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Chapter

Vitamin C and Sepsis
Adriana Françozo de Melo, Giulia Oliveira Timo  

and Mauricio Homem-de-Mello

Abstract

Vitamin C is a supplement used orally by several people globally. It may help in 
many other conditions, like sepsis, which is caused by an infection that leads to an 
imbalanced immune response involving pro (e.g., TNF-α, IL-1, IL-2, IL-6) and anti-
inflammatory (e.g., IL-10, IL-4, IL-7) cytokines. Ascorbic acid is an antioxidant 
and acts against reactive oxygen species. At the same time, this vitamin influences 
cellular immune signaling, avoiding exacerbated transcription of pro-inflammatory 
cytokines. Very high intravenous doses have already shown to be beneficial in septic 
patients. Some clinical trials are still running to evaluate the real impact of vitamin 
C in this condition. To the moment, the combination of low-dose corticosteroids, 
high-dose parenteral ascorbate, and thiamine seems to be the most effective 
 supportive treatment that could help septic patients recover.

Keywords: vitamin C, sepsis, emergency, Intensive Care Unit

1. Introduction

Vitamin C is a well-known potent antioxidant essential to various biological 
processes such as carnitine synthesis, neurotransmitter synthesis, hormone syn-
thesis, and tyrosine metabolism. Furthermore, it stabilizes collagen and acts in iron 
absorption on the intestinal tract. Nevertheless, much is still discussed on its role 
in common cold, pneumonia, stress-related disorders, metabolic syndrome, and 
sepsis. Sepsis is a dysregulated host response to an infection that triggers the release 
of both pro and anti-inflammatory cytokines throughout its course. This “cytokine 
storm” is responsible for systemic septic symptoms such as vasodilatation, which 
leads to hypotension and hypoxia. Also, there is the activation of the clotting cas-
cade leading to disseminated intravascular coagulation (DIC). This hemodynamic 
instability associated with high immune response makes sepsis a deadly disease. 
Having such nonspecific symptoms, treating sepsis is also problematic. However, 
the great majority of protocols include antimicrobial and fluid therapy, vasopres-
sors, and inotropic agents. Using anticoagulants and corticosteroids is debated and 
varies according to symptoms and local protocols. The use of vitamin C in sepsis 
treatment is also a highly discussed subject, and there are many clinical trials ongo-
ing trying to associate a better outcome with the help of vitamin C in high doses. 
Considering that sepsis leads to a depletion in vitamin C because of the increased 
need for reactive oxygen species (ROS) and the elevated cytokine release, it is fair 
to assume that supplementing it in high doses might help improve septic symptoms 
since it scavenges those oxygen-free radicals.
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All things considered, this chapter intends to shed light on the pathophysiol-
ogy of sepsis, and its current treatments, vitamin C’s biochemical and therapeutic 
properties, and the pieces of evidence from clinical trials that applied vitamin C to 
treat sepsis and its outcomes.

2. Sepsis

2.1 Pathophysiology, molecular pathways, and mediators of sepsis

Sepsis is an overreaction to infections, resulting in multiple organ failure and 
septic shock, frequently leading to death [1]. Sepsis is commonly associated with a 
super systemic inflammatory condition followed by an immunosuppression phase 
in which secondary infections typically occur [2]. First sepsis models were devel-
oped using animal experiments after confirmation in human volunteers. Bacterial 
debris can stimulate an acute rise of pro-inflammatory cytokines, implying that this 
was the cause of the sepsis-associated organ failure. Guided by these results, several 
different proposed therapies failed to achieve a substantial positive outcome [3, 4]. 
Following the overwhelming inflammatory process, an intense anti-inflammatory 
reply leads to a lack of immune response, lymphopenia, and a high propensity for 
developing infections [5]. This information had provided the basis of the supposi-
tions that the initial hyperinflammatory condition advances to a following immu-
nosuppression [2]. Pro-inflammatory (as IL-6 and TNF) and anti-inflammatory (as 
IL-10) cytokines are elevated and death-related in septic patients [6].

After innate recognition of conserved microbial patterns, a substantial inflam-
matory response begins. The recognition, usually through Toll-Like receptors, leads 
to the activation of cytokines, growth factors and chemokines [7]. After CD4 T 
cells activation (Figure 1), both pro and anti-inflammatory cytokines are released 
[4]. The reason why CD4 T cells response is pro (Th1) or anti (Th2) inflammatory 
is supposed to be related to the size of the bacterial inoculum, pathogen type, and 

Figure 1. 
Immune activation following microbial exposition or cellular damage. NF-κB: Nuclear Factor-κB; PAMP: 
Pathogen-associated molecular pattern; DAMP: Damage-associated molecular pattern; TLR: Toll-like 
Receptor; IL: Interleukin; TNF-α: Tumor Necrosis Factor-α; IFN-γ: Interferon-γ; PD-1: Programmed cell death 
protein 1.
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the infected organ [8–11]. A more intense inflammatory response with higher 
cytokine levels is associated with severe sepsis situations. The spectrum of organic 
reactions is more intense, as well. General vasodilation, capillary leak, and lessened 
circulating fluid volume lead to blood clotting and multiple organ malfunction or 
failure [7].

2.2 Therapeutics of sepsis

The earlier the sepsis or septic shock diagnosis is achieved, the higher are the 
recovery chances. Broad-spectrum antibiotics (piperacillin/tazobactam, vanco-
mycin, anidulafungin) are initiated while culture and antibiogram results are not 
available. Clindamycin associated with a β-lactam scheme can be recommended to 
avoid streptococcal toxic shock. Once the pathogen is identified and its susceptibil-
ity to antibiotics is defined, early interruption should be performed, depending on 
the patient’s improvement [2, 12].

Supportive therapy is needed in virtually all cases. Fluid resuscitation, inotropic 
(e.g., dobutamine), and vasopressor agents (e.g., norepinephrine) are the most 
common, effective, and widespread therapies [13].

Other therapies have been studied over the years, but few or controversial results 
were obtained. Corticosteroids are frequently associated with septic shock therapy. 
Several randomized controlled trials focused on this issue, and some meta-analysis 
evaluated the outcomes. Considering all observed flaws of the trials (heterogeneity 
across studies, doses, the uncertainty of the statistical approach, time of observa-
tion, among others), the meta-analysis showed a small benefit using low doses of 
corticosteroids for a more extended period [14–20]. International Guidelines for 
Management of Sepsis and Septic Shock recommend corticosteroid therapy only 
if fluid resuscitation and vasopressor administration are not enough to restore 
patients’ stability. Intravenous hydrocortisone (200 mg/day) and continuous evalu-
ation of blood glucose and sodium (corticosteroids may induce hyperglycemia and 
hypernatremia) are the clinical guidance in those cases [12].

Anticoagulant therapy would be beneficial to oppose the disseminated intra-
vascular coagulation that happens in sepsis conditions. However, antithrombin use 
did not show evidence to lower the mortality rate and was more prone to bleeding 
development [12, 21, 22]. On the other hand, thrombomodulin and heparin showed 
some positive effects on the mortality rate and reduced bleeding risk [23, 24].

Immunoglobulins are still controversial in sepsis. Studies using intravenous 
immunoglobulins could not show benefits on septic shock or sepsis conditions 
[25–29]. However, the majority of studies use a small sample size, so more extensive 
studies are still needed to evaluate its effectiveness [12, 29].

To the present, numerous researches are trying to achieve a satisfactory result 
for septic shock or sepsis. However, a long list of failures is along with all the tries. 
There is a rationale behind Vitamin C usage in these cases, and this chapter will 
then discuss what is already known and what still needs investigation.

3. Vitamin C

3.1 Redox potential

Vitamin C (VitC, ascorbate) is an antioxidant vitamin. This classification is 
based on the emission of solvated electrons in aqueous media. In organisms, this 
process can be enzymatically induced. VitC quickly loses electrons in aqueous 
media, forming ascorbate free radicals. This is why ascorbate is classified as a very 
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potent electron donor. Peroxyl radicals may be formed under oxygenated condi-
tions, by the reaction of solvated electrons with oxygen in aerated solutions [30].

Ascorbate can directly scavenge free radicals or restore other redox systems like 
α-tocopherol or glutathione (Figure 2). Simultaneously, it is vital to the activity of 
several iron and copper-dependent enzymes [31]. VitC and monodehydroascorbate 
radicals have low electron reduction potentials [32] to reduce more common radicals 
present in metabolic conditions.

It is well established that a severe dietary undersupply of vitamin C will result in 
scurvy. But vitamin C has also a role as a cofactor in several enzymes. It takes part 
in carnitine synthesis, which is essential for the transport of fatty acids into mito-
chondria for ATP generation [33, 34]; in the biosynthesis of norepinephrine from 
dopamine [35, 36], peptide hormones [37, 38], and tyrosine metabolism [39, 40]; in 
collagen synthesis, increasing its stability [41–43]; finally, it acts in nonheme iron 
absorption on the intestinal tract [44].

However, ascorbic acid’s role in preventing or treating common and complex 
diseases is still uncertain. Even the widely held assumption that ascorbic acid is a 
significant biological antioxidant and has a prominent role in disease prevention has 
not been definitively validated [45, 46].

3.2 Evaluation of vitamin C therapeutic efficacy

Hundreds of studies have been published over the years on vitamin C’s effects 
and its roles in preventing or treating several diseases. There have been many 
controversial outcomes from this association, whether they are positive or negative. 
Table 1 presents the reviews that summarize those outcomes.

Nevertheless, when they are critically analyzed, one can realize they show many 
inconsistencies regarding the methodology. Recently, Lykkesfeldt interestingly 
analyzed some more expressive clinical trials and unraveled many of the study’s 
limitations and flaws, as described below, which should be avoided in future 
researches in this field [59] (Table 2).

Figure 2. 
Antioxidant network. Ascorbate plays a central role in the human antioxidant system. ROS: Reactive Oxygen 
Species; R·: Free Radical; DHAR: Dehydroascorbate Reductase; GPX: Glutathione Peroxidase; GSSG: 
Glutathione Disulfide; GR: Glutathione Reductase.
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Considering the lack of high-quality data to evaluate the efficacy of ascorbate 
in less severe or more chronic conditions, it is fair to assume that an acute and 
severe disease such as sepsis is a hard-to-evaluate condition. Vitamin C in sepsis has 
some particularities such as a diverse route of administration and a peculiar dose–
response relationship. The scientific rationale behind this therapeutic proposal to 
sepsis is discussed in the rest of this chapter.

Effect Conclusion of the study Reference

Cardiovascular 
protection

Vitamin C deficiency is associated with a higher risk of 
cardiovascular disease (CVD) mortality.

[47]

High vitamin C intake from supplements is associated with an 
increased risk of CVD mortality in postmenopausal women with 
diabetes.

[48]

Population with optimal plasma levels of VitC has no benefit from 
supplementation. People with VitC deficiency have a higher risk of 
developing CVD.

[49]

Neurologic 
protection

Antiexcitotoxic, neuromodulator, and neurotrophic effects 
of ascorbic acid over the CNS are critical for neuroprotective 
strategies. Clinical trials have demonstrated that ascorbate 
supplementation produces beneficial results for depression and 
anxiety. More controlled clinical trials are still necessary to better 
understand the action mechanisms in stress-related disorders.

[50]

Metabolic syndrome A direct positive effect of vitamin C alone on Metabolic syndrome 
needs to be confirmed in animals and human populations. 
Combination of vitamin C with other antioxidants may be 
worthwhile in managing Metabolic syndrome.

[51]

Common cold (CC) 
treatment and 
prevention

In adults, the duration of colds was reduced by 8% and in children 
by 14%. The severity of colds was also reduced by vitamin C 
administration during the cold process. No reliable effect of vitC 
was seen on the duration or severity of colds in the therapeutic 
trials.

[52]

Regular supplementation has shown that ascorbate reduces the 
duration and severity of CC.

[53]

Supplementation with vitamin C appears to be able to both prevent 
and treat respiratory and systemic infections.

[54]

Pneumonia 
treatment and 
prevention

Due to the small number of included studies and the low quality of 
the existing evidence, data is uncertain about the effect of vitamin 
C supplementation on preventing and treating pneumonia.

[55]

Exercise recovery Vitamin C supplementation attenuates the oxidative stress (lipid 
peroxidation) and inflammatory response (IL-6) to a single 
exercise bout. No effects of vitamin C supplementation were found 
on creatine kinase (CK), C-reactive protein (CRP), cortisol levels, 
muscle soreness, and muscle strength.

[56]

Cancer treatment Ascorbate can be positive as a pro-oxidative factor as well. VitC 
would promote the removal of 8-Oxo-2′-deoxyguanosine from 
DNA by upregulation of repair enzymes due to pro-oxidative 
properties. Vitamin C showed protection against radiation-induced 
cell damage.

[57]

No clinically relevant positive effect of vitamin C in cancer 
patients on the overall survival, clinical status, quality of life, and 
performance status. The quality of the evaluated studies, however, 
is low. Small advantages were more associated to intravenous than 
oral administration.

[58]

Table 1. 
Summary of reviews about therapeutic evidence associated with VitC.
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3.3 Dose-response in supplementation versus high dose

Sepsis is a condition associated with VitC deficiency because of its high con-
sumption due to enhanced reactive oxygen species (ROS) production. Ascorbate 
supplementation is thus necessary, and the best results are thought to be achieved 
through high intravenous doses [60, 61]. The absorption, distribution, metabolism, 
and excretion (ADME) of vitC in humans are distinct from other small molecules.

3.3.1 Pharmacokinetics of vitamin C

3.3.1.1 Oral and intravenous administration

In biological systems, VitC exists in two main chemical forms (Figure 3), the 
reduced and predominant ascorbate anion and the oxidized dehydroascorbate 
(DHA). Due to the DHA reductase activity (Figure 2), virtually every cell can 
recycle DHA. Therefore, total ascorbate is considered the sum of VitC and DHA. 
The membrane transport can be performed by three possible mechanisms: passive 
or facilitated diffusion and active transport, the most relevant of the three [62].

Orally, VitC is absorbed by the saturable mucosal sodium-dependent Vitamin 
C transporter 1 (SVCT1) [60]. Ascorbate oral absorption is limited, achieving a 
plateau after 200-300 mg (Figure 4). SVCT transporters are widely distributed 
throughout organs and are responsible for most VitC passage across membranes, 
even against a concentration gradient [63–65].

Concern Trouble Resolution

Measurement of 
Vit C intake vs. 
status

Focus on VitC intake rather than its status. 
Even large cohort studies used estimates of 
micronutrient intakes from self-reported 
questionnaires or diaries. Lack of precision due 
to recall error, loss of vitamin from storage and 
preparation, diet change over time, and possible 
different polymorphisms.

Retrieving blood samples 
from fasted individuals.

Lack of stability Fasted blood samples can be obtained, but there 
are significant challenges in correlating vitamin C 
status to disease risk. This is due to the lability of 
ascorbate. Ascorbate is quickly oxidized ex vivo, 
and the resulting oxidation products are quickly 
degraded or metabolized

Process samples in a cold 
(4 °C) environment. Avoid 
hemolysis. Choose HPLC 
with electrochemical 
detection.

Study Design Random Controlled Trials may require very long 
intervention periods to accumulate sufficient 
disease endpoints. This perspective is needed 
to observe an accumulated preventive potential 
of a lifelong VitC intake of both placebo and 
intervention groups up to the trial. This issue 
has been completely neglected in the available 
literature.

Perform multicentric 
randomized follow-up 
clinical trials.

Healthy Enrolee 
Effect

A tendency towards recruiting health-conscious, 
self-motivated subjects eating a healthy diet 
already rich in micronutrients, with higher 
exercise frequency and lower disease rate than the 
background population.

Work with more significant 
samples, baseline adjustment 
among groups, previous 
genetic evaluation

Table 2. 
Concerns about clinical trials performed to evaluate ascorbate efficacy on diseases, according to Lykkesfeldt 
[59] (modified by the authors).
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Some SVCT polymorphisms have already been identified, which may be associated 
with a critical pharmacokinetic variation. Some of those SVCT alleles are supposed to 
lead to permanent ascorbate deficiency (plasma concentrations <23 μM) [62].

Humans do not synthesize vitC, so the oral ingestion of food is the primary 
source of vitC. There is enough ascorbate for healthy individuals in the average 
diets that contain food rich in it. However, pathologic conditions associated with 
low ascorbate levels may need supplementation to achieve the minimum plasma 
concentrations [62].

Intravenously, plasma levels of ascorbic acid continuously increase, produc-
ing plasma levels up to 70-fold higher than the maximum oral doses, achieving 
the millimolar concentration [66]. A linear relationship between dose and Cmax 

Figure 3. 
VitC chemical forms in biological systems – Redox cycle. MDHA: Monodehydroascorbate radical. DHA: 
Dehydroascorbate.

Figure 4. 
VitC oral absorption and distribution. ASC: Ascorbate, SVCT1 and 2: sodium-dependent Vitamin C 
transporter 1 and 2, DHA: Dehydroascorbate.
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(maximum concentration plasma level) was observed in doses up to about 70 g/m2, 
leading to nearly 50 mM plasma levels. Apparently, the pharmacokinetic of vitC 
changes from zero to first-order after high-dose intravenous administration [62].

3.3.1.2 Distribution

Intracellular levels of ascorbate vary between 0.5 to 10 mM, which is 
much higher than the 50–80 μM usually found in healthy individuals’ plasma. 
Simultaneously, human erythrocytes can turn DHA to VitC and keep an intracel-
lular ascorbate level similar to that of plasma. This recycling ability of the red blood 
cells is essential as an antioxidant reserve [62].

As it happens at the absorption phase, distribution depends on active trans-
port as well. Ascorbate exits the bloodstream and crosses the organ’s cell mem-
branes through SVCT2 carriers (Figure 4). Yet, even in the steady-state achieved 
concentration after regular ascorbate dosage, different tissues present highly 
diverse concentrations. This may happen because of distinct levels of SVCT2 
expression [62].

3.3.1.3 Metabolism

Metabolism of VitC is essentially associated with the redox cycle involved with 
the antioxidant function (Figure 3). As previously cited, ascorbate is an electron 
donor, and it can reduce free radicals (Figure 2) by oxidizing itself to the stable 
radical monodehydroascorbate (MDHA). This radical can react to another equal, 
providing an ascorbate molecule and the DHA metabolite that can be reduced, as 
mentioned before, to ascorbate through DHA reductase activity [62].

3.3.1.4 Excretion

VitC is a highly water-soluble (about 330 g/L) small molecule (about 8 Å large, 
176.1 g/mol), it has a pKa of 4.2, and is almost insoluble in hydrophobic organic sol-
vents [67]. Like other molecules with similar solubility, ascorbate is filtered through 
the glomerulus and is concentrated after water resorption. At this time, local pH 
drops to five, leading to an increase of the non-ionized ascorbic acid fraction. 
However, passive reabsorption does not occur because of the highly hydrophilic 
characteristic of the molecule. In the proximal tubules, the reuptake of ascorbate is 
controlled by the saturable active transporter SVCT1. In individuals with saturated 
plasma levels, supplemental vitC is excreted quantitatively [68].

After high-dose intravenous administration, vitC is rapidly eliminated through 
glomerular filtration. Reuptake is non-significant under this condition, and the 
half-life is constant, about two hours (after discontinuation of infusion), and 
first-order kinetic applies to this case. In about 16 h, physiological levels are back to 
normal [62, 69–71].

3.3.1.5 Pharmacokinetics in critically ill patients

Critically ill patients, such as those in septic shock conditions, have an increased 
ascorbate turnover, needing a dose many folds higher (oral or intravenous) than 
would be expected to saturate a healthy person. Systemic inflammation and 
severe pressure due to oxidative stress increase VitC consumption [61, 72, 73]. 
Mathematically predicted plasmatic ascorbate values are much higher than what is 
achieved in critically ill patients, suggesting that pharmacokinetics in this group of 
patients is changed.
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3.4 Vitamin C in septic conditions

In sepsis conditions, the mitochondrial impairment may be a relevant route to 
cell death and organ collapse. Anomalies in the citric acid cycle and reduction of the 
fatty acid’s beta-oxidation seem to be a characteristic aspect of this mitochondrial 
disorder [74].

While ascorbate is transported across membranes through SVCT’s proteins, 
DHA can be transported by glucose transporters GLUT1, 3, and 4 [75]. DHA is 
transported into the mitochondria by GLUT1 and converted to ascorbate (Figure 5), 
where it works as an antioxidant, avoiding damage to the organelle [76]. Ascorbate 
can also act as a cofactor to the mitochondrial Trimethyllysine dioxygenase (TMLD) 
enzyme, responsible for the first L-carnitine synthesis, needed for the β-oxidation of 
fatty acids [77].

The heart is a vital organ that may be affected by sepsis. Proteolysis, mitochon-
drial injury, and calcium homeostasis dysfunction are expected consequences of 
the oxidative myocyte damage. Experimental models show that supplementa-
tion of the redox scavengers can diminish cardiac disorder [78]. Ascorbate can 
decrease apoptosis and improve mitochondrial integrity in myocytes through 
the blockage of the mitochondrial permeability transition pore opening, limiting 
calcium profusion [79].

VitC can achieve high concentrations in leukocytes, especially lymphocytes and 
macrophages. In other defense cells, VitC acts to improve chemotaxis, stimulating 
interferon expression, and promoting lymphocyte proliferation. In neutrophils, 
ascorbate increases phagocytic capacity and oxidative burst, and decreases NET 
(neutrophil-extracellular-trap) formation [61, 80].

VitC can mediate immune modulation. VitC inhibits nuclear Factor Kappa-B 
(NF-κB) activation. The mechanism that underlies this suppression involves the 
blockade of the TNFα-induced activation of NIK (NFκB-inducing kinase) and 

Figure 5. 
Vitamin C multiple anti-inflammatory mechanisms. DHA: Dehydroascorbate, ASC: Ascorbate, GLUT: 
Glucose Transporter, (H)TML(D): (Hydroxy) Trimethyllysine (Dioxygenase), CPT1: Carnitine 
Palmitoyltransferase 1, LCFA: Long-Chain Fatty Acids; LACS: Long-Chain Acyl-CoA Synthetase, TNFR: 
Tumor Necrosis Factor Receptor, NF-κB: Nuclear Factor Kappa-light-chain-enhancer of activated B cells, 
NIK: NF-κB-Inducing Kinase, NEMO: NF-κB Essential Modulator, IKKα and β: IκBα and β kinases, PI3K: 
Phosphoinositide 3-Kinase, Nrf2: Nuclear Factor Erythroid 2-Related Factor 2, HO-1: Heme Oxygenase 1, 
HMGB1 - High Mobility Group Box 1.
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IKKβ kinases (Figure 5) [81]. Further modulation is provided by the VitC induced 
decrease in the late pro-inflammatory cytokine HMGB1 (high mobility group box 1) 
secretion and through the lowering of histamine levels [82, 83].

3.4.1 Clinical trials: vitamin C and sepsis or other critically ill conditions

Table 1 shows studies that were performed to evaluate VitC efficacy in many 
pathological conditions. In critically ill patients, several clinical trials have already 
been completed or are still ongoing. Until December 2020, 39 studies involving 
ascorbate and some critically ill conditions were registered at the United States 
National Library of Medicine (NLM) databank clinicaltrials.gov. The list with all 
referred studies and links to the clinicaltrials.gov forms are available at the end of 
this chapter.

To the present date, 25 of the cited trials are already finished, 12 are ongoing, 
and two will begin in 2021. Twelve of these studies tested VitC alone, with no other 
experimental therapeutics except the usually applied in sepsis cases (i.e., antimicro-
bial and fluid therapy, vasopressors, and inotropic agents). Seventeen trials used a 
combination of hydrocortisone, ascorbate, and thiamine (HAT).

Ten studies experimented a combination of VitC with a corticosteroid only (2 
trials) or VitC with VitB1 (5 trials) or VitC in combination with some other thera-
peutic agent (3 trials). Even if there is no consensus about intravenous doses to be 
used in critically ill patients, 23 of the 39 trials employed 6 g/day doses, mostly in a 
6 h-interval regimen (1.5 g each). Five studies used doses below 6 g/day, and nine 
studies used doses above 6 g/day, mostly in a protocol of 200 mg/kg/day in a 6 h 
interval regimen (about 14 g/day to a 70 kg patient).

Sadly, from the 25 already finished trials, only 5 reported their results to clini-
caltrials.gov or published them in a peer-reviewed journal. One of those was a 
pharmacokinetic study [84], so no outcomes were evaluated. The other four studies 
that reported results were called REDOXS [85], ORANGES [86], VITAMINS [87], 
and CITRIS-ALI [88].

REDOXS used ascorbate in 1.5 g/day dose administered enterally associated 
with glutamine and other antioxidants. The study was planned to evaluate gluta-
mine associated with a pool of antioxidants effect on critically ill patients. Results 
reported no difference when compared to placebo for the primary endpoint (28-day 
mortality rate).

ORANGES was a study intended to evaluate the HAT protocol in septic patients. 
They evaluated almost 70 patients (in each group) in a protocol that involved 6 g/day 
ascorbate (1.5 g per dose) for a maximum of 4 days after ICU admission. The study 
concluded that HAT could decrease the duration of shock, but not the 28-day mortal-
ity rate in patients with sepsis, probably due to ascorbate administration (they had an 
arm of the study that received only corticosteroids).

VITAMINS used the same HAT and ascorbate dosage as described above. 
They evaluated about 100 patients (in each group). The difference between the 
ORANGES trial is the control group. While ORANGES intervention in control was 
essentially placebo, the VITAMINS used a corticoid and thiamine (when clinicians 
evaluated its need). VITAMINS results indicate that treatment with intravenous 
ascorbate, hydrocortisone, and thiamine, did not significantly improve the dura-
tion of mortality rate and discontinuation of vasopressor administration over 
seven days.

The CITRIS-ALI trial evaluated the administration of VitC alone in sepsis, 
associated with acute respiratory distress syndrome (ARDS) patients, in a dose of 
200 mg/kg/day (about 14 g/day to a 70 kg patient). The primary outcome evaluated 
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the change in the Sequential Sepsis Related Organ Failure Score (SOFA) and two 
plasma biomarkers (C-reactive protein and thrombomodulin). The study assessed 
groups of about 80 patients. Circa 65% of patients (from both control and treat-
ment groups) received corticosteroids during the study, and the mortality rate 
was significantly lower in the VitC group. However, since this outcome was not a 
primary outcome, the authors did not consider it in this study. Authors concluded 
that patients with sepsis and ARDS did not have an improvement in organ dysfunc-
tion scores, nor did they have altered markers of inflammation and vascular injury 
after a 96-hour infusion of vitamin C compared with placebo.

Outside the clinicaltrial.gov, several studies have investigated the use of IV 
ascorbate in critically ill patients. Cases of trauma, severe burn, and septic shock 
were evaluated, in various dosage schemes, from 7 g until 110 g/day. No severe 
adverse effects related to the vitamin C infusion were reported in any of the stud-
ies. A decrease in the incidence of multiple system organ failure, trends to reduced 
mortality, and ICU stay length was the usual results achieved [89–91].

One of the most commented studies about the effects of the HAT approach, 
and maybe the reference for several of the clinical trials, was published by Dr. 
Marik from Eastern Virginia Medical School in 2017 [92]. This study proposed 
the early HAT protocol using ascorbate IV (1.5 g every 6 h for 4 days or until ICU 
discharge), hydrocortisone (50 mg every 6 h for 7 days or until ICU discharge), 
as well as IV thiamine (200 mg every 12 h for 4 days or until ICU discharge). VitC 
is administered as an infusion over 30 to 60 min and mixed in a 100 mL solution 
of either dextrose 5% in water or normal saline. Dr. Marik’s results showed that 
early use of intravenous VitC, with hydrocortisone and thiamine, would be used 
effectively to prevent progressive organ impairment, including acute kidney dam-
age, and reduce patients’ mortality with severe sepsis and septic shock. However, 
the published work evaluated a small sample, and as the authors say at the end 
of the manuscript, additional studies are required to confirm their preliminary 
findings [92].

High doses of IV ascorbate, thiamine, and glucocorticoids can reduce pro-
inflammatory mediators, ROS, and decrease immunosuppression. Thiamine 
is useful to energy production as a precursor of thiamine pyrophosphate and 
acts as an antioxidant. Thiamine is essential because ascorbate may cause oxa-
late accumulation in the kidneys, and the concomitant use can prevent it since 
thiamine pyrophosphate is a cofactor required for the oxidation of glyoxylate to 
carbon dioxide by the enzyme glyoxylate aminotransferase. Thiamine deficiency 
increases the conversion of glyoxylate to oxalate. At the same time, thiamine 
deficiency is common in septic patients and is associated with an increased risk of 
death [61, 93].

The VitC in critically ill patients is still a dilemma to be solved. There is a 
rationale behind its use that seems to be optimal. HAT therapy’s premise is the use 
of a combination of drugs that aim at multiple sectors of the patient’s response to 
an infectious agent, synergistically restoring the impaired immune system, avoid 
damage due to oxidants, and restore mitochondrial activity. However, to evaluate 
the clinical features and impact of this scheme, most of the studies performed were 
small, doses used between trials were highly different, and the risk of bias was usu-
ally uncertain or high. Secondary outcomes need bigger sample sizes, and so were 
yet harder to evaluate. The studies’ duration was not uniform, so the follow-up and 
comparison analysis were possible only to the longest available time in each trial. 
Finally, the heterogeneity between treatment schemes made comparisons hard. 
Isolated analysis of VitC ignores any synergistic effects that could be seen with HAT 
therapy [94].
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Trial name Internet link to the trial

High-dose Intravenous Vitamin C as an 
Adjunctive Treatment for Sepsis in Rwanda

https://clinicaltrials.gov/ct2/show/NCT04088591

Outcome Following Vitamin C 
Administration in Sepsis

https://clinicaltrials.gov/ct2/show/NCT01590303

VICTAS Vitamin C, Thiamine, and Steroids 
in Sepsis

https://clinicaltrials.gov/ct2/show/study/NCT03509350

Hydrocortisone, Vitamin C, and Thiamine 
for the Treatment of Sepsis and Septic Shock

https://clinicaltrials.gov/ct2/show/NCT03258684

Therapy With Hydrocortisone, Ascorbic 
Acid, Thamine in Patients With Sepsis

https://clinicaltrials.gov/ct2/show/NCT04160676

Vitamin C & Thiamine in Sepsis https://clinicaltrials.gov/ct2/show/NCT03592277

Vitamin C Infusion for Treatment in Sepsis 
and Alcoholic Hepatitis

https://clinicaltrials.gov/ct2/show/NCT03829683

Vitamin C, Vitamin B1 and Steroid in Sepsis https://clinicaltrials.gov/ct2/show/NCT04039815

Effect of Intravenous Vitamin Con SOFA 
Score Among Septic Patients

https://clinicaltrials.gov/ct2/show/NCT04137276

Ascorbic Acid, Corticosteroids, and 
Thiamine in Sepsis (ACTS) Trial

https://clinicaltrials.gov/ct2/show/NCT03389555

Pilot Study on the Use of Hydrocortisone, 
Vitamin c and Thiamine in Patient With 
Sepsis and Septic Shock

https://clinicaltrials.gov/ct2/show/NCT04111822

Vitamin C, Thiamine, Cyanocobalamine, 
Pyridoxine and Hydrocortisone in Sepsis

https://clinicaltrials.gov/ct2/show/NCT04197115

4. Conclusions

Vitamin C is a powerful antioxidant that takes part in many vital biological 
processes. Due to its properties, it has been proposed that VitC could improve 
sepsis and septic shock symptoms. Because of its pharmacokinetics, it is impera-
tive that ascorbic acid is administered IV in high dosage to explore its full potential 
in sepsis. Furthermore, the inclusion of hydrocortisone and thiamine to compose 
the HAT protocol has shown to improve patients outcomes in some clinical trials. 
Nevertheless, there is still much debate on whether the HAT protocol can actually 
exert this improvement. To further investigate this proposal, trials should increase 
sample sizes and come to an agreement on treatment schemes so they can be accu-
rately compared, in addition to sharing the results of the research on Clinical Trials.
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Trial name Internet link to the trial

High Dose of Vitamin C on Mechanically 
Ventilated Septic Patients in Intensive Care 
Unit

https://clinicaltrials.gov/ct2/show/NCT04029675

Ascorbic Acid (Vitamin C) Infusion in 
Human Sepsis

https://clinicaltrials.gov/ct2/show/NCT01434121

The Effect of Vitamin C, Thiamine and 
Hydrocortisone on Clinical Course and 
Outcome in Patients With Severe Sepsis and 
Septic Shock

https://clinicaltrials.gov/ct2/show/NCT03335124

Effect of Anti-inflammatory and Anti-
microbial Cosupplementations in Traumatic 
ICU Patients at High Risk of Sepsis

https://clinicaltrials.gov/ct2/show/NCT04216459

Ascorbic Acid and Thiamine Effect in Septic 
Shock

https://clinicaltrials.gov/ct2/show/NCT03756220

ASTER (Acetaminophen and Ascorbate 
in Sepsis: Targeted Therapy to Enhance 
Recovery)

https://clinicaltrials.gov/ct2/show/study/NCT04291508

ViCiS (Vitamin C to Reduce Vasopressor 
Dose in Septic Shock)

https://clinicaltrials.gov/ct2/show/NCT03835286

Vitamin C and Septic Shock https://clinicaltrials.gov/ct2/show/NCT03338569

Comparative, Between Triple Therapy 
Regimen to Hydrocortisone Monotherapy in 
Reducing the MR in Septic Shock Patients

https://clinicaltrials.gov/ct2/show/study/NCT04508946

Outcomes of Septic Shock Patients Treated 
With a Metabolic Resuscitation Bundle 
Consisting of Intravenous Hydrocortisone, 
Ascorbic Acid and Thiamine

https://clinicaltrials.gov/ct2/show/NCT03913468

LOVIT (Lessening Organ Dysfunction With 
Vitamin C)

https://clinicaltrials.gov/ct2/show/NCT03680274

Vitamin C, Thiamine and Hydrocortisone for 
the Treatment of Septic Shock

https://clinicaltrials.gov/ct2/show/NCT03872011

CORVICTES (Vitamin C, Hydrocortisone 
and Thiamine for Septic Shock)

https://clinicaltrials.gov/ct2/show/NCT03592693

CORVICTES-ΥΜ (Vitamin C, Steroids, and 
Thiamine, and Cerebral Autoregulation and 
Functional Outcome in Septic Shock)

https://clinicaltrials.gov/ct2/show/NCT03649633

Effect of IV Vitamin C, Thiamine, and 
Steroids on Mortality of Septic Shock

https://clinicaltrials.gov/ct2/show/NCT03828929

Thiamine, Vitamin C and Hydrocortisone in 
the Treatment of Septic Shock

https://clinicaltrials.gov/ct2/show/NCT03540628

Effects of Glucocorticoid Combined 
With Vitamin C and Vitamin B1 on 
Microcirculation in Severe Septic Shock

https://clinicaltrials.gov/ct2/show/NCT03821714

Clinical Trial of Antioxidant Therapy in 
Patients With Septic Shock

https://clinicaltrials.gov/ct2/show/NCT03557229

STASIS (Steroids, Thiamine and Ascorbic 
Acid in Septic Shock)

https://clinicaltrials.gov/ct2/show/NCT04134403

HYVITS (Evaluation of Hydrocortisone, 
Vitamin C and Thiamine for the Treatment 
of Septic Shock)

https://clinicaltrials.gov/ct2/show/NCT0338050

AVoCaDO (Administration of Intravenous 
Vitamin C in Novel Coronavirus Infection 
(COVID-19) and Decreased Oxygenation)

https://clinicaltrials.gov/ct2/show/NCT04357782
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Trial name Internet link to the trial

REDOXS (Trial of Glutamine and 
Antioxidant Supplementation in Critically 
Ill Patients)

https://clinicaltrials.gov/ct2/show/study/NCT00133978

Pharmacokinetics of Two Different High-
dose Regimens of Intravenous Vitamin C in 
Critically Ill Patients

https://clinicaltrials.gov/ct2/show/study/NCT02455180

High Dose Intravenous Ascorbic Acid in 
Severe Sepsis

https://clinicaltrials.gov/ct2/show/results/NCT02734147

ORANGES - Metabolic Resuscitation 
Using Ascorbic Acid, Thiamine, and 
Glucocorticoids in Sepsis.

https://clinicaltrials.gov/ct2/show/NCT03422159

VITAMINS The Vitamin C, Hydrocortisone 
and Thiamine in Patients With Septic Shock 
Trial

https://clinicaltrials.gov/ct2/show/NCT03333278

CITRIS-ALI Vitamin C Infusion for 
Treatment in Sepsis Induced Acute Lung 
Injury

https://clinicaltrials.gov/ct2/show/study/NCT02106975
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