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Chapter

Prologue: Oro-Dental-Derived 
Stromal Cells for Cranio-Maxillo-
Facial Tissue Engineering - Past, 
Present and Future
Sebastián E. Pérez and Ziyad S. Haidar

1. Introduction

Stomal/Stem Cells (SCs) can be classified as either embryonic (ESCs) or adult 
stem cells (ASCs), depending on origin. Embryonic stem cells (ESCs) can be 
derived from the inner cell mass of blastocyst stage embryos [1–4] after fertiliza-
tion. ESCs are potent and have un-limited self-renewal capacity, and can differenti-
ate into cells of all three germinal layers of the organism; mesoderm, endoderm 
and ectoderm [2, 3]. While their characteristics are extraordinary and attractive for 
further investigation, the use of human ESCs is limited by an ethical controversy. 
Hence, ASCs have emerged, with no ethical debate (s) orbiting their study. ASCs 
can be harvested from many bodily tissues, and do fulfill all the criteria necessary 
to be considered as SCs, since they are long-lived, have a significant self-renewal 
capacity, can differentiate toward a set of various cellular types (such as chon-
drocytes, adipocytes, osteoblasts, among others) and have potential need/use in 
regenerative and reparative medicine [5, 6].

Mesenchymal Stem Cells (MSCs) are one of the most controversial groups, not 
because ethical concerns regarding their harvesting, but for the proper utilization 
of the term. MSCs were first described by Arnold Caplan in 1991, taking their name 
from the Greek terms “meso” (middle) and “enchyme” (infusion, related to cellular 
tissue) making a relation with the embryonic mesoderm layer, establishing their 
capacity to differentiate toward skeletal tissues (cartilage, bone, marrow stroma, 
connective tissue, etc) as one of their principal characteristics [7]. Despite the 
amount of evidence of their existence, characteristics and functionality, there is 
controversy around them with respect to the nuances of the term MSCs, and what 
specific characteristics do all MSCs share.

To solve this situation, the International Society for Cellular Therapy (ISCT) stated 
minimum criterions to classify a potential lineage as MSCs. The first criterion is to 
display plastic-adherence capacity. Second, they must express certain biomarkers, 
such as the surface membrane protein Thy-1, usually denominated CD90 (Cluster of 
Differentiation 90), or the membrane gluco-protein Endoglin (also called CD105). 
Besides from the presence of the already mentioned CD90 and CD105, MSCs must be 
at least CD73+, CD14-, CD34-, CD44- and HLA-DR-. Finally, should be capable to dif-
ferentiate to chondrocytes, adipocytes and osteoblasts, to be classified as MSCs [8, 9].

Since the year 2000, several MSC types have been identified and isolated from 
oral tissues, including the teeth, dental pulp, gingival, periodontal and supporting 
structures (Figure 1) [10–12]. This has provoked cellular biologists and dentists to 
bridge and strengthen their relation, communication and collaboration even more, 
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as a thorough understanding of the cellular mechanisms underlying these oro-
dental MSCs must come along or go in parallel with the expected development of 
their use in different and wide range of therapies and/or therapeutic strategies.

The aim of this introductory chapter is to provide a practically-comprehensive, 
systematic and updated SC overview (PRISMA flow-chart for the conducted litera-
ture e-search is illustrated in Figure 2) directed to general dentists, oral and maxil-
lofacial surgeons and head and neck health students and professionals interested 
in oral cavity-derived MSCs, their reported characteristics and the possible uses/
applications in oro-dental tissue engineering, regeneration and repair, and beyond.

1.1 Dental pulp stem cells

Dental Pulp Stem Cells (DPSCs) are one of the most attractive oro-dental 
derived stem cells, as they are highly clonogenic and rapidly proliferative, exhibit 
self-renewal, multiple differentiation capabilities, and have the potential for being 
used on tissue regeneration and immunotherapy [13]. DPSCs can differentiate into 
osteoblasts, chondrocytes, myocytes, cardiomyocytes, active neurons, Schwann’s 
cells, melanocytes, and hepatocyte-like cells (Table 1) [12, 14].

Several studies have shown that DPSCs have immuno-modulatory capabilities, 
which include T cell-proliferation suppression [15], inhibition of the proliferation 
of peripheral blood mononuclear cells [16] and induction of T cell apoptosis in 
vitro, ameliorating inflammation-related tissue injuries in mice with colitis [17]. 
Regarding in vivo studies, there has been extensive research using DPSCs to pro-
mote tissue regeneration in animal models. A systematic review, (that focused in 
the use of DPSCs and SHED to repair non-dental tissues) concluded that the use 
of both of these MSCs on bone tissue repair/regeneration seems to be effective. 

Figure 1. 
Dental stem cells and their multi-lineage differentiation capability. Abbreviations; iPSCs: Induced pluripotent 
stem cells; MSCs: Mesenchymal stem cells.
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Nevertheless, much more tests are needed to assess whether this effectivity/effi-
ciency extends to the promotion of functional recovery of other types of tissue(s), 
such as: neuronal tissue, blood vessels, muscle or cartilage [18].

DPSCs have been used in regenerative therapies in clinical trials. Nakashima 
et al. [18] disclosed an experiment performed on five patients, diagnosed with 
irreversible pulpitis, and no periapical radiolucency in the X-ray analysis. These 
pulps were isolated and then a fraction of them were separated through the addition 
of granulocyte colony-stimulating factor (G-CSF). This fraction called mobilized 
dental pulp stem cells (MDPSCs). These MDPSCs were transplanted with G-CSF 
in an atelocollagen scaffold into devitalized teeth. Patients were followed up at 1, 
2, 4, 12 and 24/28/32 weeks after MDPSCs transplantation. No adverse events or 
toxicity were detected after clinical and laboratory evaluations. The electric pulp 
test (EPT) after 4 weeks demonstrated a positive response. The signal intensity of 
magnetic resonance imaging (MRI) of the regenerated tissue after 24 weeks was 
similar to those in control group. Finally, cone beam computed tomography dem-
onstrated functional dentin formation in three of the five patients [19]. In another 
study, DPSCs were isolated from inflammatory dental pulp tissue (thus renaming 
them as DPSCs-IPs), loaded with a β-tricalcium phosphate scaffold, and engrafted 
into the periodontal intrabone defect area in the root furcation of two patients, 
with combined periodontal–endodontic lesions with pocket depth from 5 to 6 mm. 
Nine months after the surgical procedure, DPSCs-IPs engraftment and regenera-
tive effect was detected on both patients [20]. In a different study, 17 systemically 
healthy patients (7 assisted to the 1-year follow-up) were subjected to extraction 
of their third molars for isolation of DPSCs. After this the cells were seeded onto 
a collagen sponge scaffold, which was then used to fill the injury site left by the 

Figure 2. 
PRISMA flow diagram for the bibliographic electronic search conducted on PubMed central.
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Name Niche Biomarkers 

expressed

Biomarkers not 

expressed

Differentiation in vitro Tissue Formation in vivo Clinical Trials human

DPSCs Dental pulp, can 

be harvested from 

wisdom teeth or 

other teeth removed 

from orthodontic 

reason

CD13, CD29, 

CD44, CD70, 

CD73, CD90, 

CD105, CD146 

and CD166

CD14, CD31, 

CD34, CD35, 

CD45, CD117, 

CD133, CD144, 

CD271 and 

HLA-DR

Osteoblasts, 

chondrocytes, 

myocytes, 

cardiomyocytes, active 

neurons, melanocytes, 

and hepatocyte-like 

cells.

Transplantation of DPSCs seeded to fibroin 

scaffolds along with human amniotic fluid 

stem cells into rats to promote regeneration 

of critical-size calvarial defects showed bone-

regeneration and higher expression of dental 

markers DPSCs cultured onto human treated 

dentin and transplanted into the dorsum of 

mice showed generation of dentin-like tissue 

and expression of dentin markers DSPP 

and BMP-1 Dentin/pulp-like structures are 

generated after transplantation of CD146-

positive, CD146-negative and unsorted 

DPSCs into immunocompromised rats, with 

a higher degree of generation displayed by the 

first group.

Dentin formation after 

transplantation with an 

atelocollagen matrix and a 

G-CSF supplementation into a 

pulpectomized teeth.

Engraftment and regenerative 

effect after transplantation 

of DPSCs isolated from 

inflammatory dental tissue 

mixed with a β-tricalcium 

phosphate matrix.

Alveolar bone and periodontal 

tissue reparation after 

transplantation of autologous 

DPSCs into the injury site 

left by the extraction of 

mandibular third molars.

DFSCs Dental follicle, ecto-

mesenchymal tissue 

that surrounds 

the developing 

tooth germ prior to 

eruption

CD29, CD44, 

CD73, CD90, 

CD105, CD146, 

HLA-1, 

NOTCH-1, 

STRO-1 and 

Nestin

CD14, CD25, 

CD28, CD34, 

and CD45

Osteoblasts, 

chondrocytes, 

adipocytes, fibroblasts, 

cementoblasts and 

hepatocyte-like cells.

New bone formation when transplanted to 

a surgically-created cranial bone defect on 

immunosuppressed rats.

N/A

Dentin-pulp like tissue and cementum-

periodontal ligament complex formed after 

transplantation of DFSCs co-cultured with 

treated dental matrix.

New bone formation when a DFSCs – 

Demineralized bone matrix scaffold 

biocomplex was transplanted into mandibular 

defects of miniature pigs and subcutaneous 

tissue of mice.
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Name Niche Biomarkers 

expressed

Biomarkers not 

expressed

Differentiation in vitro Tissue Formation in vivo Clinical Trials human

SHED Living pulp 

obtained from the 

remaining crown of 

exfoliated deciduous 

teeth

CD29, CD44, 

CD73, CD90, 

CD105, CD146, 

STRO-1 and 

Nestin

CD34 and 

CD271

Osteoblasts, adipocytes, 

chondroblasts, 

angiogenic endothelial 

cells, hepatocyte-like 

cells and neuron-like 

cells.

Substantial bone formation after 

transplantation of SHED-HA/TCP 

biocomplex in critical-size calvarial defects 

in mice.

An interventional clinical 

trial using scaffold-free 

SHED-derived pellets for 

the revitalization of young 

immature permanent teeth 

with necrotic pulps is yet to be 

published.

Transplantation of SHED seeded in tooth 

slice/scaffolds differentiated into functional 

odontoblasts that generated tubular dentin.

Abbreviations: DPSCs: Dental Pulp Stem Cells; DFSCs: Dental Follicle Stem Cells; SHED: Stem Cells from Human Exfoliated Deciduous Teeth; N/A: not applicable or determined.

Table 1. 
Principal characteristics of Oro-dental-derived MSCs: DPSCs, DFSCs and SHED.
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extraction of the mandibular third molars. The progression of the treatment was 
evaluated after three months, with a vertical alveolar bone repair and a complete 
reparation of the periodontal tissue. Furthermore, after histological analysis it was 
clear that complete regeneration of bone occurred at the injury site, and optimal 
bone regeneration was evident one year after the grafting [21]. Beyond the evident 
supporting the use of DPSCs on dental regeneration applications, it has been 
described that DPSCs could aid in the regeneration of tissues non-related with 
oro-dental structures, such as corneal epithelium, central nervous system tissues, 
craniofacial bone, among other examples [22–25].

1.2 Dental follicle stem cells

The dental follicle, has been identified as a source of stem cells and lineage-com-
mitted progenitor cells for cementoblasts, odontoblasts and periodontal ligament 
cells [12]. During cementogenesis, the inner and outer enamel epithelia fuse to form 
the bi-layered Hertwig’s epithelial root sheath (HERS), which induces the dif-
ferentiation of the dental follicle stem cells (DFSCs) into cementoblasts and odon-
toblasts [26]. DFSCs are thought to be the origin of the periodontum, (including 
cementum, periodontal ligament and alveolar bone) (Table 1). DFSCs are plastic 
adherent cells that are positive for the MSCs biomarkers CD29, CD44, CD73, CD90, 
CD105, CD146, HLA-1, NOTCH-1, STRO-1 and Nestin, while being negative for the 
hematopoietic markers CD14, CD25, CD28, CD34, and CD45 [27–29]. Yildrim et al. 
[26] proved the capacity of DFSCs to differentiate in vitro into osteoblasts, chon-
drocytes, adipocytes, and other cell types too, such as fibroblasts, cementoblasts 
and hepatocyte-like cells [27, 30, 31]. Regarding to in vivo experimentation, DFSCs 
have been reported to support new bone formation after the transplantation to a 
surgically cranial bone defect on immunosuppressed rats [26]. In another study, a 
treated-dentin matrix (TDM) was obtained from extracted premolars, and used as  
a scaffold for isolated and cultured DFSCs, from extracted wisdom teeth in humans. 
An in vitro experiment, showed an increase of the expression of DMP-1 and BSP the 
co-culture with TDM liquid extract in comparison with DFSCs co-cultured groups 
with HA/TCP liquid extract and DFSCs without co-culture, reflecting an up-
regulation of formation and mineralization of dentin. Results have also been seen on 
a in vivo experiment, that showed the implantation of the TDM-DFSCs biocomplex 
resulted in the formation of dentin-pulp like tissue and cementum-periodontal 
ligament complex, with the expression of tooth root-related antibodies on the 
regenerated tissues.

The presence of human mitochondria in a model mouse indicates that the 
presence of TDM-DFSCs biocomplex could participate in tooth regeneration [32]. 
Kang et al., [32] transplanted a biocomplex of a demineralized bone matrix scaffold 
and human DFSCs, both isolated from fresh dental follicle and cryopreserved, into 
mandibular defects of miniature pigs and subcutaneous tissues of mice. Eight weeks 
after, the transplanted DFSCs generate bones when it was compared to the original 
size of the mandibular defects, with a high expression of osteocalcin and VEGF 
(Vascular endothelial growth factor). Furthermore, a decrease of CD4 expression 
was measured on the DFSCs-transplanted tissues compared to the control model, 
this could demonstrate the existence of an immunomodulatory capability [33].

1.3 Stem cells from human exfoliated deciduous teeth

In 2003, a team formed by Dr. Miura’s, demonstrate the presence of stem cells 
population on an isolated deciduous tooth. These stem cells were named stem cells 
from human exfoliated deciduous teeth (SHED) [34].
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As long as it exists the deciduous teeth, as biologically discarded tissues, their 
collection and isolation are far from ethical concerns around the scientific com-
munity. Miura et al. [33] discovered that SHED showed a significantly proliferation 
and number of populations compared to bone marrow mesenchymal stem cells 
(BMMSCs) and DPSCs.

SHED express biomarkers such as CD29, CD31, CD44, CD73, CD90, CD105, 
CD146, STRO-1 and Nestin [34–37]. A complete proteomic landscaping was 
conducted on these oro-dental derived stem cells, with the identification of 2032 
proteins, with 1516 of them expressed also on periodontal ligament stem cells 
(PDLSCs). Furthermore, a more in-depth analysis of the proteomic profile on 
SHED, showed that they predominantly expressed molecules that are involved in 
organizing the cytoskeletal network, cellular migration and adhesion. This cor-
responds with more results presented on the same research, where SHED proved to 
have a strong migration capacity during wound-healing assays [38].

SHED can differentiate in vitro into osteoblasts, adipocytes, chondroblasts, 
angiogenic endothelial cells, hepatocyte-like cells and neuron-like cells [35, 36], 
and it has been proven that they can differentiate in vivo into adipogenic, chon-
drogenic and odontogenic lineages in mice models (Table 1) [39–41]. A large 
quantity of research has been conducted about the capacity displayed by SHED 
to aid on regenerative therapy. Seo et al. [41] performed an experiment to eluci-
date if SHED-mediated bone reparation could be used for therapeutic purposes, 
generating critical-size calvarial defects in immune-compromised mice and later 
transplanting a SHED-HA/TCP biocomplex into the defect areas. The defects were 
repaired after the treatment with bone formation [42]. This kind of research has 
been conducted in swine deciduous teeth, with similar results, after 6 months of 
the surgical procedure [43]. In another research, SHED was seeded on tooth slice/
scaffolds and implanted into immunodeficient mice subcutaneously. The results 
showed the capacity of SHED to differentiate into functional odontoblasts, while in 
vitro tests studies, demonstrate, that they can organized into capillary-like sprouts 
and expressed endothelial markers such as CD31, vascular endothelial cadherin 
(VE-cadherin) and vascular endothelial growth factor receptor – 2 (VEGFR-2, 
when are inducted vascular endothelial growth factor (VEGF) [35]. Despite the 
lack of clinical trials; a recent study showed that the preparation of a biocomplex 
comprising SHED and a Polyhydroxybutyrate (PHB)/ Chitosan /Nano-bioglass 
(nBG) scaffold fabricated through electrospinning allowed SHED to differentiate 
into odontoblast-like cells after the induction with Bone Morphogenetic Protein 
– 2 (BMP-2), with a 6-fold increase in the expression of DSPP genes and collagen 
type-1 and a 2-fold expression of alkaline phosphatase (ALP) compared to the 
control [44]. This type of investigation shows promising results for the use of SHED 
in oral regenerative therapies, however, more studies are needed in this field [45].

1.4 Periodontal ligament stem cells

The periodontal ligament (PDL), a specialized connective tissue, is developed 
from dental follicle tissue during tooth formation and is the responsible for the 
regeneration of the adjacent periodontal structures. Although this regeneration 
process involves and depends of the recruitment of stem cells that differentiate into 
fibroblasts, cementoblasts or osteoblasts [46, 47]. Periodontal ligament stem cells 
(PDLSCs) were first isolated from third molars and since then, they have shown to 
be able to differentiate into periodontal cells, cementoblasts, adipocytes, collagen-
producing cells and retinal ganglion-like cells [48–50]. PDLSCs express biomarkers 
such as CD13, CD29, CD44, CD73, CD90, CD105, CD166 and Nestin (Table 2). The 
expression of the MSCs biomarker CD146 is disputed, as some sources detected 
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Name Niche Biomarkers 

expressed

Biomarkers not 

expressed

Differentiation in vitro Tissue Formation in vivo Clinical Trials human

PDLSCs Periodontal ligament, 

soft connective tissue 

between the cementum 

and the inner wall of the 

alveolar bone socket

CD13, CD29, CD44, 

CD73, CD90, CD105, 

CD166 and Nestin. 

CD46 expression is 

disputed

CD14, CD19, 

CD34, CD45, 

CD117, CD133, 

CD144, CD271, 

STRO-1 and 

HLA-DR

Periodontal cells, 

cementoblasts, 

adipocytes, collagen-

producing cells, retinal 

ganglion-like cells, 

cells of neurogenic, 

cardiomyogenic, 

chondrogenic and 

osteogenic lineages.

A cementum/PDL-like complex 

was generated after subcutaneous 

transplantation into the dorsal surface 

of mice.

The transplantation of a 

biocomplex comprising 

PDLSCs and the bone 

grafting material 

CALCITITE 4060–2 

into deep intrabony 

defects generated 

through the removal 

of inflammatory 

periodontal tissues 

resulted in periodontal 

tissue regain, along 

with decrease in 

probing depth, increase 

in gingival recession 

and attachment gain.

PDL-like tissue with PDLSCs closely 

associated to alveolar bone was 

observed 8 weeks after transplantation 

of a PDLSCs-HA/TCP biocomplex 

into two periodontal defects surgically 

created in the buccal cortex of rat’s 

mandibular molar.

Osteogenic repair of calvarial defects on 

rats was detected after implantation of 

a collagen membrane with PDLSCs and 

conditioned medium.

SCAP Root apical papilla tissue 

on the exterior of the 

root foramen area

CD13, CD44, CD73, 

CD90, CD105, CD146, 

DSPP, Osteocalcin, 

Nestin, Neurofilament 

M, FGFR-1 and 

TGF-β-RI. STRO-1 

expression is disputed

CD34, CD45 and 

HLA-DR

Odontoblast, adipocytes 

and hepatocyte-like cells.

A 3-D nerve-like tissue with axon and 

myelin structures can be obtained 

culturing SCAP using an integrated 

bioprocess composed of polyethylene 

glycol microwell-mediated cell spheroid 

formation and subsequent dynamic 

culture in a high aspect ratio vessel 

bioreactor.

N/A

Hard tissue of uncertain characteristics 

is formed after transplantation of a 

SCAP/HA biocomplex into immuno-

compromised mice.

A pulp-like tissue with well-established 

vascularity and a continuous layer of 

dentin-like tissue were induced after 

insertion of SCAP in tooth fragments 

and subsequent transplantation into 

immuno-deficient mice.
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Name Niche Biomarkers 

expressed

Biomarkers not 

expressed

Differentiation in vitro Tissue Formation in vivo Clinical Trials human

TGPCs Tooth germ of third 

molars

CD29, CD31, CD73, 

CD90, CD105, 

CD166, VEGFR2, 

VE-Cadherin, vWF, 

Cytokeratin-17, 

Cytokeratin-19 and 

STRO-1

CD14, CD34, 

CD45, CD133 

and CD144

Osteoblasts, neural cells, 

adipocytes, chondrocytes 

and hepatocytes.

New bone matrix formation was 

observed, along with osteocytes and 

an active osteoblast lining in on the 

matrix surface, after transplantation 

of a TGPCs/HA biocomplex into 

immunocompromised mice

N/A

Abbreviations: TGPCs: Tooth-Germ Progenitor Cells; SCAP: Stem Cells from the Apical Papilla; PDLSCs: Periodontal Ligament Stem Cells; N/A: not applicable or determined.

Table 2. 
Principal characteristics of Oro-dental-derived MSCs: PDLSCs, SCAP and TGPCs.
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it, while other sources did not [46, 47]. In the previously mentioned proteomic 
landscape performed by Taraslia et al., [37] 3235 proteins were identified on 
PDLSCs, where 1721 were found only in PDLSCs and 1516 were shared with SHED. 
It is interesting that researchers who performed this proteomic profile found that 
the recorded proteins found on PDLSCs, are tightly involved in cellular growth, 
proliferation and in the replication, recombination and repair of the DNA [38]. To 
explore the regenerative potential of these stem cells, PDLSCs were mixed with HA/
TCP ceramic particles, and transplanted into two periodontal defects, that had been 
surgically created in the buccal cortex in rat’s molar. In the first defect a cementum/
PDL-like complex characterized by a layer of aligned cementum-like tissue and 
associated PDL-like tissues was generated. In the second defect, 6–8 weeks after 
transplantation a PDL-like tissue was observed, with PDLSCs associated with the 
alveolar bone. This may suggest a potential functional role in periodontal tissue 
regeneration [12, 48]. A recently study demonstrate an osteogenic capability when 
the collagen membrane is used in conjunction with human PDLSCs to repair a cal-
varia defect of a rat [51]. In a retrospective pilot study, three male patients between 
25 and 42 years with periodontal disease were selected for transplantation of 
PDLSCs. The researchers found a decrease in probing depth during post-operatory 
controls with a follow-up of 72 months [52].

1.5 Stem cells from the apical papilla

In 2006, a research team led by Dr. Wataru Sonoyama found apical papilla 
tissue on the exterior of the root foramen area, contained a population of stem cells 
identified them as Stem Cells from the Apical Papilla (SCAP). The team generated 
single-cells suspension from third molars of 18–20 years old adult. They proved that 
a transplant of SCAP and PDLSCs could form a root/periodontal complex in a mini-
pig model [53]. A Further study revealed, that this tissue contains less cellular and 
vascular components than dental pulp, although there is a cell-rich zone between 
the apical papilla and the dental pulp [54]. These cells proliferate faster than DPSCs, 
and can differentiate into odontoblast, adipocytes and hepatocyte-like cells. They 
express biomarkers, such as CD13, CD44, CD73, CD90, CD105 and CD146 (MSCs), 
DSPP and osteocalcin (dentinogenic), Nestin and neurofilament M (neurogenic) 
or FGFR-1 (Fibroblast growth factor receptor – 1) and TGF-β-RI (Transforming 
growth factor beta isotype, receptor 1) (Table 2).

The presence of the mesenchymal marker STRO-1 is in doubt, sources exposed 
that it is present in a portion of these stem cells, meanwhile other claims that it is 
not expressed. SCAP could form hard tissue in vitro and in vivo after subcutaneous 
transplantation of a SCAP/Hydroxyapatite biocomplex into immunocompromised 
mice, although the precise characteristics of this hard tissue could not be deter-
mined [55]. Another approach of SCAP on regenerative therapies was conducted 
by Bellamy et al. [55], when a bioactive chitosan-based scaffold with a sustained 
TGF-β-releasing nanoparticles system was prepared, to evaluate if it would promote 
migration and enhances differentiation of SCAP. The study showed that the scaffold 
was releasing TGF-β in a sustained manner thus facilitating delivery of a critical 
concentration of this molecule at the opportune time, demonstrating properties 
conducting to cellular activities and a bioactive time of up to 4 weeks. SCAP showed 
greater viability, migration and biomineralization when it is compared with the 
control group.

SCAP displays a promising battery of characteristics, that are useful for regen-
erative engineering purposes, but for stem cell population, there is a substantial lack 
of clinical studies that needs to be experienced sooner than later [56].
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1.6 Tooth-germ progenitor cells

The tooth germ, is an aggregation of progenitor cells that forms a tooth, con-
sisting of the dental papilla, the dental follicle, and the enamel organ [12]. It has 
been determined that a novel population of stem cells can be isolated from a third 
molar, called: tooth-germ progenitor cells (TGPCs). These cells have notorious 
proliferative and a multipotent nature, which could be explained due to the fact 
that tooth germ of third molars are reported to develop after the age of 6 years, 
but remain undifferentiated until this time. TGPCs are able to differentiate into 
osteoblasts, neural cells, adipocytes, chondrocytes and hepatocytes [57, 58]. This 
capacity, raises interesting possibilities, as it has been proven that these cells can 
engraft successfully in carbon tetrachloride (CCl4)-treated liver injured rats and 
help them to restore the liver function after 4 weeks [57]. TGPCs express the 
MSCs biomarkers CD29, CD73, CD90, CD105, CD166 and STRO-1 (at least in 
parts of their total population), along with CD31, VEGFR2, VE-Cadherin and 
vWF (endothelial cell markers) and Cytokeratin-17, Cytokeratin-19, Epithelial cell 
adhesion molecule and vimentin (epithelial cell markers). TGPCs respond well 
with different materials scaffolds, (Poly ε-caprolactone, poly L-lactide and a mix 
of both) (Table 2) [59]. TGPCs and TGPCs transfected with Venus (a variant of 
green fluorescent protein) were implanted with HA into immunocompromised 
rats. New bone formation in the presence of osteocytes was observed in the newly 
formed bone matrix and an active osteoblast lining on the matrix surface [57]. As it 
can be noted, TGPCs display characteristics that make them a suitable option to be 
used for regenerative therapies, but it is clear that more studies are needed, before 
their use on patients.

1.7 Gingiva-derived stem cells

The gingiva is an oral tissue overlaying the alveolar ridge and retromolar region 
that is recognized as a biological barrier and a fundamental component of the oral 
mucosal immunity [12]. The gingival tissue is constantly subjected to thermal, 
chemical, mechanical and bacterial aggression. However, it has the capacity to 
restore itself completely, if the destruction of its collagen network occurs. This 
unique healing capacity indicates that this tissue should have a significant amount 
of stem cells [60]. The isolation and characterizations of a subpopulation of 
gingival fibroblasts that possess stem cells characteristics, called Gingiva-derived 
Mesenchymal Stem cells or Gingiva-derived Stem cells (GMSCs), was described by 
many different research groups [60–63]. GMSCs are a multipotent type MSCs, that 
can differentiate into adipogenic, chondrogenic and osteogenic lines, expressing 
markers such as CD29, CD44, CD73, CD90 and CD105; (Table 3) Subpopulations 
of these cells can express the markers CD146 and STRO-1, that are widely present 
by other oro-dental derived MSCs [60, 62–64].

It is important to notice the immuno-modulatory capacity displayed by GMSCs. 
These cells are capable to: elicit a potent inhibitory effect on T-cell proliferation [12], 
generate distinct immune tolerance [61, 65], elicit M2 polarization of macrophages 
through cytokine modulation and an increase of the expression of a mannose recep-
tor [66], and alleviate the sensitization and elicitation of contact hypersensitivity 
[67], displaying many other immuno-modulatory capabilities as well [12]. There 
have been different in vitro studies that evaluate the potential of GMSCs related to 
tissue generation. Zhang and colleagues [60] demonstrated that a GMSCs-HA/TCP 
biocomplex incubated in osteogenic supplemented with collagen gel, could raise 
bone-related proteins such as osteocalcin, osteopontin and collagen [61].
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Name Niche Biomarkers 

expressed

Biomarkers not 

expressed

Differentiation 

in vitro

Tissue Formation in vivo Clinical Trials human

GMSCs Gingival tissue 

overlaying the 

alveolar ridges 

and retromolar 

region

CD29, CD44, 

CD73, CD90 and 

CD105. CD146 

and STRO-1 are 

expressed by 

fractions of their 

population

CD11b, CD19, 

CD34, CD45, 

CD117, CD200, 

CD271 and 

HLA-DR

Adipogenic, 

chondrogenic, 

neurogenic, 

entothelial and 

osteogenic lines.

A GMSCs-HA/TCP biocomplex 

incubated in osteogenic medium and 

supplemented with collagen gel raised 

the levels of bone-related proteins 

when transplanted subcutaneously 

into immunocompromised mice, 

suggesting new bone formation. This 

can also be observed after subcutaneous 

transplantation of a GMSCs/collagen 

gel biomatrix in the dorsal surface of 

immunocompromised mice.

N/A

Newly formed bone with well-

mineralized trabecular structure and 

an increase of bone-related proteins 

expression were found at the inner site of 

mandibular defects of Sprague Dawley 

rats after transplantation of a GMSCs/

collagen gel biomatrix.

New bone formation and an increase of 

bone-related proteins expression was 

found in critical-size calvarial defects 

in rat model after transplantation of a 

GMSCs/collagen gel biomatrix.

Transplantation of a 3-D Poly-(lactide) 

scaffold enriched with GMSCs and 

GMSCs-CM on this same model showed 

a better osteogenic capacity compared to 

controls, repair of the calvarial defect, 

and upregulated genes involved in 

ossification and regulation of ossification.
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Name Niche Biomarkers 

expressed

Biomarkers not 

expressed

Differentiation 

in vitro

Tissue Formation in vivo Clinical Trials human

aBMMSCs Bone marrow 

of the alveolar 

process

CD29, CD44, 

CD73, CD90, 

CD105 and 

CD146. A 

fraction of the 

population 

express STRO-1

CD11b, CD14, 

CD19, CD34, 

CD45, CD79α nor 

HLA-DR

Osteogenic, 

chondrogenic and 

adipogenic lines.

New bone formation along with cuboidal 

osteoblasts lining the surface of its margin 

was observed after transplantation of 

aBMMSCs mixed with HA/TCP ceramic 

powder into mice.

N/A

Adipocityc fatty marrow support 

originated from aBMMSCs could also 

be observed around the site of the 

transplant.

Substantial new bone and osteocyte 

formation was found after 

transplantation of aBMMSCs mixed with 

matrixes with different ratio of HA/TCP 

into immunocompromised mice.

Newly formed cellular mixed fiber 

cementum, woven/lamellar bone and 

periodontal ligament was observed 

after transplantation of a biocomplex 

comprising aBMMSCs seeded into a 

chitosan/anorganic bovine bone (C/ABB) 

scaffold into beagle dogs.

Abbreviations: aBMMSCs: Alveolar Bone Marrow Mesenchymal Stem Cells; GMSCs: Gingiva-derived Mesenchymal Stem Cells; N/A: not applicable or determined.

Table 3. 
Principal characteristics of Oro-dental-derived MSCs: GMSCs and aBMMSCs.
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GMSCs can generate tissues from neural crest cells, during embryonic develop-
ment [65]. This data is supported on a study in which GMSCs were injected (subcu-
taneously) in four different immunodeficient Rag2 mice. Results showed no signs of 
tumors, into different organs after 6 months [64]. In another investigation, GMSCs 
were mixed with collagen gel matrix and transplanted (subcutaneously), into the 
dorsal surface of immunocompromised mice model. The results showed higher 
levels of osteopontin and collagen when it was compared with the control group, 
(supporting the findings of Zhang and colleagues in 2009). Also, this investigation 
proved a newly bone formation with mineralized trabecular tissue, after perform-
ing the transplantation of GMSCs, but this time into mandibular rat defects [68].

Another interesting capacity of GMSCs in regenerative therapies, is related to 
the use of the secretome (SM) in their cultures It has been proven, that implanta-
tion of a three-dimensional Poly- (lactide) scaffold enriched with GMSCs-SM on 
rat calvaria defect model, showed a better osteogenic capacity compared to group 
controls [69]. Although further studies are needed to prove that GMSCs can be 
useful in pre-clinical and clinical trials too, it is clear that these MSCs have great 
potential in orofacial tissue engineering, regeneration and repair.

1.8 Alveolar bone marrow mesenchymal stem cells

Bone Marrow Mesenchymal Stem Cells, are the predominant MSCs used in 
clinical studies for craniofacial tissue regeneration, with a high osteogenic ability 
[5]. Clinical trials regarding in the use of BMMSCs obtained from iliac bone, have 
shown promissory results, other evidence suggests that for craniofacial regenera-
tion, it may be a better option to use craniofacial tissues as a cell source [70].

It has been shown that contrary to what happens with iliac bone marrow extrac-
tion, alveolar bone marrow MSCs (aBMMSCs) can be easily obtained from alveolar 
bone, during a dental surgery as: wisdom tooth extraction, crown lengthening sur-
gery, and other examples. 0.5 cc of bone marrow are needed to predictably isolate 
these cells [71, 72], emerging as an interesting alternative in the craniofacial field.

BMMSCs and aBMMSCs have no significant differences on their osteogenic 
potential, as measured mRNA levels of osteocalcin, osteopontin, and bone sialopro-
tein are similar in both populations, but there are differences on their chondrogenic 
and adipogenic potentials. aBMMSCs are reported to differentiate with more diffi-
culties toward these lines than BMMSCs [73]. aBMMSCs express the markers CD29, 
CD44, CD73, CD90, CD105 and CD146 while do not express the markers CD11b, 
CD14, CD19, CD34, CD45, CD79α nor HLA-DR, consistently showing the classic 
MSCs marker pattern (Table 3). A fraction of the cell population (approximately 
3%) also expresses the marker STRO-1, a trend that can also be observed in other 
oro-dental derived MSCs [70, 74–76].

Several in vitro and in vivo studies have been performed with these stem cells. 
aBMMSCs mixed with HA/TCP ceramic powder were transplanted into immu-
nodeficient mice. 8 weeks after transplantation a significant new bone formation 
could be observed around the material, and cuboidal osteoblasts were seen lining 
the surface of the margin of formed bone. In a different experience, aBMMSCs 
were transplanted into the left and right dorsal surfaces of 24 immunocompro-
mised mice. The experimental groups consisted in: aBMMSCs mixed with a 
60%HA/40%TCP (MBCP) matrix, aBMMSCs mixed with a 20% HA/80% TCP 
(MBCP plus) matrix and aBMMSCs mixed with deproteinized sterilized bovine 
bone (Bio-Oss). Substantial new bone and osteocyte formation as noted in the first 
two groups, while in the third case the new bone formation was poor. Similarly, 
positive immunostaining for alkaline-phosphatase, RUNX-2, osteocalcin and 
osteopontin was evidenced in the first two groups but only limited expression was 
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found on the third group. It is important to notice that although Bio-Oss gave rise to 
the lower quantity of new bone, it also was associated with low osteoclasts forma-
tion, while both MBCP and MBCP plus induced a higher formation of these cells, so 
Bio-Oss cannot be discarded as a potential material for bone regeneration [77].

The potential of this stem cells in the periodontal regeneration field, was 
explored by seeding them into a chitosan/anorganic bovine bone (C/ABB) scaffold, 
and transplanting this biocomplex into six male beagle dogs with one-wall critical 
size periodontal defects. The experimental group that had the C/ABB seeded with 
aBMMSCs exhibited newly formed cellular mixed cementum, woven/lamellar bone 
and periodontal ligament in higher levels than the different controls used in the 
experiment [71].

1.9 Salivary gland stem cells

The use of salivary gland stem cells (SGSCs) in regenerative therapy is widely 
inclined toward the restoration of the function of salivary glands. When their func-
tion is impaired and saliva production decreases, current therapies are limited to 
bring secretagogues and artificial saliva, to restore salivary gland function.

The search of stem cells that can restore the lost function, has come to the explora-
tion of salivary gland stem cells (SGSCs) as a novel resource [78, 79]. SGSCs express 
the markers CD24, CD29, CD34, CD44, CD49f, CD73, CD81, CD90, CD105, CD133, 
CD146, CD166, STRO-1, Nestin and aldehyde dehydrogenase (ALDH) (Table 4). 
There is a controversy if they express CD117 marker or not, as it was reported that 
SGSCs that were isolated from minor salivary glands do not express this marker  
[78, 80, 81]. These cells are capable of differentiate toward the classic MSCs lines; 
osteogenic, adipogenic and chondrogenic, and into amylase-expressing cells [82].

A study demonstrates the ability of SGSCs to restore the function of a damage 
salivary gland in irradiated rats. After one day, SGSCs were transplanted to each 
gland through intra-glandular injection, measuring their body weight and saliva 
flow rate during 60 days. The body weight of the rats decreased the first week, 
but after that, consistently increased until day 60, with significant difference 
respecting to the control group. Furthermore, the acinar and duct structures were 
evaluated, along with the composition of their mucosubstances. The parenchyma 
of the salivary glands of un-treated rats were intact, as well the parenchyma of the 
damaged-rats that were treated with SGSCs, while the parenchyma of the radiated 
but un-treated group showed vacuoles and a disrupted acinar structure. One week 
after the treatment, apoptotic cells could be observed in the un-treated damaged-
rats, while in the treated group they were not present [82]. In another study, with 
the same protocol but differences irradiated dose and transplantation time, the 
results showed that SGSCs can restore homeostasis of salivary glands by a combina-
tion of engraftment, proliferation, differentiation and potential stimulation of 
recipient cells [80].

It is apparent that SGSCs are a potential useful solution for patients with 
xerostomia, thus requiring further studies to prove if these promissory results are 
replicated in pre-clinical or clinical interventions.

1.10 Periosteum-derived mesenchymal stem cells

The periosteum is in direct contact with the bone surface and contains a mixed 
cell population that includes fibroblasts, osteoblasts, pericytes and a subpopulation of 
MSCs known as Periosteum-derived stem cells (PDSCs) [83]. PDSCs (Table 4) express 
the biomarkers CD9, CD13, CD29, CD49e, CD44, CD54, CD73, CD 90, CD105, CD166 
and HLA-ABC, while not expressing the markers CD14, CD31, CD33, CD34, CD38, 
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Name Niche Biomarkers 

expressed

Biomarkers not 

expressed

Differentiation  

in vitro

Tissue Formation in vivo Clinical Trials human

SGSCs Major, parotid, 

submandibular, 

sublingual and 

minor salivary 

glands

CD24, CD29, CD34, 

CD44, CD49f, CD73, 

CD81, CD90, CD105, 

CD133, CD146, 

CD166, STRO-1, 

Nestin and ALDH. 

CD117 expression is 

disputed

CD45 and CD271 Osteogenic, 

adipogenic, 

chondrogenic, and 

amylase-expressing 

cells.

In several different studies it has been 

shown that the transplantation of SGSCs 

toward previously irradiated salivary 

glands restore their function (measured by 

saliva flow rate), and promote a decrease 

of their degeneration by a combination of 

engraftment, proliferation, differentiation 

and potential stimulation of recipient cells. 

This suggests that they have potential to 

differentiate toward cell lines that conform 

the acinar and/or ductal structures of 

salivary glands.

N/A

PDSCs Inner cell-rich 

cambium layer of 

the outer lining of 

long bones. Can 

be found on the 

upper vestibule, 

lower vestibule or 

hard palate

CD9, CD13, CD29, 

CD49e, CD44, CD54, 

CD73, CD 90, CD105, 

CD166 and HLA-ABC

CD14, CD31, 

CD33, CD34, 

CD38, CD45, 

CD106, CD117, 

CD133 and 

HLA-DR

Osteogenic, 

adipogenic and 

chondrogenic lines.

iPSCs (induced pluripotent stem cells) 

derived from PDSCs and un-differentiated 

PDSCs were transplanted under the kidney 

capsules of diabetic mice. Hyperglycemia 

and glucose tolerance improved, and 

human insulin was detected on their serum 

and kidney sections for both groups. These 

results suggest that these stem cells could 

engraft, proliferate and differentiate when 

subjected to these conditions.

N/A

Autologous PDSCs in a Collagen I/Collagen 

II matrix were transplanted to Beagle 

dogs. Bone fill within the limits of implant 

threads and bone-implant contact was 

observed after transplantation. These 

results were not statistically similar that the 

ones yielded with the transplantation of 

BMMSCs using the same methodology.
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Name Niche Biomarkers 

expressed

Biomarkers not 

expressed

Differentiation  

in vitro

Tissue Formation in vivo Clinical Trials human

OESCs Basal layer of 

the oral mucosal 

epithelium

CD29, CD44, CD73 

and CD90. Subsets of 

their population are 

positives for CD105, 

CD146 and STRO-1

CD34 and CD45 Osteogenic, 

chondrogenic, 

adipogenic and 

neurogenic lines.

in vivo differentiation potential toward 

corneal tissues has been thoroughly 

researched. Cultivated oral mucosal 

epithelial cell sheets (COMECS) have 

shown that OESCs can differentiate 

into stratified epithelial cells upon 

transplantation into rabbit corneal 

surface using this methodology, being 

well-attached to the host corneal stroma 

and able to survive up to two weeks after 

transplantation.

The integrity of the ocular 

surface of eyes with total 

bilateral limbal stem cell 

deficiency was restored 

for at least 2 years after 

transplantation of OESCs 

cultured with human amniotic 

membrane as biological 

substrate.

IPAPCs Inflamed peri-

apical tissues 

after endodontic 

infection

CD73, CD90 and 

CD105

CD45 Adipogenic and 

osteogenic lines.

Mineralized tissue was observed 8 weeks 

after transplantation of a IPAPCs-HA/TCP 

biocomplex into mice.

N/A

LESCs* Second and 

third layer of the 

epithelium cell 

layer at the base of 

the inter-papillary 

pit

Bmi-1 N/A Keratinized epithelial 

cells.

N/A N/A

Abbreviations: SGSCs: Salivary Gland Stem Cells; PDSCs: Periosteum-derived Mesenchymal Stem Cells; OESCs: Oral Epithelial Stem Cells; IPAPCs: Inflamed Periapical Progenitory Cells; LESCs: 
Lingual Epithelial Stem Cells; N/A: not applicable or determined; *status as MSCs not yet conclusive.

Table 4. 
Principal characteristics of Oro-dental-derived MSCs: SGSCs, PDSCs, OESCs, IPAPCs and LESCs.
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CD45, CD106, CD117, CD133 and HLA-DR. PDSCs can differentiate toward to: osteo-
genic, adipogenic and chondrogenic line [84]. It has been proven that PDSCs express 
clonogenical and proliferative activity independent of the age and the donor site [85].

In 2015, a three-dimensional culture system designed for mass production of 
PDSCs. The cells formed spheres by spontaneous aggregation, thus passing from a 
two-dimensional culture to a three-dimensional system. The spheres retained their 
viability and proliferation ability, even when the culture was scaled-up to 125 mL 
Erlenmeyer flasks. These results open up the possibility of developing a secure, fast 
and economic method to achieve high MSCs biomass for future clinical applica-
tions [86]. In another study, PDSCs were isolated, and then subjected to a three-
step differentiation process to become: Induced Pluripotent Stem Cells (iPSCs; 
pluripotent stem cells generated artificially via genetic manipulation of somatic 
cells). Insulin release by iPSCs was confirmed in the immunocytochemical analysis. 
Hyperglycaemia and glucose tolerance of these mice were improved and human 
insulin was detected on their serum and kidney sections. Transplantation of undif-
ferentiated PDSCs also improved blood glucose levels and increased serum human 
insulin levels [87]. In another interesting study PDSCs and BMMSCs were harvested 
from seven Beagle dogs. After this, the animals were subjected to teeth extraction, 
and after three months, implants were mixed with a Collagen I/Collagen II sponge 
as a scaffold and transplanted to a bone dehiscence created for this purpose. Both 
stem cells populations showed osteogenic potential in vitro evidenced by mineral 
nodule formation and expression of bone markers, and after transplantation both 
had similar bone fill within the limits of implant threads and bone-implant contact. 
There was no significant difference between both MSCs, thus presenting a similar 
potential for bone reconstruction [88].

1.11 Oral epithelial stem cells

The oral mucosal epithelium (OME) is a stratified tissue that posse tight 
junction proteins in its supra-basal layer and hemidesmosomes in its basal layer. 
These characteristics, which are similar to the characteristics of corneal epi-
thelium, define OME as a potential source of material for cross-therapies in the 
reparation of damaged corneal surfaces [89]. Furthermore, the cultivated oral 
mucosal epithelial transplantation (COMET), a technique that uses OME to repair 
other tissues, has been used to repair intraoral mucosal defects and esophageal 
mucosa during endoscopic mucosal resection procedures, thus suggesting a wide 
variety of potential applications [90, 91]. The potential for regenerative therapies 
displayed by OME is related to the presence of a cell population with stemness 
potential, called Oral epithelial stem cells (OESCs), located in the basal layer of 
the OME [92].

OESCs are undifferentiated cells, ultra-structurally and biochemically, that 
retain a high capacity of long-term self-renewal and proliferative potential, that 
response to injury and certain growth stimuli [93]. These stem cells are capable to 
differentiate toward osteogenic, chondrogenic, adipogenic and neurogenic lines 
[94]. Regarding their surface markers, there are positive for CD105, CD146 and 
STRO-1, while they are consistently positive for CD29, CD44, CD73 and CD90 
and negative for CD34 and CD45 (Table 4) [95]. Furthermore, the p75-positive 
subset of the population displayed higher in vitro proliferative capacity and clonal 
growth potential [96].

The use of COMECS for ocular transplantation has given good results, as this 
tissue has showed to be able to survive two weeks after being attached to rabbit 
corneal surfaces, being well-attached to the host corneal stroma, and involving 
differentiated stratified epithelial cells [95]. Nonetheless, alternative treatments 
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that do not rely on cell sheets have also been studied. A clinical grade fibrin gel for 
the culture of OESCs was prepared utilizing fibrinogen and thrombin that served as 
base for the culture of OESCs previously harvested from oral mucosa. Tranexamic 
acid was used to prevent the digestion of the fibrin gel during the culture. A clini-
cal trial was conducted to prove if cultivated oral mucosa epithelium expanded, 
without depending of cell sheets, could achieve improvement in two patients with 
histologically confirmed bilateral total limbal stem cell deficiency (LSCD). The use 
of OESCs for the regeneration of other tissues should be explored further, but these 
stem cells definitely have the potential to cause an impact regarding regeneration of 
damaged tissues.

1.12 Inflamed periapical progenitory cells and lingual epithelial stem cells

Inflammation of the periapical progenitory cells (IPAPCs), are MSCs that can be 
found in inflamed periapical tissues. It was explored that these cells can differenti-
ate into adipogenic and osteogenic lines. Also, they proved that after mixing an 
IPAPCs culture with an HA/TCP matrix resulted in the appearance of mineralized 
tissue [97]. Regarding their surface marker expression, IPAPCs are positive for the 
classical MSCs markers CD73, CD90 and CD105, but only 66.3% of their population 
co-expressed the three of them at the same time (Table 4). Nevertheless, IPAPCs 
are consistently negative for CD45 [98]. Even though IPAPCs are difficult to harvest 
than the previously described MSCs, because they inhabit exclusively on inflamed 
periapical tissue, while the majority of the aforementioned oro-dental derived 
MSCs can be harvested from healthy patients, more studies should be conducted to 
definitely assess their characteristics and potential use on regenerative therapies.

The surface of the tongue is covered with stratified squamous cell layers, and the 
lingual epithelium is continuously replaced throughout the life of mammals, which 
suggest the presence of stem cells [99].

Lingual epithelial stem cells (LESCs), are located in the basal layer of the 
lingual epithelium. A population of cells that were harvested from the second and 
third layer of the epithelium cell layer at the base of the interpapillary pit, and 
are positive for the marker Bmi-1 (B cell-specific Moloney murine leukemia virus 
integration site 1), that has a role in cell cycle, self-renewal and maintenance of 
hemopoietic and neural stem cells [100].

The Bmi-1 stem cells, replace keratinized epithelial cells but no the taste bud 
cells. Studies have shown the presence of two types of stem cells (slow-cycling, 
long term stem cells and rapidly proliferating, short term stem cells), with different 
role in tissue maintenance and regeneration. There still unidentified the specific 
biomarkers for short term stem cells, this put in doubt if the mechanism of mainte-
nance exists [100].

2. Combinatorial technology: nano-based stem cell therapy

For example, when dental pulpitis is diagnosed, the indicated treatment is to 
remove the pulp by an endodontic treatment. One of the most promising/emerging 
treatment approach is to regenerate this lost tissue. A study tried to replicate vital 
pulp tissue, with seeding SC from the dental tissue, with promising result. It is yet 
to be developed, an ideal cell-seeding system, due to the nature of the root and root 
canal system [101].

There is a need of regenerative therapies, capable to recover the function of the 
lost tissue due to diseases or trauma. To be a possible option, three elements are 
needed: cells, scaffolds / extracellular matrix and growing factors.
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Tissue engineering it is bringing significant changes in clinical results. Nano-
materials were first explored/used in 2002, for dental reconstruction. The income 
of new membranes in the guided tissue regeneration was the beginning of tech-
niques considering three principal elements: SC, scaffolds and molecules signals. 
The combination of stem cells with nano-structured materials and scaffolds is a 
promising research area [102, 103].

2.1 Growth factors

These proteins generate a stimulus that induce cell growth (regulate, prolifera-
tion and migration) and the receptors binding in cell membrane. In tissue engineer-
ing the most proteins used includes: Hedgehog proteins (HHS), morphogenetic 
proteins (BMPs), interleukins, fibroblast growth factor (FGF) vascular endothelial 
growth factor (VEGF) and tumor necrosis factor (TNF) [104].

BPM have been studied and extensively applied for dental regeneration. These 
proteins can divide into four families (BMP-2/BMP-4, BMP-3/BMP-3B, BMP-5/
BMP-6/BMP-7/BMP-8 and GDF-5/GDF-6/GDF-7), that shows an important function 
in the differentiation of dental biological cells (odontoblast and ameloblast) [104].

2.2 Scaffolds

Scaffolds are biomaterials that provide an optimal environment to cells allowing 
to: migrate, proliferate and differentiate. Biocompatibility is the main characteristic 
(among others as: mechanical strength, surface, pore size, biodegradable), that 
prevents cytotoxicity and inflammatory reactions, allowing an optimal regenerative 
functioning of the biomaterial. Materials with these properties are challenge in the 
tissue engineering field (Figure 3) [102–105].

Hydrogels are highly hydrophilic (due to the presence of carboxyl, amide, 
amino, hydroxyl groups) polymers commonly used as scaffolds, with the ability to 
support cell proliferation, migration and differentiation, letting a correct transport 
if oxygen and nutrient (Figure 3). Their preparation depends on the designed and 
the application, including physical, chemical, irradiation crosslink and free radical 
polymerization. In addition, chitosan and alginate-based hydrogels, demonstrate 
desirable biocompatibility [105, 106].

A common approach to developed a tissue, involves isolation of tissue-specific 
cells, from the patient and harvested in vitro. Cells are expanded and seeded into a 
scaffold of the targeted tissue then, the cell-loaded scaffold is transplanted into the 
patient, by a direct injection or trough implantation of the fabricated tissue at the 
desired site [106].

Porosity (total surface of the structure for incoming cells) is the key to provide 
space for cell migrate and vascularization of the tissue. The minimum pore size 
required is 100 μm, due to the cell size, transport and migration conditions. The 
degradation rate is intimately related to the porosity, high porosity can reduce the 
accumulation of acidic products.

These scaffolds can mimic the extracellular matrices, providing an integral 
structure and giving an optimal guidance to cellular organization. A successful 
approach to improve the cellular attachment, is the combination of a peptide 
sequence; Arginine-glycine-aspartic acid (RGD). This incorporation has shown a 
better binding between cells-RGD hydrogel scaffolds on different cells (fibroblast, 
osteoblast, muscle cells) [107]. Naturally polymer materials (collagen, fibrin, 
glycosaminoglycans, chitosan, alginates, starch, agarose, silk fibroin), are biocom-
patible, low cytotoxicity and inflammatory response. Collagen is a widely natural 
polymers, that provide mechanical support to the connective tissue [103].
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Synthetic Polymer (poly-lactic acid, poly-glycolic acid, copolymers, poly-e-cap-
rolacton, polyurethanes, poly-ortho ester, poly-anhydrides), are used because their 
high versatility, properties and reproducibility. A disadvantage of this polymers, is 
the less biocompatibility and not bioactive. The most used scaffold is poly-glycolic 
& poly-lactic acid [104].

Different techniques to fabricate scaffolds have been used to produce random 
structures with different pore size and reduced pore interconnections that facilitate 
cell support, adhesion, proliferation and differentiation. Among these techniques, 
we can find: solvent casting, phase inversion, freeze drying, melt-based technology, 
fiber bonding and high pressure-based. Lately, electrospinning has been studied for 
engineering applications [108].

3. Nanotechnology

The nanotechnology is the use of atoms, molecules or supra molecules structures 
for diverse purpose. Nanomaterials are made up of units of a size between 1 and 
100 nm. Nanoparticles with sizes from 10 to 1000 nm, can provide high control of 
scaffolds properties, such as mechanical strength, improve biodegradability, corrosion 
rates, and a control of release bioactive agents [102], additionally, low solubility, short 
circulation life of bioactive molecules (growing factors and cytokines) [103–105].

The preparation methods, are based in the rupture of the material block (top-
down), or the fabrication through the addition of components (atoms or molecules).

The objective of encapsulate the substance, is to preserve the function, and the 
possibility to have a controlled rate, of the substance.

Nanoparticles include nanospheres and nanocapsules, which vary in their 
morphology and architecture. Nanospheres are composed by a polymeric matrix, 
with the ability of a substance could join to its surface or disperses on it. On the 
other hand, nanocapsules are vesicular structures, made of synthetic or natural 

Figure 3. 
Dental stem cells and their potential clinical applications in regenerative medicine.
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polymeric membrane, with the drug inside [101–103]. These substances are released 
by  diffusion or degradation of the polymer. Nanoparticles, can be created from 
different types of materials (ceramic, metals, polymers).

3.1 Metallic nanoparticles

3.1.1 Gold nanoparticles

Using as a drug delivery, and in different size (20-50 nm), these metallic 
nanoparticles have antifungal action, in candida species, performing an interaction 
with cell membrane, that leads to the lysis of the cell. Golden nanoparticles offer 
antibacterial action over, gram-positive and gram-negative, due to the alteration 
in the biological process (ribosome for t-RNA binding) [109]. The increase surface 
to volume ratio, enhance the antibacterial and antifungal properties Additionally 
it changes the membrane potential and disrupt the ATP synthase, decreasing the 
metabolism of the microorganism.

In tissue engineering, has promising results, in new bone formation, when 
is used in a photocurable and biodegradable gelatin hydrogel. Also, can enhance 
osteogenic differentiation of stem cells, when is used coated over TiO2 surfaces and 
even as an injectable hydrogel scaffold. The objective of adding these nanoparticles, 
is to increase scaffolds structures and to guide cell behavior.

Gold nanoparticles, also can be applied for enhance MSCs properties. Used with 
VEGF, enhance cell migration on the scaffold of FN-Au nanoparticles.

3.1.2 Silver nanoparticles

Described as a colloid, this widely used metal, has antimicrobials proper-
ties. These particles can be formed by chemical or physical process. The physical 
methods used are, evaporation-condensation process, laser ablation of metallic 
bulk material, gamma irradiation or ultrasonic irradiation. The chemical methods 
consist in the use of sodium borohydrine or polyol as reducing agents. The size of 
the nanoparticles, could be controlled with the use of surfactants, this also depends 
on the obtention method and the reducing agents [105].

Silver ions, have been used for their antimicrobial effects, due to the possibility 
to block the respiratory system, and precipitate bacterial cellular protein. Depends 
on the size of the particles (1 to 10 nm), could have different potential against 
gram-negatives [110].

The particles also have been studied in tissue engineering. These particles have 
been incorporated into scaffolds, with diverse materials (gelatin, chitosan-alginate 
and cellulose acetate) with promising results on the antimicrobial activity with 
accelerated healing, in diabetic wound treatments. This result could be better with 
the use of a hydrogel, producing a contraction of the injury, due to the water content. 
In the same field, silver nanoparticles, have been employed to create chitin/nanosil-
ver antimicrobial composite scaffold. This results in a better blood clotting, due to 
the effect of the silver to affect the coagulation path, by denaturing the anticoagulant 
proteins [111]. It is important to mention that in a porous chitosan-alginate, with 
biosynthesized silver particles, shown cytotoxic results in breast cancer cells [112].

3.2 Ceramic nanoparticles

Inorganics combinations, also metals, metal sulfides and oxides, used in the fab-
rication of materials with different porosity, shapes and forms. These nanoparticles, 
are classified as inert, bioactive or resorbable ceramics [103].
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3.2.1 Bioactive nanoceramics

Bioglasses are materials, formed from different elements (sodium, silicone, 
magnesium, oxygen), that can be absorbed by the cells. These are promising 
materials due to the possibility to control con stimulate new tissue formation. 
There are different techniques to generate nanoscale bioactive glasses as: laser 
spinning, sol–gel (most common), micro-emulsion or gas-phase synthesis [113]. 
These nanoceramics, can bring a faster ion release, when compared with the bulk 
bioactive glasses, due to their better specific surface area, boosting the bioactivity 
and the protein adsorption. Bioactive glass nanoparticles, have interesting anti-
bacterial and angiogenic properties. The use of boron in a cellulose construct, can 
bring promising results on dental tissue regeneration, that could increase cellular 
viability [114].

Bioactive glass nanoparticles, are also attractive for bone tissue engineering. 
In vivo experiments have exhibited new bone formation, in chitosan-gelatin 
hydrogels with 5% bioactive glass nanoparticles, after 8 weeks, compared to 
control groups.

3.2.2 Bioinert nanoceramics

As their positive interaction on the body tissue, bioinert nanoceramics, are 
used for different medical applications. Titanium dioxide, are commonly used, 
because of their exceptional biocompatibility (due to the oxide layer formed, 
on the surface). Their mechanical stability, corrosion resistance, high biocom-
patibility, are considered as highly recommended materials for biomedical 
applications. As one of the most utilized materials. These nanoparticles can be 
synthesized by hydrothermal, solvothermal, sol–gel and emulsion precipitation 
methods [115]. Nowadays, these nanostructured materials have been useful 
as bone scaffolds, bringing acceleration to the rate of apatite construction and 
increase the osteoblast adhesion, proliferation and differentiation [113]. The 
roughness of the dental implant, enhanced the adhesion and proliferation of 
osteoblast [114].

3.3 Polymeric nanoparticles

Compounds, containing predominantly carbon, hydrogen, oxygen and nitrogen 
in a monomeric chemical structure. With a size of 40–400 nm, and produced from 
synthetically polymers as poly- D,L.lactic-co-glycolic acid (PLGA) and from biopoly-
mers (chitosan, alginate), these nanoparticles are attractive for drug delivery [115]. 
Using PLGA, has become interesting due to the biodegradation, biocompatibility, 
formulation techniques, on dental and periodontal treatments. The use of PLGA 
nanoparticles include effect on the oral biofilm, disrupting the plaque structure and 
direct impact on antibiotic resistance [116].

Classification of these nanoparticles, could be based on diverse measures 
such as: structure, structure and manufacturing method. Design, dimension, 
peripheral chemistry, porosity, mechanical strength, solubility, degradation rate, 
can be modified for dentistry purpose. Polymeric nanoparticles can be created, in 
different forms as: nanospheres, polymersomes, polymeric micelles, nanogels or 
even nanocapsules. For preparing these nanoparticles there are, diverse systems of 
emulsifications, supercritical fluid, nanoprecipitation, self-assembly [115].

Nowadays to enhanced the delivery of bioactive agents, nanoparticles changed 
from a simple delivery to multifunctional responsive systems, even the possibility to 
has a controlled release.
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3.4 Iron oxide, zirconia and silver

The superparamagnetic iron oxide nanoparticles, with a controllable size and 
nontoxicity, are used as antimicrobial agent. With the use of an external magnetic 
field, these nanoparticles can be guided to the local infection [117].

Nano zirconia-alumina materials, are new implants materials, that avoid the 
biofilm formation. Also, they can be used as polish substance [118].

Silver nanoparticles have interesting properties as biocompatibility, low toxic-
ity, low bacterial resistance, and antimicrobial. These particles can infiltrate and 
disrupts the bacteria wall and interact with de DNA. The tooth discoloration is a 
disadvantage to consider, thinking about esthetics treatments [108–118].

A collagen scaffold/silver nanoparticles/BMP-2 composite, presented antimi-
crobial activity and no adverse effects over adherence and proliferation of BMMSCs 
after preparation [108]. On other study, an injectable chitosan-based thermosen-
sible hydrogel scaffold loaded with BMP-2-plasmid DNA-charged nanoparticles 
yielded good results on bony defects regeneration, in rat and dog models [106].

Nanostructured biomaterials have a modifiable nature, as they can be personal-
ized by engineering their structure, shape, size, and surface properties in order to 
be applied in precise anatomical sites, allowing them to be used on many different 
contexts. Nanoparticles can be used to overcome some of the limitations of scaffold 
materials in bone regeneration, such as insufficient mechanical strength, issues 
related to cell growth and differentiation [108].

Nanotechnology has come, to revolutionize the biomedical field, with a 
reformed on the traditional approaches on tissue engineering and regenerative 
medicine. Using different types of nanoparticles (ceramics, metals, synthetic or 
natural polymeric), for various applications, including: bioactive agent delivery, 
tissue targeting and imaging, modulated scaffolds [118].

3.5 Nanotechnology and dental caries

The key to prevent dental caries is the remineralization of the enamel sur-
face and to avoid the production of acid substance from the dental plaque. 
Unfortunately, saliva function, makes preventive products (toothpaste, mouth-
wash, fluor varnish), decrease their effectiveness due to the salivary flow rate 
(unstimulated: 0.3–0.4 mL/min, stimulated: 1–3 mL/min in adults) [119]. The 
creation of nanoparticles to enhance the fluoride concentration on dental surface, 
would allow increase effectiveness in the prevention of dental caries. The hydroxy-
apatite nanoceramic particles, have a promising future. A structure comparable to 
tooth and bone structure, biocompatible, and a stable form of phosphate salts, have 
been applied as bone substitutes. These particles, can join to dental tube and even 
seal them, reducing the sensibility [120, 121]. Various techniques have been estab-
lished for the fabrication of hydroxyapatite nanoparticles with particular control 
over the nanostructure [120].

3.6 Nanotechnology and periodontal diseases

The loss of the surrounded structures of the tooth is a consequence of a dis-
equilibrium of the oral microbiota, triggering a periodontal disease. The treatment 
objective consists in localized therapeutic substance. The inefficiency to reach an 
adequate penetration (periodontal pocket) and the inadequate period of contact of 
the substance, are points to consider for an alternative treatment [29–48].

Numerous nanoparticles into dental composites and adhesives, (zinc oxide, 
and silver), are used to impede the bacterial progression. Due to the large 



25

Prologue: Oro-Dental-Derived Stromal Cells for Cranio-Maxillo-Facial Tissue Engineering...
DOI: http://dx.doi.org/10.5772/intechopen.95090

surface-to volume ratio, they are effective in the lysis of the bacterial membrane. 
Also, they are efficient obstructing the sugar metabolism, producing reactive 
oxygen species [122].

Tetracycline nanoparticles in calcium sulfate, are used in periodontal treatment 
as a matrix, in which drugs are dissolved. Because of their size, these particles could 
enter more deeper, in the infectivity pocket. Polymersomes are amphiphilic vesicles, 
that could enclose a substance. This vehicle, is used has a vehicle for antimicrobials 
(metronidazole), as an alternative to periodontal treatments [119].

3.7 Innovation in nano-based stem cell therapeutic systems

Stem cells with nanocarriers, has increasing as an interesting field, with favor-
able results. These mesenchymal stem cells could act as a reservoir for delivering 
nanoparticles [123, 124].

Innovative nanostructured materials could be useful in manipulating stem 
cells. DPSCs and Human umbilical vein endothelial cells (HUVECs) combined 
with an injectable, self-assembling peptide hydrogel scaffold exhibited vascular-
ized pulp-like tissue with patches of osteodentin after transplantation [108]. The 
use of carbon nanomaterial’s, such as carbon nanotubes, carbon nanohorns and/
or graphene on bone tissue engineering, shows that these biocompatible materials 
can promote new bone formation and could even make possible the enhancement 
of their biocompatibility or induce new characteristics [118]. These examples test 
the capability of nanomaterials to offer versatile and relatively simple solutions to 
classical tissue engineering problems.

3.8 Perspective

There are promising results with the use of nanoparticles in tissue engineering, 
regeneration and repair; enhancing mechanical and biological characteristics, and/
or even involving an anti-microbial effect. Though, there are still challenges ahead, 
to develop and advance in the wide medical and dental fields. Risk assessments 
(including data requirements and testing strategies) would be useful for better 
knowledge accumulation and technology advancement. While some nanomaterials 
might enjoy potential applications in the engineering area, additional research is 
needed to establish their therapeutic efficacy and safety [52].

Currently there is an emerging field, based on the dental delivery systems that 
could bring promising results in the therapeutic dental diseases. But there is insuffi-
cient knowledge, to let the expansion for such technologies in dental field [24–125].

New challenges will continue to emerge after more research is conducted regard-
ing the possibilities of mixing nanotechnology with oral MSCs, but the promising 
results already obtained, and the extraordinary potential of both of them, mark this 
union as an important and interesting target for more investigation, research and 
innovation.

4. Conclusions

Tissue engineering is a promising and rapidly-evolving field in the clinical dental 
practice. Stem cells demonstrated the capability to produce dental tissues, bringing 
solutions to the healthcare services. Ongoing research efforts continue to establish 
their therapeutic efficacy and replication. Nanomaterials are essential, for the proper 
or “ïdeal” innovation, development and introduction (clinical translation) of novel, 
safe, non-invasive and effective therapies, in oro-dental tissue repair and beyond.
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