanobacteria and changed their species structure.

In pond 2, the beginning of the experiment coincided with an intense cya-
nobacterial “bloom” (Figure 7), while their biomass was more than 55 mg/l. At 
the same time, in the surface layer of the pond, the maximum water temperature 
(20.5°C) for the entire duration of the experiment was noted (Figure 2). The 
cyanobacteria Aphanizomenon flos-aquae, C. ussaczevii, and Dolichospermum affine 
(formerly Anabaena affinis) dominated in phytoplankton. Aphanizomenon flos-
aquae is one of the most widespread species that form HABs in ponds and lakes in 
Northwest Russia [173]. The species is capable of synthesizing dangerous (includ-
ing for humans) toxins [173]. Cuspidothrix ussaczevii also often causes water 

Figure 5. 
The contrast in the state of water mass in pond 1 and mesocosm 4 (a) and 11 (B) days after exposure to 
algicide.

Figure 6. 
Changes in the abundance and biomass of cyanobacteria in pond 1 and the mesocosm upon exposure to algicide 
at a concentration of 1 mg/l.
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“bloom” in water bodies of St. Petersburg and the Leningrad Region, being the 
dominant or subdominant in bloom-forming cyanobacteria [173].

By the fourth day of the experiment, the water temperature in the pond 
dropped to about 18°C. This led to a decrease in the number and biomass of cya-
nobacteria, apparently, mainly due to their sinking into the lower layers of the 
reservoir. However, an even greater decrease in the development of cyanobacteria 
was observed in the mesocosm, in which cyanobacteria could not sink so deeply 
(Figure 8). This is also confirmed by data on the optical density of water in the 
pond and in the mesocosm, where a more significant decrease was noted (Figure 9). 
Subsequently, the optical density slightly decreased to approximately the same level 
in the pond and mesocosm and almost did not change in the pond and mesocosm. 

Figure 7. 
Cyanobacterial HAB in pond 2 and water-filled mesocosm on July 2, 2019.

Figure 8. 
Changes in the abundance and biomass of total phytoplankton in pond 2 and the mesocosm under the influence 
of algicide with a concentration of 1 mg/l.
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At the same time, the control of the development of cyanobacteria from pond 2 in 
the laboratory, where there was no decrease in temperature, showed their significant 
growth in the control. With that, under the influence of allelochemicals, signifi-
cant suppression of plankton growth was observed, recorded by optical density 
(Figure 10).

By the 8th day of the experiment, a further decrease in the optical density of 
plankton under the influence of algicide was noted in the laboratory. At the same 
time, a decrease in optical density and the control was observed, obviously, due 
to the inability of natural plankton to laboratory conditions (the experiment was 
carried out in 0.5-liter jars).

By July 8, the species of cyanobacteria Aphanizomenon flos-aquae and 
Cuspidothrix ussaczevii in the mesocosm dropped out of the dominant composi-
tion, although they continued to dominate in the pond water. As our laboratory 
experiments with this algicide have shown [140], this species of cyanobacteria was 
especially sensitive to the used mixture of allelochemicals. So, a complete suppres-
sion of the development of the culture of Aphanizomenon flos-aquae was observed 
in the experiment with the combined effect of heptanoic, octanoic, tetradecanoic, 
and gallic acids at various concentrations (0.1, 1, and 10 mg/l).

Figure 9. 
Change in the optical density of the water mass in pond 2 and the mesocosm when exposed to algicide with a 
concentration of 1 mg/l.

Figure 10. 
Change in the optical density of the water mass in pond 2 and the mesocosm when exposed to algicide with a 
concentration of 1 mg/l during exposure in the laboratory.
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In the last phase of the experiment (from July 12), representatives of 
Cryptophyta - Cryptomonas sp., Komma caudata (formerly Chroomonas acuta) dom-
inated the pond in the composition of phytoplankton (Figure 11). Among the cya-
nobacteria, Aphanizomenon flos-aquae and Aphanocapsa conferta dominated. In the 
mesocosm at this time (especially toward the end of the experiment) cryptophyte 
algae (98% of the total phytoplankton biomass) with the dominant Cryptomonas sp. 
reached a very high development (with biomass of more than 42 mg/l) (Figure 11). 
Cyanobacteria were represented by the species Dolichospermum affine, Aphanocapsa 
conferta with very little quantitative development.

It is noteworthy that by the end of the experiment in the mesocosm, the total phy-
toplankton biomass returned to almost the same high values as at the beginning of the 

Figure 11. 
Changes in the abundance and biomass of cyanobacteria (a) and Cryptophyta (B) in pond 2 and the 
mesocosm under the influence of algicide at a concentration of 1 mg/l.
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experiment. However, if at the beginning of the experiment cyanobacteria prevailed 
(about 99% of the total biomass of phytoplankton), then by the end of the experi-
ment cryptophyte algae accounted for more than 98% of the biomass of phytoplank-
ton. Cryptomonas sp. dominated among cryptophyte algae. That is, the replacement 
of dangerous toxicogenic species of cyanobacteria with cryptophyte algae occurred, 
which can be consumed by aquatic organisms and which are safe for other organisms, 
including humans. If we project this result to entire aquatic ecosystems, then we can 
get a very beneficial ecosystem effect, expressed in the suppression of HABs and the 
development of algae, whose production can be consumed, for example by zooplank-
ton and planktivorous fish.

Thus, the main results of the experiments carried out on the effect of an algicide 
of four allelochemical components (heptanoic, octanoic, tetradecanoic, and gallic 
acids) on the phytoplankton of natural water bodies can be considered the following 
results, indicating that allelochemical substances of aquatic macrophytes: 1) are able 
to effectively reduce phytoplankton development and suppress even intense HABs; 
2) may lead to the replacement of dangerous cyanobacteria in phytoplankton with 
safe algae, whose production can be used in the food chains of aquatic organisms.

5. Conclusions and perspectives

In this way, available data show that the use of allelochemicals from aquatic macro-
phytes to inhibit cyanobacterial overgrowth is an environment-friendly and perspec-
tive technology for suppressing HABs. Allelochemicals can be considered as natural 
algaecides and become the basis of a nature-like convergent technology to mitigate the 
development of plankton cyanobacteria and prevent HABs in water bodies.

One can quite agree with the conclusion of work [24] that allelopathy is a prom-
ising strategy to control HABs as the effectiveness of allelochemicals on inhibiting 
microalgae cells has been discovered, investigated, and confirmed in many works 
and for many years [175]. However, there are several problems that must be investi-
gated in order to understand what determines the strength of the manifestation of 
the allelopathic effect. One of these problems is undoubtedly the action of various 
environmental factors.

Another problem is the resistance of allelochemicals in the aquatic environ-
ment and their chemical or biochemical (under the influence of bacteria) changes 
[26, 74, 168, 176]. In this regard, very promising are works in which systems are 
being developed that allow dosing and prolonging the release of allelochemicals 
into the aquatic environment [141–143].

The development and research of allelopathy and its application for suppress-
ing the HABs are striving toward a future for sustainable, rational, and effective 
using the water resources worldwide. The algicides of the new generation devel-
oped based on the phenomenon of allelopathy can definitely reduce the amount of 
synthetic algicides and herbicides used.

While allelochemicals have shown growth inhibition of planktonic cyanobacte-
ria, there is still insufficient knowledge of the impact on various species of cyano-
bacteria (especially their action in real aquatic ecosystems), the influence of various 
factors on the action of allelochemicals, and the molecular mechanisms of their 
action. These gaps may limit their use as conventional biotechnology for the mitiga-
tion and prevention of HABs in aquatic ecosystems.

All the laboratory studies can propose only the potential for allelopathy of 
macrophytes metabolites toward cyanobacteria, its real use as biotechnology for 
the management of planktonic communities and HABs will be possible only after 
convincing field studies using mesocosms and entire ecosystems.
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