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Chapter

Exergy: Mechanical Nuclear
Physics Measures Pressure,
Viscosity and X-Ray Resonance in
K-Shell in a Classical Way
Edward Henry Jimenez

Abstract

First, the liquid drop model assumes a priori; to the atomic nucleus composed of
protons and neutrons, as an incompressible nuclear fluid that should comply with
the Navier–Stokes 3D equations (N-S3D). Conjecture, not yet proven, however, this
model has successfully predicted the binding energy of the nuclei. Second, the

calculation of nuclear pressure p0 ∈ 1:42, 1:94�1032Pa
� �

and average viscosity

η ¼ 1:71� 1024 fm2=s
� �� �

, as a function of the nuclear decay constant k ¼ p0
2η ¼ 1

T1=2
,

not only complements the information from the National Nuclear Data Center, but
also presents an analytical solution of (N- S3D). Third, the solution of (N-S3D) is a
Fermi Dirac generalized probability function P x, y, z, tð Þ ¼ 1

1þe
p0
2η

t�μ x2þy2þz2ð Þ1=2 , Fourth,

the parameter μ has a correspondence with the Yukawa potential coefficient μ ¼
αm ¼ 1=r, Fifth, using low energy X-rays we visualize and measure parameters of
the nuclear surface (proton radio) giving rise to the femtoscope. Finally, we obtain
that the pressure of the proton is 8.14 times greater than the pressure of the
neutron, and 1000 times greater than the pressure of the atomic nucleus. Analyzed
data were isotopes: 9≤Z ≤ 92 and 9≤N ≤ 200:

Keywords: femtoscope, Navier Stokes 3D, nuclear viscosity, minimum entropy

1. Introduction

Neutron stars are among the densest known objects in the universe, withstand-

ing pressures of the order of 1034Pa: However, it turns out that protons [1], the
fundamental particles that make up most of the visible matter in the universe,

contain pressures 10 times greater, [2, 3] 1035Pa: This has been verified from two
perspectives at the Jefferson Laboratory, MIT [1–5]. High-energy physics continue
to guide the study of the mechanical properties of the subatomic world.

Viscosity is a characteristic physical property of all fluids, which emerges from
collisions between fluid particles moving at different speeds, causing resistance to
their movement (Figure 1). When a fluid is forced to move by a closed surface,
similar to the atomic nucleus, the particles that make up the fluid move slower in
the center and faster on the walls of the sphere. Therefore, a shear stress (such as a
pressure difference) is necessary to overcome the friction resistance between the
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layers of the nuclear fluid. For the same radial velocity profile, the required tension
is proportional to the viscosity of the nuclear fluid or its composition given by
Z,Nð Þ [6–8].

Radioactive decay is a stochastic process, at the level of individual atoms.
According to quantum theory, it is impossible to predict when a particular atom will
decay, regardless of how long the atom has existed. However, for a collection of
atoms of the same type [8], the expected decay rate is characterized in terms of its
decay constant k ¼ 1

T1=2
. The half-lives of radioactive atoms do not have a known

upper limit, since it covers a time range of more than 55 orders of magnitude, from
almost instantaneous to much longer than the age of the universe [8, 9].

Other characteristics of the proton such as its size have been studied in many
institutes such as Max Plank, where it has been measured with high precision ranges
rp ¼ 0:84184 67ð Þ fm
� �

, providing new research methods [10, 11].
The atomic nucleus is an incompressible fluid, justified by the formula of the

nuclear radius, R ¼ 1:2A
1
3, where it is evident that the volume of the atomic nucleus

changes linearly with A ¼ Z þN, giving a density constant [11]. All incompressible
fluid and especially the atomic nucleus comply with the Navier Stokes equations.
We present a rigorous demonstration on the incomprehensibility of the atomic

nucleus, which allows to write explicitly the form of the nuclear force FN ¼
� gμ2

8π A� 1ð ÞP 1� Pð Þ∇r, which facilitates the understanding of nuclear decay.

The Navier Stokes equations are a problem of the millennium [12, 13], that has
not been resolved yet in a generalized manner. We present a solution that logically
meets all the requirements established by the Clay Foundation [14, 15]. This solu-
tion coherently explains the incompressible nuclear fluid and allows calculations of
the nuclear viscosity and nuclear pressure [1, 2].

The alpha particle is one of the most stable. Therefore it is believed that it can
exist as such in the heavy core structure. The kinetic energy typical of the alpha
particles resulting from the decay is in the order of 5 MeV.

For our demonstrations, we will use strictly the scheme presented by Fefferman
in http://www.claymath.org/millennium-problems [13, 14], where six demonstrations

Figure 1.
Obtaining nuclear viscosity and nuclear pressure from the speed of the neutron particles in the disintegration of
chemical element. Figure 1a. indicates that the BE=A ratio is proportional to the nuclear pressure, p

0

represented in Figure 1b. Figure 1c is the graph of the viscosity in equilibrium and out of equilibrium, the
viscosity in equilibrium is greater than the viscosity at the moment of nuclear decay. Figure 1d is the average
half-time of each isotope, 9≤Z ≤ 92 and 9≤N ≤ 200:
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are required to accept as valid a solution to the Navier–Stokes 3D Equation [16–18].
An understanding of the mechanics of the atomic nucleus cannot do without fluid
equations.

2. Model

The velocity defined as u ¼ �2ν ∇P
P , with a radius noted as r ¼ x2 þ y2 þ z2ð Þ1=2

where P x, y, z, tð Þ is the logistic probability function P x, y, z, tð Þ ¼ 1
1þekt�μr , and the

expected value E rjr≥0ð Þ<C exist. The term P is defined in x, y, zð Þ∈
3, t≥0

� �

,
where constants k>0, μ>0 and P x, y, x, tð Þ is the general solution of the Navier–
Stokes 3D equation, which has to satisfy the conditions (1) and (2), allowing us to
analyze the dynamics of an incompressible fluid [12–14].

∂u

∂t
þ u:∇ð Þu ¼ ν∇2u� ∇p

ρ0
x, y, zð Þ∈

3, t≥0
� �

(1)

With, u∈
3 an known velocity vector, ρ0 constant density of fluid, η dynamic

viscosity, ν cinematic viscosity, and pressure p ¼ p0P in x, y, zð Þ∈
3, t≥0

� �

.

Where velocity and pressure are depending of r and t. We will write the
condition of incompressibility.

∇:u ¼ 0 x, y, zð Þ∈
3, t≥0

� �

(2)

The initial conditions of fluid movement u0 x, y, zð Þ, are determined for t ¼ 0.

Where speed u0 must be C∞ divergence-free vector.

u x, y, z, 0ð Þ ¼ u0 x, y, zð Þ x, y, zð Þ∈
3

� �

(3)

For physically reasonable solutions, we make sure u x, y, z, tð Þ does not grow large

as r! ∞: We will restrict attention to initial conditions u0 that satisfy.

∂
α
xu

0
�

�

�

�≤CαK 1þ rð Þ�K on 
3 foranyαandK (4)

The Clay Institute accepts a physically reasonable solution of (1), (2) and (3),
only if it satisfies:

p,u∈C∞ 
3 � 0,∞

� �

Þ (5)

and the finite energy condition [14–16].

ð


3
u x, y, z, tð Þj j2dxdydz≤C forall t≥0 bounded energy

� �

: (6)

The problems of Mathematical Physics are solved by the Nature, guiding the
understanding, the scope, the limitations and the complementary theories. These
guidelines of this research were: the probabilistic elements of Quantum Mechanics,
the De Broglie equation and the Heisenberg Uncertainty principle.

2.1 Definitions

Nuclear reaction velocity coefficient.
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We will use an equation analogous to concentration equation of Physical

Chemistry C ¼ C0e
kt, where k ¼ p0

2η , is velocity coefficient, p0 is the initial pressure

of our fluid, η the dynamic viscosity and C0 the initial concentration of energetic
fluid molecules.

It is evident that, in equilibrium state we can write μr ¼ kt, however, the
Navier–Stokes equation precisely measures the behavior of the fluids out of
equilibrium, so that: μr 6¼ kt.

Fortunately, there is a single solution for out-of-equilibrium fluids, using the
fixed-point theorem for implicit functions, 1

1þekt�μr ¼ 2
μr , the proof is proved in

Theorem 1.
Attenuation coefficient.
We will use the known attenuation formula of an incident flux I0, for which

I ¼ I0e
�μr. Where, I0 initial flux and μ attenuation coefficient of energetic molecules

that enter into interaction and/or resonance with the target molecules, transmitting
or capturing the maximum amount of energy [5].

Dimensional analysis and fluid elements.
We will define the respective dimensional units of each one of variables and

physical constants that appear in the solution of the Navier–Stokes 3D equation
[12–14, 16].

Nuclear decay N tð Þ ¼ N0e
�kt: Where k ¼ 1

T1=2
[1/s], the velocity coefficient, and

T1=2 ground state half-life.

Kinematic viscosity ν ¼ η

ρ0
, m2

s

h i

.

Dynamic viscosity η, [pa.s], where pa represents pascal pressure unit.
Initial Pressure of out of equilibrium. p0, [pa].

Fluid density ρ0,
kg
m3

h i

, where kg is kilogram and m3 cubic meters.

Logistic probability function, P x, y, z, tð Þ ¼ 1
1þekt�μr , it is a real number 0≤P≤ 1:

Equilibrium condition, r ¼ k
μ
t ¼ p0

2ρ0νμ
t ¼ uej jt, [m].

Fluid velocity in equilibrium, uej j, m=s½ �: Protons, neutrons and alpha particles
are the elements of the fluid.

Fluid field velocity out of equilibrium, u ¼ �2νμ 1� Pð Þ∇r: [m/s]. All nuclear
decay is a process out of nuclear equilibrium.

Position, r ¼ x2 þ y2 þ z2ð Þ1=2, [m].
Attenuation coefficient, μ, [1/m].
Growth coefficient, k ¼ p0

2ρ0ν
¼ p0

2η , [1/s].

Concentration C ¼ C0
1�P
P :

Theorem 1 The velocity of the fluid is given by u ¼ �2ν ∇P
P , where P x, y, z, tð Þ

is the logistic probability function P x, y, x, tð Þ ¼ 1
1þekt�μr , and p pressure such that

p ¼ p0P, both defined on x, y, zð Þ∈
3, t≥0

� �

: The function P is the general solution of

the Navier Stokes equations, which satisfies conditions (1) and (2).
Proof. To verify condition (2), ∇:u ¼ 0, we must calculate the gradients

and laplacians of the radius. ∇r ¼ x
r ,

y
r ,

z
r

� �

, and ∇
2r ¼ ∇:∇r ¼

y2þz2ð Þþ x2þz2ð Þþ x2þy2ð Þ
x2þy2þz2ð Þ3=2

¼ 2
r :

∇:u ¼ �2ν∇:∇P
P
¼ �2νμ∇ 1� Pð Þ∇rð Þ (7)

Replacing the respective values for the terms: ∇2r and ∇rj j2 in the Eq. (7).
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∇:u ¼ �2νμ∇ 1� Pð Þ∇rð Þ
¼ �2νμ∇ 1� Pð Þ∇rð Þ

¼ �2νμ �μ P� P2
� �

∇rj j2 þ 1� Pð Þ∇2r
h i

(8)

Where the gradient modulus of ∇P ¼ μ P� P2
� �

∇r, has the form ∇Pj j2 ¼
μ2 P� P2
� �2

∇rj j2 ¼ μ2 P� P2
� �2

.

∇:u ¼ �2νμ 1� Pð Þ �μPþ 2

r

� �

¼ 0 (9)

Simplifying for 1� Pð Þ 6¼ 0, we obtain the main result of this paper, which
represents a fixed point of an implicit function f t, rð Þ where f t, rð Þ ¼ P� 2

μr ¼ 0. In

Nuclear Physics, r0 < r< 1:2A1=3:

P ¼ 1

1þ ekt�μ x2þy2þz2ð Þ1=2
¼ 2

μ x2 þ y2 þ z2ð Þ1=2
x, y, zð Þ∈

3, t≥0
� �

(10)

Eq. (10) has a solution according to the fixed-point theorem of an implicit
function, and it is a solution to the Navier Stokes stationary equations, which are

summarized in: ∇2P ¼ 2
μ
∇

2 1
r

� �

¼ 0: Furthermore, it is the typical solution of the

Laplace equation for the pressure of the fluid ∇
2p ¼ p0∇

2P ¼ 0. Kerson Huang
(1987).

To this point, we need to verify that Eq. (10) is also a solution of requirement

(1), ∂u
∂t þ u:∇ð Þu ¼ ν∇2u� ∇p

ρ0
. We will do the equivalence u ¼ ∇θ after we replace

in Eq. (1). Taking into account that θ ¼ �2ν ln Pð Þ, and that ∇θ is irrotational,
∇� ∇θ ¼ 0, we have: u:∇ð Þu ¼ ∇θ:∇ð Þ∇θ ¼ 1

2∇ ∇θ:∇θð Þ � ∇θ � ∇� ∇θð Þ ¼
1
2∇ ∇θ:∇θð Þ, and ∇

2u ¼ ∇ ∇:uð Þ � ∇� ∇� uð Þ ¼ ∇ ∇:∇θð Þ � ∇� ∇� ∇θð Þ ¼
∇ ∇

2θ
� �

: Simplifying terms in order to replace these results in Eq. (1) we obtain

u:∇ð Þu ¼ 1

2
∇ ∇θ:∇θð Þ ¼ 2ν2∇

∇Pj j2

P2

 !

∇
2u ¼ ∇ ∇:uð Þ ¼ ∇ ∇

2θ
� �

¼ 0

¼ �2ν∇ ∇Pj j2

P2 �
∇

2P

P

 !

¼ 0

The explicit form of velocity is u ¼ �2μν 1� Pð Þ∇r: Next, we need the partial
derivative ∂u

∂t

∂u

∂t
¼ �2μνkP 1� Pð Þ∇r,

�∇p

ρ0
¼ � μp0

ρ0
P 1� Pð Þ∇r:

After replacing the last four results u:∇ð Þu, ∇2u,∂u
∂t and �

∇p
ρ0

in Eq. (1) we

obtain (11).
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�2μνkP 1� Pð Þ∇r ¼ 2ν2∇
∇Pj j2

P2

 !

� μp0
ρ0

P 1� Pð Þ∇r: (11)

The Eq. (11) is equivalent to Eq. (1). After obtaining the term ∇Pj j2
P2 from the

incompressibility equation ∇ ∇
2θ

� �

¼ �2ν∇ � ∇Pj j2
P2 þ ∇2P

P

	 


¼ 0 and replacing in

Eq. (11).

�2μνkP 1� Pð Þ∇r ¼ 2ν2∇
∇

2P

P

� �

� μp0
ρ0

P 1� Pð Þ∇r: (12)

Eq. (10) simultaneously fulfills requirements (1) expressed by Eq. (12) and
requirement (2) expressed by Eq. (7), for a constant k ¼ p0

2ρ0ν
¼ p0

2η : Moreover,

according to Eq. (10), the probability P ¼ 2
μrwhich allows the Laplace equation to be

satisfied: ∇2P ¼ 2
μ
∇

2 1
r

� �

¼ 0: In other words, the Navier–Stokes 3D equation system

is solved. ▪

Implicit Function.
An implicit function defined as (10), f t, rð Þ ¼ 1

1þekt�μr � 2
μr ¼ 0 has a fixed point t, rð Þ

ofR ¼ t, rð Þj0< a≤ t≤ b, 0< r< þ∞f g, wherem andM are constants, such as:m≤M:

Knowing that the partial derivative exists: ∂rf t, rð Þ ¼ νP 1� Pð Þ þ 2
μr2 we can assume

that: 0<m≤ ∂rf t, rð Þ≤M: If, in addition, for each continuous function φ in a, b½ � the
composite function g tð Þ ¼ f t,φ tð Þð Þ is continuous in a, b½ �, then there is one and only
one function: r ¼ φ tð Þ continuous in a, b½ �, such that f t,φ tð Þ½ � ¼ 0 for all t in a, b½ �.

Theorem 2 An implicit function defined as (10) f t, rð Þ ¼ 1
1þekt�μr � 2

μr ¼ 0 has a fixed

point t, rð Þ of R ¼ t, rð Þj0< a≤ t≤ b, 0< r< þ∞f g. In this way, the requirements (1)
and (2) are fulfilled.

Proof. Let C be the linear space of continuous functions in a, b½ �, and define an
operator T : C! C by the equation:

Tφ tð Þ ¼ φ tð Þ � 1

M
f t,φ tð Þ½ �:

Then we prove that T is a contraction operator, so it has a unique fixed point
r ¼ φ tð Þ in C. Let us construct the following distance.

Tφ tð Þ � Tψ tð Þ ¼ φ tð Þ � ψ tð Þ � f t,φ tð Þ½ � � f t,ψ tð Þ½ �
M

:

Using the mean value theorem for derivation, we have

f t,φ tð Þ½ � � f t,ψ tð Þ½ � ¼ ∂ϕf t, z tð Þð Þ φ tð Þ � ψ tð Þ½ �:

Where ϕ tð Þ is situated between φ tð Þ and ψ tð Þ. Therefore, the distance equation
can be written as:

Tφ tð Þ � Tψ tð Þ ¼ φ tð Þ � ψ tð Þ½ � 1� ∂ϕf t, z tð Þð Þ
M

� �

Using the hypothesis 0<m≤ ∂rf t, rð Þ≤M we arrive at the following result:

0≤ 1� ∂ϕf t,ϕ tð Þð Þ
M

≤ 1� m

M
,

6

Nuclear Materials



with which we can write the following inequality:

Tφ tð Þ � Tψ tð Þj j ¼ φ tð Þ � ψ tð Þj j 1� m

M

	 


≤ α φ� ψk k: (13)

Where α ¼ 1� m
M

� �

. Since 0<m≤M, we have 0≤ α< 1. The above inequality
is valid for all t of a, b½ �. Where T is a contraction operator and the proof is
complete, since for every contraction operator T : C! C there exists one and only
one continuous function φ in C, such that T φð Þ ¼ φ. Using Eq. (10), which
represents the fundamental solution of the Navier–Stokes 3D equation, we verify
Eq. (2), which represents the second of the six requirements of an acceptable
solution. ▪

Proposition 3 Requirement (3). The initial velocity can be obtained from:

u x, y, z, 0ð Þ ¼ �2ν ∇P
P , where each of the components ux, uy and uz are infinitely

derivable.

u x, y, z, 0ð Þ ¼ u0 x, y, zð Þ ¼ �2νμ 1� P0ð Þ x

r
,
y

r
,
z

r

	 


x, y, zð Þ∈
3

� �

P0 ¼
1

1þ e�μr0

(14)

Proof. Taking the partial derivatives of ∂nx
x
r

� �

, ∂
n
y

x
r

� �

and ∂
n
z

x
r

� �

.

∂
n
x

x

r

	 


¼ n∂n�1x

1

r

� �

þ x∂nx
1

r

� �

∂
n
y

x

r

	 


¼ n∂n�1y

1

r

� �

þ y∂ny
1

r

� �

∂
n
z

x

r

	 


¼ n∂n�1z

1

r

� �

þ z∂nz
1

r

� �

(15)

Recalling the derivatives of special functions (Legendre), it is verified that there
exists the derivative C∞.

∂
n
x

1

r

� �

¼ �1ð Þnn! x2 þ y2 þ z2
� �� nþ1ð Þ

2 Pn
x

x2 þ y2 þ z2ð Þ1=2

 !

∂
n
y

1

r

� �

¼ �1ð Þnn! x2 þ y2 þ z2
� �� nþ1ð Þ

2 Pn
y

x2 þ y2 þ z2ð Þ1=2

 !

∂
n
z

1

r

� �

¼ �1ð Þnn! x2 þ y2 þ z2
� �� nþ1ð Þ

2 Pn
z

x2 þ y2 þ z2ð Þ1=2

 !

(16)

▪

Physically, this solution is valid for the initial velocity, indicated by Eq. (4),
where the components of the initial velocity are infinitely differentiable, and make
it possible to guarantee that the velocity of the fluid is zero when r! ∞ [6–9].

Proposition 4 Requirement (4). Using the initial velocity of a moving fluid given by

u x, y, z, 0ð Þ ¼ u0 x, y, zð Þ ¼ �2νμ 1� P0ð Þ x
r ,

y
r ,

z
r

� �

, it is evident that

∂
α
xu

0
�

�

�

�≤CαK 1þ rð Þ�K on 
3 foranyα andK
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Proof. Using the initial velocity of a moving fluid given by u0 x, y, zð Þ ¼
�2νμ 1� P0ð Þ x

r ,
y
r ,

z
r

� �

, we can find each of the components: ∂αxu
0
x , ∂

α
yu

0
y and ∂

α
zu

0
z :

∂
α
x

x

r

	 
2
¼ α∂α�1x

1

r

� �

þ x∂αx
1

r

� �� �

α∂α�1x

1

r

� �

þ x∂αx
1

r

� �� �

For the three components x, y, z the results of the partial derivatives are as
follows:

∂
α
x

x

r

	 
2
¼ α2 ∂

α�1
x

1

r

� �2

þ 2αx∂α�1x

1

r
∂
α
x

1

r
þ x2 ∂

α
x

1

r

� �2

∂
α
y

y

r

	 
2
¼ α2 ∂

α�1
y

1

r

� �2

þ 2αy∂α�1y

1

r
∂
α
y

1

r
þ y2 ∂

α
y

1

r

� �2

∂
α
z

z

r

	 
2
¼ α2 ∂

α�1
z

1

r

� �2

þ 2αz∂α�1z

1

r
∂
α
z

1

r
þ z2 ∂

α
z

1

r

� �2

(17)

Replacing Eq. (17) with the explanatory form of the Legendre polynomials, for

the following terms ∂α�1x
1
r and ∂

α
x
1
r :

∂
α
x

1

r
¼ �1ð Þαα! x2 þ y2 þ z2

� �� αþ1ð Þ
2 Pα

x

x2 þ y2 þ z2ð Þ1=2

 !

∂
α�1
x

1

r
¼ �1ð Þα�1 α� 1ð Þ! x2 þ y2 þ z2

� ��α
2Pα�1

x

x2 þ y2 þ z2ð Þ1=2

 !

(18)

Also, knowing that for each α≥0, the maximum value of Pα 1ð Þ ¼ 1: We can
write the following inequality

x2 ∂
α
x

1

r

� �� �2

≤ x2 α!ð Þ2r�2 αþ1ð Þ

2αx∂α�1x

1

r
∂
α
x

1

r
≤ 2xα α!ð Þ α� 1ð Þ! �1ð Þ2α�1r�2α�1

α2 ∂
α�1
x

1

r

� �� �2

≤ α2 α� 1ð Þ!ð Þ2r�2α

(19)

Grouping terms for ∂
α
x
x
r

� �2
, ∂

α
y
y
r

	 
2
and ∂

α
z
z
r

� �2
we have the next expressions.

∂
α
x

x

r

	 
2
≤ r�2α

x2 α!ð Þ2
r2

� 2x α!ð Þ2
r
þ α2 α� 1ð Þ!ð Þ2

" #

∂
α
y

y

r

	 
2
≤ r�2α

y2 α!ð Þ2
r2

� 2y α!ð Þ2
r
þ α2 α� 1ð Þ!ð Þ2

" #

∂
α
z

z

r

	 
2
≤ r�2α

z2 α!ð Þ2
r2

� 2z α!ð Þ2
r
þ α2 α� 1ð Þ!ð Þ2

" #

(20)
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The module of ∂
α
xu

0
�

�

�

� is given by ∂
α
xu

0
�

�

�

� ¼ ∂
α
x
x
r

� �2 þ ∂
α
y
y
r

	 
2
þ ∂

α
z
z
r

� �2
� �1=2

:

Simplifying and placing the terms of Eq. (20) we have

∂
α
xu

0
�

�

�

�≤ r�2α 3 α!ð Þ2 þ α2 α� 1ð Þ!ð Þ2 � 2 xþ yþ zð Þ α!ð Þ2
r

" #

Taking into consideration that x
r

�

�

�

�≤ 1, y
r

�

�

�

�≤ 1, z
r

�

�

�

�≤ 1 the last term ∂
α
xu

0
�

�

�

� can be

easily written that.

∂
α
xu

0
�

�

�

�≤
2 α!ð Þ2
r2α

2þ x

r

�

�

�

�

�

�þ y

r

�

�

�

�

�

�þ z

r

�

�

�

�

�

�

h i

∂
α
xu

0
�

�

�

�≤
10 α!ð Þ2
r2α

It is verified that there exists Cα ¼ 10 α!ð Þ2 such that if r! 0, then ∂
α
xu

0
�

�

�

�! 0:

Thus, we proved requirement (4). ▪

According to Mathematics, and giving an integral physical structure to the
study, we need to prove that there are the spatial and temporal derivatives of the
velocity and pressure components, satisfying the requirement (5).

Proposition 5 Requirement (5). The velocity can be obtained from: u x, y, z, tð Þ ¼
�2ν ∇P

P and each of the components ux, uy and uz are infinitely derivable.

u x, y, z, tð Þ ¼ 2ν2
x

r2
,
y

r2
,
z

r2

	 


x, y, zð Þ∈
3

� �

P x, y, z, tð Þ ¼ 1

1þ e
p0
2η t�μr

¼ 2

μr

(21)

Proof. Taking partial derivatives for ∂nx
x
r2

� �

, ∂
n
y

x
r2

� �

and ∂
n
z

x
r2

� �

.

∂
n
x

x

r2

	 


¼ n∂n�1x

1

r2

� �

þ x∂nx
1

r2

� �

∂
n
y

x

r2

	 


¼ n∂n�1y

1

r2

� �

þ y∂ny
1

r2

� �

∂
n
z

x

r2

	 


¼ n∂n�1z

1

r2

� �

þ z∂nz
1

r2

� �

(22)

Recalling the derivatives of special functions, it is verified that the derivative C∞

exists. These derivatives appear as a function of the Legendre polynomials Pn :ð Þ.

∂
n
x

1

r2

� �

¼ �1ð Þnn! x2 þ y2 þ z2
� �� nþ1ð Þ

Pn
x

x2 þ y2 þ z2ð Þ

� �

∂
n
y

1

r2

� �

¼ �1ð Þnn! x2 þ y2 þ z2
� �� nþ1ð Þ

Pn
y

x2 þ y2 þ z2ð Þ

� �

∂
n
z

1

r2

� �

¼ �1ð Þnn! x2 þ y2 þ z2
� �� nþ1ð Þ

Pn
z

x2 þ y2 þ z2ð Þ

� �

(23)

There are the spatial derivatives n and the time derivative which is similar to
Eq. (25). ▪
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Proposition 6 Requirement (5). The pressure is totally defined by the equivalence
p x, y, z, tð Þ ¼ p0P x, y, z, tð Þ and is infinitely differentiable in each of its components.

p x, y, z, tð Þ ¼ p0P x, y, z, tð Þ x, y, zð Þ∈
3

� �

(24)

Proof. Taking partial derivatives for ∂nx
1
r

� �

, ∂
n
y

1
r

� �

and ∂
n
z

1
r

� �

, recalling the deriva-

tives of special functions of Eq. (16), it is shown that the derivative C∞. We only

have to find the time derivatives: ∂nt p0P
� �

¼ p0∂
n
t Pð Þ. Using Eq. (21) for P, we have.

∂tP ¼ �kð ÞP 1� Pð Þ

∂
2
tP ¼ �kð Þ2 1� 2Pð ÞP 1� Pð Þ

∂
3
tP ¼ �kð Þ3 1� 6Pþ 6P2

� �

P 1� Pð Þ

∂
4
t P ¼ �kð Þ4 1� 14Pþ 36P2 � 24P3

� �

P 1� Pð Þ

∂
5
tP ¼ �kð Þ5 1� 30Pþ 150P2 � 240P3 þ 120P4

� �

P 1� Pð Þ

∂
n
t Pð Þ ¼ ∂t ∂

n�1
t Pð Þ

� �

(25)

It is always possible to find the derivative ∂
n
t Pð Þ as a function of the previous

derivative, since the resulting polynomial of each derivative n� 1 is of degree n. ▪

Proposition 7 Requirement (6). The energy must be limited in a defined volume and
fundamentally it must converge at any time, such that t≥0.

ð


3
u x, y, z, tð Þj j2dxdydz≤C forall t≥0 bounded energyð Þ:

Proof. We will use the explicit form of velocity given in Eq. (21) u x, y, z, tð Þ ¼
2νμ 1� Pð Þ∇r, to obtain the vector module: uj j2 ¼ 4ν2μ2 1� Pð Þ2. Rewriting Eq. (21),
and applying a change of variable in: dxdydx ¼ 4πr2dr.

ð


3
u x, y, z, tð Þj j2dxdydz ¼ 16πν2μ2

ð

∞

r0

r2 1� Pð Þ2dr (26)

Making another change of variable dP ¼ μP 1� Pð Þdr. Using (10), replacing

r2 ¼ 2
μP

	 
2
we have

ð


3
u x, y, z, tð Þj j2dxdydz ¼ 16πν2μ2

ðP∞

P0

2

μP

� �2

1� Pð Þ2 dP

μP 1� Pð Þ

¼ 64πν2

μ

ðP∞

P0

1� P

P3 dP

(27)

Where radius r! ∞, when t≥0, we have lim r!∞P ¼ lim r!∞ 1

1þ exp ktð Þ
exp μrð Þ
¼ P

∞
¼ 1:

Moreover, physically if r! r0 ≈0 then t! 0 we have lim r!0P ¼ lim r!0
1

1þ exp ktð Þ
exp μrð Þ
¼

P0 ¼ 1
2 : Here, a probability 1

2 represents maximum entropy.

ð


3
u x, y, z, tð Þj j2dxdydz ¼ 64πν2

μ

ð1

1=2

1� P

P3 dP ¼ 64πν2

μ

2P� 1

2P2

� �1

1=2

ð


3
uj j2dxdydz≤ 32πν2

μ
forall t≥0

(28)
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In this way the value of the constant C is C ¼ 32πν2

μ
: Verifying the proposition (6)

completely. In general, Eq. (10) can be written f t, rþ r0ð Þ ¼ 1

1þekt�μ rþr0ð Þ � 2
μμ rþr0ð Þ ¼ 0

and in this way discontinuities are avoided when r! 0, but this problem does not

occur since in the atomic nucleus r0 < r< 1:2A1=3 is satisfied. ▪

Lemma 8 The irrotational field represented by the logistic probability function

P x, y, z, tð Þ associated with the velocity u ¼ �2ν ∇P
P , can produce vortices, due to the

stochastic behavior of the physical variables p0, η, μ: These stochastic variations are in
orders lower than the minimum experimental value.

Proof. The implicit function representing the solution of the Navier–Stokes 3D
equation, 1

1þe�μ r�kμtð Þ ¼
2
μr depends on the values of initial pressure p0, viscosity ν and

attenuation coefficient μ. Due to Heisenberg uncertainty principle, these parame-
ters have a variation when we measure and use them, as is the case of the estimate

of ξ ¼ r� ϕ t, k, μð Þ. The function ϕ t, k, μð Þ ¼ k
μ
t, expressly incorporates these

results, when �∞< ξ< þ∞. The physical and mathematical realities are mutually
conditioned and allow for these surprising results. For a definite t there exist

infinities x, y, zð Þ that hold the relationship r ¼ x2 þ y2 þ z2ð Þ1=2. Moreover, for a
definite r there are infinities t that respect the fixed-point theorem and create
spherical trajectories. When the physical variables k, μ vary, even at levels of 1/100 or
1/1000, they remain below the minimum variation of the experimental value. We
could try to avoid the existence of trajectories on the spherical surface, for which we
must assume that the fluid is at rest or it is stationary, which contradicts the Navier–
Stokes 3D equation, where all fluid is in accelerated motion ∂u

∂t 6¼ 0. In short, if there

are trajectories in the sphere as long as it is probabilistically possible, this is reduced to
showing that the expected value of the radius E rjr≥0½ � exists and it is finite.

Derivation of E rjr≥0ð Þ:
The logistic density function for ξ when E ξð Þ ¼ 0 and Var ξð Þ ¼ σ2 is defined by.

h ξð Þ ¼ μ exp �ξð Þ
1þ exp �ξð Þ½ �2 , where 1

μ
¼ σ

ffiffiffi

3
p

=π is a scale parameter. Given that r ¼

ϕ t, p0, η, μ
� �

þ ξ function for r is then f rð Þ ¼ exp �r�ϕ •ð Þ=τ½ �
τ 1þ exp � r�ϕ •ð Þð Þ=τð �2,½ to facilitate the

calculations we put ϕ •ð Þ ¼ ϕ t, k, μð Þ ¼ k
μ
t. By definition, the truncated density for r

when r≥0 is given by f rjr≥0ð Þ ¼ f rð Þ
P r≥0ð Þ for r≥0: Given that the cumulative

distribution function for r is given by F rð Þ ¼ 1
1þ exp kt�μrð Þ , it follows that P r≥0ð Þ ¼

1� F 0ð Þ ¼ exp ϕ •ð Þð ÞÞ
1þ exp ϕ •ð Þð ÞÞ ¼ 1

1þ exp �ϕ •ð Þð ÞÞ. The derivation of E rjr≥0ð Þ then proceeds as

follows:

E rjr≥0ð Þ ¼
ð

∞

0
μrf rjr≥0ð Þdr ¼ 1

P r≥0ð Þ

ð

∞

0
μr

exp kt� μr½ �
1þ exp kt� μr½ �f g2

dr

E rjr≥0ð Þ ¼ 1

P r≥0ð Þ

ð1

1=2

2

μP
μP 1� Pð Þð Þ dP

P 1� Pð Þ

(29)

We replaced in Eq. (29) dP ¼ μP 1� Pð Þdr and r2 ¼ 2
μP

	 
2
of this manner we obtain

E rjr≥0ð Þ ¼ 1

P r≥0ð Þ

ð1

1=2

2

μP
μP 1� Pð Þð Þ dP

P 1� Pð Þ ¼
1

P r≥0ð Þ
2

μ
log 2ð Þ (30)

where we have used the fact that
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P r≥0ð Þ ¼ exp kt

1þ exp kt

E rjr≥0ð Þ ¼ 1

P r≥0ð Þ
2

μ
log 2ð Þ≤ 2

μ
log 2ð Þ for all t≥0 (31)

where the last equality follows from an application of the L’Hopital’s rule

P r≥0ð Þ ¼ lim t!∞
exp kt

1þ exp kt ¼ 1. ▪

3. Results

The main results of applying the Navier Stokes equation to the atomic nucleus,
which behaves like an incompressible nuclear fluid, are:

• The nuclear force and the Navier Stokes force are related.

• The Cross Sections in Low energy X ray can explain the Golden Ratio σ1
σ2

	 


that

appears in the femtoscope.

• Navier Stokes Equation and Cross Section in Nuclear Physics.

• The principle of the femtoscope explains that low energy X-rays produce
resonance in layer K.

3.1 The nuclear force and the Navier Stokes force are related

Firstly, we will use the concepts of Classic Mechanics and the formulation of the
Yukawa potential, Φ rð Þ ¼ g

4πr A� 1ð Þe�μr to find the nuclear force exerted on each

nucleon at interior of the atomic core FN ¼ �∇Φ rð Þ. Also, replace the terms of the
potential e�μr ¼ 1�P

P and 1
r ¼

μ

2 P by the respective terms already obtained in Eq. (10).

Φ rð Þ ¼ g A� 1ð Þ
4πr

e�μr ¼ gμ A� 1ð Þ
8π

1� Pð Þ (32)

The general form of the Eq. (32), is a function of x, y, z, tð Þ.

Φ r, tð Þ ¼ g A� 1ð Þ
4πr

ekt�μr ¼ gμ A� 1ð Þ
8π

1� P r, tð Þð Þ (33)

Secondly, we will obtain the Navier Stokes force equation given by:

du

dt
¼ ∂u

∂t
þ u:∇ð Þu ¼ ∂u

∂t
þ 2ν2∇

∇Pj j2

P2

 !

¼ �2μνkP 1� Pð Þ∇r (34)

Theorem 9 The Nuclear Force and Navier Stokes Force are proportional inside the
atomic nucleus FN ¼ CFNS.

Proof. Eq. (34) rigorously demonstrated by theorems and propositions 1
through 8, represent the acceleration of a particle within the atomic nucleus.
According to Classical Mechanics the force of Navier Stokes applied to a particle of
mass m, would have the form:
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FNS ¼ m
du

dt
¼ �2mμνkP 1� Pð Þ∇r: (35)

▪

Proof. The nuclear force on its part would be calculated as follows FN ¼ �∇Φ rð Þ:

FN ¼ �∇Φ rð Þ ¼ � gμ

8π
A� 1ð Þ∇P: (36)

Replacing the term ∇P ¼ μ P� P2
� �

∇r of Eq. (7), we obtain

FN ¼ �∇Φ rð Þ ¼ � gμ2

8π
A� 1ð ÞP 1� Pð Þ∇r: (37)

It is possible to write nuclear force as a function of speed.

FN ¼ �∇Φ rð Þ ¼ � gμ2

8π
A� 1ð ÞP 1� Pð Þ∇r:

Finally, we can show that the nuclear force and force of Navier Stokes differ at
most in a constant C. Equating (35) and (37), we find the value g as a function of the
parameters nuclear viscosity ν, attenuation μ and growth coefficient of the nuclear
reaction k, nucleon mass m and C 6¼ 1.

g ¼ 16mπνk

μ A� 1ð ÞC (38)

▪

3.2 Cross section and Golden ratio σ1

σ2

	 


are important elements of the

femtoscope

According to NIST and GEANT4 [17], current tabulations of μ

ρ
rely heavily on

theoretical values for the total cross section per atom, σtot, which is related to μ

ρ
by

the following equation:

μ

ρ
¼ σtot

uA
(39)

In (Eq. 39), u ¼ 1:6605402� 10�24gr
� �

is the atomic mass unit (1/12 of the mass

of an atom of the nuclide 12C)4.
The attenuation coefficient, photon interaction cross sections and related quan-

tities are functions of the photon energy. The total cross section can be written as
the sum over contributions from the principal photon interactions

σtot ¼ σpe þ σcoh þ σincoh þ σtrip þ σph:n (40)

Where σpe is the atomic photo effect cross section, σcoh and σincoh are the coherent
(Rayleigh) and the incoherent (Compton) scattering cross sections, respectively,
σpair and σtrip are the cross sections for electron-positron production in the fields of
the nucleus and of the atomic electrons, respectively, and σph:n. is the photonuclear

cross section 3,4.
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We use data of NIST and simulations with GEANT4 for elements Z ¼ 11 to

Z ¼ 92 and photon energies 1:0721� 10�3 MeV to 1:16� 10�1 MeV, and have been
calculated according to:

μ

ρ
¼ σpe þ σcoh þ σincoh þ σtrip þ σph:n
� �

=μA (41)

The attenuation coefficient μ of a low energy electron beam 10, 100½ �eV will
essentially have the elastic and inelastic components. It despises Bremsstrahlung
emission and Positron annihilation.

σtot ¼ σcoh þ σincoh (42)

3.3 The principle of the femtoscope explains that low energy X-rays produce
resonance in K-shell

A resonance region is created in a natural way at the K-shell between the nucleus
and the electrons at S-level. The condition for the photons to enter in the resonance
region is given by ra ≥ rn þ λ. This resonance region gives us a new way to understand
the photoelectric effect. There is experimental evidence of the existence of resonance
at K-level due to photoelectric effect, represented by the resonance cross section
provided by NIST and calculated with GEANT4 for each atom. In the present work
we focus on the resonance effects but not on the origin of resonance region.

The resonance cross section is responsible for large and/or abnormal variations
in the absorbed radiation I2 � I1ð Þ:

I2 � I1
IþI1
2

¼ � ρr

μA
σ2 � σ1ð Þ (43)

Theorem 10 Resonance region. The resonance cross section is produced by interference
between the atomic nucleus and the incoming X-rays inside the resonance region, where
the boundaries are the surface of the atomic nucleus and K-shell.

The cross section of the atomic nucleus is given by:

σrn ¼ 4πr2n ¼ 4πA2=3r2n (44)

The photon cross section at K-shell depends on the wave length and the shape of
the atomic nucleus:

σrnþλ ¼ 4π rn þ λð Þ2 (45)

Subtracting the cross sections (13) and (14) we have:

σλ ¼ σrnþλ � σrn ¼ 4π 2rnλþ λ2
� �

¼ 4π 2rpλþ 2 rn � rp
� �

λþ λ2
� �

(46)

The resonance is produced by interactions between the X-rays, the K-shell
electrons and the atomic nucleus. The cross sections corresponding to the nucleus is
weighted by probability pn and should have a simple dependence of an interference
term. This last depends on the proton radius rp or the difference between the
nucleus and proton radius (rn � rp) according to the following relation

Max σ2 � σ1ð Þ ¼ σ1

σ2

� ��b
σ2 � σ1ð Þ ¼ 4π 2rpλ

� �

(47)
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We note that left hand side of Eqs. (46) and (47) should have a factor larger than

one due to resonance. The unique factor that holds this requirement is σ1
σ2

	 
b
Where

a, b constants.

8πrλ

σ2 � σ1ð Þ ¼ a
σ1

σ2

� �b

(48)

After performing some simulations it is shown that the thermal a represents the

dimensionless Rydberg constant a ¼ R
∞
¼ 1:0973731568539 ∗ 107.

8000πrλ

σ2 � σ1ð Þ ¼ R
∞

σ1

σ2

� �2:5031

(49)

We use σ1 Zð Þ, σ2 Zð Þ for represent cross section in resonance, R
∞
is the general-

ized Rydberg constant for all elements of periodic table, and Z atomic number.

Last equation with a R2 ¼ 0:9935 was demonstrated and constructed using the
elements of the solution of the Navier Stokes equations.

σ1

σ2

� �

¼ 0:0021Z þ 0:0696

This equation was obtained with a R2 ¼ 0:9939, and indicates that the ratio of
the effective sections fully explain each element of the periodic table.

E ∗ ¼ 2 ∗ 10�5Z2 � 0:0003Z þ 0:004

This equation obtained for a R2 ¼ 0:9996, complements the system of equations
that allow to know the simulation values as a function of Z for σ1 Zð Þ, σ2 Zð Þ and
E ∗ Zð Þ, where σ1 Zð Þ< σ2 Zð Þ: The Femtoscope equations further demonstrate that
energy E ∗ ¼ minEð Þ is minimum and Shannon entropy S ∗ ¼ max Sð Þ is maximum
in resonance, because in equilibrium σ1 Zið Þ ¼ σ2 Zið Þ.

The radius of the neutron can be obtained using Eq. (49) in the following way.

r ¼ R
∞

8000πa

rN ¼
A

N
rþ Z

N
rp

3.4 Navier Stokes equation and cross section in nuclear physics

The speed needs to be defined as u ¼ �2ν ∇P
P , where P x, y, z, tð Þ is the logistic

probability function P x, y, x, tð Þ ¼ 1
1þekt�μr , r ¼ x2 þ y2 þ z2ð Þ1=2 defined in

x, y, zð Þ∈
3, t≥0

� �

This P is the general solution of the Navier Stokes 3D equations,
which satisfies the conditions (50) and (51), allowing to analyze the dynamics of an
incompressible fluid.

∂u

∂t
þ u:∇ð Þu ¼ �∇p

ρ0
x, y, zð Þ∈

3, t≥0
� �

(50)

Where, u∈
3 an known velocity vector, ρ0 constant density of fluid and

pressure p ¼ p0P∈.
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With speed and pressure dependent on r and t: We will write the condition of
incompressibility as follows.

∇:u ¼ 0 x, y, zð Þ∈
3, t≥0

� �

(51)

Theorem 11 The velocity of the fluid given by: u ¼ �2ν ∇P
P , where P x, y, z, tð Þ

is6the logistic probability function P x, y, x, tð Þ ¼ 1

1þekt�μ x2þy2þz2ð Þ1=2 , defined in

x, y, zð Þ∈
3, t≥0

� �

is the general solution of the Navier Stokes equations, which satisfies

conditions (50) and (51).
Proof. Firstly, we will make the equivalence u ¼ ∇θ and replace it in Eq. (50).

Taking into account that ∇θ is irrotational, ∇� ∇θ ¼ 0, we have.

u:∇ð Þu ¼ ∇θ:∇ð Þ∇θ ¼ 1

2
∇ ∇θ:∇θð Þ � ∇θ � ∇� ∇θð Þ ¼ 1

2
∇ ∇θ:∇θð Þ,

We can write,

∇
∂θ

∂t
þ 1

2
∇θ:∇θð Þ

� �

¼ ∇ �pð Þ

It is equivalent to,

∂θ

∂t
þ 1

2
∇θ:∇θð Þ ¼ �Δp

ρ0

where Δp is the difference between the actual pressure p and certain reference
pressure p0: Now, replacing θ ¼ �2ν ln Pð Þ, Navier Stokes equation becomes.

∂P

∂t
¼ Δp

ρ0
P (52)

The external force is zero, so that there is only a constant force F due to the
variation of the pressure on a cross section σ. Where σ is the total cross section of all
events that occurs in the nuclear surface including: scattering, absorption, or
transformation to another species.

F ¼ pσ2 ¼ p0σ1

Δp ¼ p� p0 ¼
σ1

σ2
� 1

� �

p0 ¼ � 1� Pð Þp0
(53)

putting (52) in (53) we have

∂P

∂t
¼ �μk 1� Pð ÞP (54)

In order to verify Eq. (51), ∇:u ¼ 0, we need to obtain ∇r ¼ x
r ,

y
r ,

z
r

� �

, ∇2r ¼
∇:∇r ¼ y2þz2ð Þþ x2þz2ð Þþ x2þy2ð Þ

x2þy2þz2ð Þ3=2
¼ 2

r :

∇:u ¼ �2ν∇:∇P
P
¼ �2νμ∇ 1� Pð Þ∇rð Þ (55)
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Replacing the respective values for the terms: ∇2P and ∇Pj j2 of Eq. (55). The
Laplacian of P can be written as follows.

∇
2P ¼ μ 1� 2Pð Þ∇P:∇rþ μ P� P2

� �

∇
2r

¼ μ2 1� 2Pð Þ P� P2
� �

∇rj j2 þ μ P� P2
� �

∇
2r

¼ μ2 1� 2Pð Þ P� P2
� �

þ μ P� P2
� � 2

r

(56)

Using gradient ∇P ¼ μ P� P2
� �

∇r, modulus ∇Pj j2 ¼ μ2 P� P2
� �2

∇rj j2 and ∇
2P

in (56).

∇
2P

P
� ∇Pj j2

P2

" #

¼ 0 (57)

Replacing Eqs. (55) and (56) in (57) we obtain the main result of the Navier
Stokes equations, the solution represents a fixed point of an implicit function f t, rð Þ
where f t, rð Þ ¼ P� 2

μr ¼ 0.

P ¼ 1

1þ ekt�μ x2þy2þz2ð Þ1=2
¼ 2

μ x2 þ y2 þ z2ð Þ1=2
x, y, zð Þ∈

3, t≥0
� �

(58)

▪

An important result of theNavier Stokes 3D equation, applied to the nuclear fluid of
an atom, allows us to advance our understanding of nuclear dynamics and nuclear force.

Corollary 12 The nuclear decay constant k is determined by the nuclear pressure p0,

and the dynamic nuclear viscosity η, as follows: k ¼ p0
2η :

Proof. A nuclear decay is a reaction of degree 1, which is explained by the

exponential law N tð Þ ¼ N0e
�kt: Rewriting Eq. (58) as a function of the initial

nuclear pressure p0 and the nuclear viscosity η we can prove that they are related to
the nuclear decay constant, in an intrinsic way and allow to explain dynamic
nuclear phenomena.

P x, y, z, tð Þ ¼ 1

1þ e
p0
2η t�μ x2þy2þz2ð Þ1=2

¼ 2

μ x2 þ y2 þ z2ð Þ1=2
x, y, zð Þ∈

3, t≥0
� �

(59)

▪

3.5 Model of nuclear pressure

The work in the nuclear fluid is given by the variation of the energy necessary to
form that atomic nucleus, that is, by the excess mass required in the process. Using
Eq. (59) we can find the explicit form of nuclear pressure p ¼ p0P ¼ p0

2
μr :

W ¼ ΔEmass�excess Z,Að Þ ¼
ðr0

0

ðπ

0

ð2π

0
pdV ¼

ðr0

0

ðπ

0

ð2π

0
p0

2

μr
r2 cos θdrdθdϕ
� �

W ¼ ΔEmass�excess Z,Að Þ ¼ p0
2

μ

ðr0

0
rdr

ðπ

0
sin θdθ

ð2π

0
dϕ ¼ 4πp0

r20
μ

(60)
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Applying the mean value theorem of integrals, we know that there is a mean value

of the nuclear pressure p and the volume of the atomic nucleus V of the integral (60)

W ¼ ΔEmass�excess Z,Að Þ ¼
ðr0

0

ðπ

0

ð2π

0
pdV ¼ p ζð ÞV r0ð Þ (61)

that according to Quantum Mechanics, p ζð Þ,V r0ð Þ are the observable values. By
this restriction we can equalize Eq. (60), (61) and find the value of the initial
nuclear pressure as a function of the experimentally measured nuclear pressure:

p ζð Þ 4π3 r30 ¼ 4πp0
r20
μ
with r0 ¼ 1:2A1=2fm, from where:

p ζð Þ ¼ ΔEmass�excess Z,Að Þ
4
3 πr

3
0

¼ 3p0
μr0

: (62)

For Yukawa’s potential, it is often assumed μ≈ 1
r0
:

3.6 Model of nuclear viscosity

Using the fundamental expression k ¼ p0
2η ¼ 1

T1=2
obtained from the resolution of

the Navier Stokes 3D equations, Eqs. (58) and (59), it is possible to find the average
or most probable values of the variables involved pressure, nuclear viscosity and

nuclear decay constant as follows: k ¼ p
2η :

Explicitly we find the nuclear viscosity as a function of the nuclear decay

constant k ¼ k
� �

and the average value of the nuclear pressure p as follows:

η ¼ p

2k
(63)

There is another experimental way of determining nuclear viscosity, through the
fuzziness of alpha particles, protons or neutrons ejected in a nuclear decay using the
fluid velocity equation u ¼ �2νμ 1� Pð Þ∇r, in which modulo u ¼ �2νμ 1� Pð Þ∇r,
replacing the dynamic viscosity ν ¼ η

ρ0

m2

s

h i

, we obtain: uj j ¼ 2 η

ρ0

	 


μ 1� Pð Þ:
So the second way to find the nuclear viscosity has the form:

η ¼ uj jρ0
2μ 1� Pð Þ ¼

uj jρ0rP
4 1� Pð Þ (64)

Eq. (64) has a more complicated form and depends on the speed of the fluid
particles and the radius from which these particles leave.

3.7 Calculation of nuclear pressure and viscosity

The nuclear decay constant k is determined by the nuclear pressure p0, and the

dynamic nuclear viscosity η, as follows: k ¼ p0
2η :

4. Discussion of results

4.1 Calculation of the pressure relation of proton and neutron

The fine-structure constant, α, has several physical interpretations, we use the
most known.
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The fine-structure constant, α ¼ 1
137:035999174 35ð Þ is the ratio of two energies: the

energy needed to overcome the electrostatic repulsion between two protons a dis-
tance of 2r apart, and (ii) the energy of a single photon of wavelength λ ¼ 2πr (or of
angular wavelength r; according to Planck relation).

α0 ¼ e2

4πε0 2rð Þ =
hc

λ
¼ e2

4πε0 2rð Þ
2πr

hc
¼ e2

4πε0 2rð Þ
r

ℏc
¼ 1

2

e2

4πε0ℏc
¼ 1

2
α (65)

We can find the relationship of energies between the proton and the atomic
nucleus. Knowing that the two occupy the same nuclear volume V: This relationship
is identical to 1

α0 , since the atomic nucleus interacts with the proton through the

electromagnetic field and the nuclear force.

pp
pN
¼

ppV

pNV
¼ 2

α
¼ 274:07 (66)

Thus, we already know the pressure relation between the proton and the atomic

nucleus
pp
pN
¼ 2

α
:

Now we find the relation of pressures between the neutron and the atomic
nucleus, which are under the action of the same nuclear force, F.

pn
pN
¼ F=π 0:84184ð Þ2

F=π 1:2A1=3
	 
2 ¼

1:2A1=3
	 
2

0:84184ð Þ2
(67)

For the chemical element with maximum nuclear pressure, 6228Ni we have
pn
pN
¼

1:2 62ð Þ1=3ð Þ2
0:84184ð Þ2 ¼ 31:830:

If we divide Eq. (67) for Eq. (66) we have.

pp
pn
¼

pp
pN

=
pn
pN
¼ 274:07=31:830 ¼ 8:6104

4.2 An action on the nuclear surface produces a reaction in the nuclear volume
and vice versa

It is created by the friction between the layers of nucleons.
Theorem 13 An action on the nuclear surface produces a reaction in the nuclear

volume and vice versa.
Proof. The volume and the nuclear surface are connected through the Gaussian

divergence theorem and the Navier Stokes equations.

For an incompressible fluid, whose velocity field u
 

x, y, zð Þ is given, ∇
 
:u
 ¼ 0 is

fulfilled.
Logically, the integral of this term remains zero, that is:

ð ð ð

∇
 
:u
 
dxdydz ¼ 0

Writing the Divergence theorem.
Ð Ð

u
 
:n
 
dS ¼

Ð Ð Ð

∇
 
:u
 
dxdydz ¼ 0, the first

term must be equal to zero, that is:
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ð ð

u
 
:n
 
dS ¼

ð ð

u
 
�

�

�

�

�

� n
 
�

�

�

�

�

� cos αð ÞdS ¼ 0! α ¼ π

2

The only possible trajectory is circular, because in this case the vector n
 
is

perpendicular to the surface of the sphere. In this way the equation of the outer

sphere corresponding to the surface is: x2 þ y2 þ z2 ¼ 1:2A1=3.
Within the nuclear fluid there are layers of nucleons that move in spherical

trajectories. ▪

5. Conclusions

High energy physics is the guide to low energy physics, because, in certain
processes such as in the measurement of the internal pressure of protons and
neutrons. However, we demonstrate that there is a trend compatibility of the two in
the characterization of the atomic nucleus.

The Femtomathematics corresponds to the tools and the logic that allows to

calculate the parameters of the order of 10�15m: In an indirect way, it is in full
correspondence with Femtophysics.

The nuclear viscosity at equilibrium is much larger than the nuclear viscosity at
the moment of nuclear decay, which is totally logical, because at equilibrium the
atomic nucleus is totally compact in pressure and density, while at the moment
protons, neutrons, alpha particles come out of the atomic nucleus from a nuclear
decay, indicating that the nuclear viscosity decreased.
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