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Chapter

Thermodynamic Stability
Conditions as an Eigenvalues
Fundamental Problem
Francisco Nogueira Lima

Abstract

Quadratic forms diagonalization methods can be used in addressing the stability
of physical systems. Thermodynamic stability conditions appears as an eigenvalues
fundamental problem, in particular when postulational approaches is taken. The
second-order derivatives or appropriate relations between such derivatives of the
energy, entropy or any considered thermodynamic potential, as Helmholtz,
enthalpy and Gibbs, have interesting mathematical features that directly imply in
the physical stability, obtained by use and as consequence of analytical techniques.
Formal aspects on the thermal and mechanical stability become simple conse-
quences, but no less formal, of the superposition of rigorously established physical
laws, and appropriate applications of mathematical techniques.

Keywords: quadratic forms, Taylor’s series, themodynamic stability, eigenvalues,
thermodynamic potentials

1. Introduction

In physics, there is a time-independent theory, namely, thermodynamics that is
used to determine the macroscopic equilibrium of physical systems. In practice, to
compute the equilibrium conditions and the physical properties of a system, a
physicist must find a function that completely describes the system, being capable
of capturing all involved properties. The existence of such a function arises as a
postulate of the themodynamics, having an extremum to the equilibrium states [1].
The function is called entropy and has a maximum at final equilibrium state. On the
other hand, the same understanding about the physical properties of the system can
be extracted through another relevant physical function, namely, energy. This
treatment of using energy function instead of entropy to investigate the physical
properties is completely equivalent but now the energy has a minimum and its
existence also occurs by postulational reason, as for entropy function. A broad
discussion on themodynamic’s postulates can be found in Ref. [1].

In practical problems, it woud be impossible to computing the total energy of a
system taking all time-dependent freedom degrees, such as atomic coordinates of
the components of the system each with its translational, rotation energies, etc.,
among others time-dependent properties. The thermodynamics theory emerges
from the fact that a great number of those freedom degrees are eliminated by
considering statistical averages, and not macroscopically manifesting. Thus, as the
physical principle of energy conservation keeps unaltered over decades, having
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been already rigorously tried and confirmed, a well-defined thermodynamic energy
function appears somewhat intuitive. Indeed, the energy must be interpreted as a
function capable of providing the macroscopic properties of the system. Besides,
due to the complexity in measuring the energy of a system, it is relevant to assume
some state whereby the energy is arbitrary defined as zero and measuring the
energy in connection that state because only energy differences have any physical
meaning [1–3].

There are equivalent approaches to investigate the thermodynamics properties
of a system in terms of thermodynamic functions (or thermodynamic potentials)
of Helmholtz, enthalpy and Gibbs instead of the energy or entropy. Such thermo-
dynamic potentials are obtained by using Legendre transformations in order to
change the original extensive variables, or part of them, in the function
thermodynamic energy by the intensive variables. Besides, other thermodynamic
functions (in addition to those already mentioned) can appear when making
Legendre transformations in specific extensive parameters of the energy or in the
extensive parameters of the entropy, such as grand canonical potential, and
Massieu, Planck and Krammers functions. The function to be used must be
defined by the practical characteristics of the problem and these last mentioned
functions are less common in more elementary approaches of postulational ther-
modynamics [1, 4].

A solid understanding of postulational thermodynamic theory is necessary in
order to investigate the thermal or mechanic stability of the most diverse systems.
The increase in the thermal stability of DNA against thermal denaturation can be
experimentally investigated using a methodology in which the differences or
changes in the standard values of negativity and positivity of enthalpy and
entropy, or even between them, are decisive for the study’s conclusions [5]. The
formalism of free energy (or Helmholtz potential) can be used for practical deter-
mination of the level of stored energy accumulated in material during plastic
processing applied as well as the stored energy for the simple stretching of aus-
tenitic steel [6]. There are an infinity of applications of thermodynamic theory in
wich the stability of a system is intimately related to some physical feature of
thermodynamic functions, and whose the convenience of the choice is determined
by practical situation.

Interesting formalisms or analytical techniques that combine the superposition
of the thermodynamic theory and mathematical methods appear as support for
problems of applied physics aimed to investigate the stability conditions of a sys-
tem, either through experimental or computational studies. In order to show of a
physical point of view, as arises the thermal and mechanical stability of a system,
let us invoke the known physical origin of the energy U, i. e., its existence is
determined by a postulate and the same way we know that U is a function of the
extensive parameters, entropy S, volume V and the mole numbers of the chemical
components N1, N2, … , Nr. This physical consideration can be mathematically
written as U ¼ U S,V,N1,N2, … ,Nrð Þ. Similarly, entropy S is a function of the
extensive parameters, energy U, volume V and the mole numbers of the chemical
components N1, N2, … , Nr, and so S ¼ S U,V,N1,N2, … ,Nrð Þ [1].

In this chapter, we discuss in details the postulate of maximum entropy or
minimum energy through which it is possible to see that the thermodynamic func-
tions S or U, or any potential/function derived them by Legendre transformations,
have mathematical features that can be obtained of an eingenvalues fundamental
problem, that is, the diagonalization of the hypersurfaces defined by U ¼
U S,V,N1,N2, … ,Nrð Þ or S ¼ S U,V,N1,N2, … ,Nrð Þ that conveniently expanded
in Taylor’s series provides the signs its second-order derivatives in an
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rþ 2ð Þ-dimensional thermodynamic space. Besides, some relations between these
derivatives by diagonalization of the quadratic form of U, S or other thermody-
namic function, naturally appear and as consequence relevant conclusions about the
system stability. Quadratic forms appear in several physical problems, especially in
quantum mechanics [7], and in thermodynamic theory this is not different. In
particular, we precisely investigate the mathematical caracteristics of the hypersur-
face of energy and other thermodynamic functions for a system of single chemical
component. In this case, it is possible to reduce the hypersurface
U S,V,N1,N2, … ,Nrð Þ, in an rþ 2ð Þ-dimensional thermodynamic space, to a
three dimensional hypersurface where U ¼ U S,V,Nð Þ (see that r ¼ 1). Analytical
calculations of quadratic forms diagonalization are used to reveal the signs of the
second-order derivatives of the three-dimensional thermodynamic functions.
Accordingly, the stability conditions are obtained.

This chapter is organized as follows. In Section 2, we discuss the general pro-
cedures to diagonalize the thermodynamic energy as well as obtain Talyor’s series in
an rþ 2ð Þ-dimensional thermodynamic space. It is also presented the same way to
entropy function. In Section 3, we diagonalize thermodynamic energy in a three-
dimensional space, and derived Helmholtz, enthalpy, and Gibbs potentials as well
as grand canonical potential. In addition, the signs of second-order derivatives of
such thermodynamic functions are calculated. In Section 4, stability conditions are
presented as consequences of the obtained signs in previous section. As it turns, we
summarize our main findings and draw some perspectives in Section 5.

2. The quadratic form of the energy hypersurface in an
rþ 2ð Þ-dimensional thermodynamic space

We already addressed in the introduction about the postulational existence of
the thermodynamic energy function U ¼ U S,V,N1,N2, … ,Nrð Þ that is a function
on extensive parameters entropy S, volume V and the mole numbers of the
chemical components N1, N2, … , Nr, where r represents the amount of chemical
components in the system. Besides, U is capable of describing all thermodynamic
macroscopic properties of treated system. A formal discussion on extensive
parameters can be found in Ref. [1]. However, understand them as those are
dependent on the amount of matter or mass of the system.

Remembering the most general form of Taylor’s series for a function
f ¼ f x1, x2, … , xnð Þ of n variables expanded around x10, x20, … , xn0ð Þ [8]:

f x1; x2; … ; xnð Þ ¼  f x10; x20; … ; xn0ð Þ þ
X

i

∂f

∂xi
Δxi

þ
1

2!

X

i

X

j

∂
2f

∂xi∂xj
ΔxiΔxj þ … ,

(1)

where Δxi ¼ xi � xi0, and all partial derivatives are evaluated at
x10, x20, … , xn0ð Þ. Here xi0 denotes the coordinates of some arbitrary stationary
point around which the function is expanded, with zero index to differentiate it
from all other points in the n-dimensional space.

Let us carefully expanding the energy U S,V,N1,N2, … ,Nrð Þ using Taylor’s
series given by Eq. (1) around S0,V0,N10,N20, … ,Nr0ð Þ point in
rþ 2ð Þ-dimensional space.
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U S,V,N1,N2, … ,Nrð Þ ¼ U S0,V0,N10,N20, … ,Nr0ð Þ þ
∂U

∂S
S� S0ð Þ

þ
∂U

∂V
V � V0ð Þ þ

X

r

k¼1

∂U

∂Nk
Nk �Nk0ð Þ þ

1

2!

∂
2U

∂S2
S� S0ð Þ2 þ

∂
2U

∂V2 V � V0ð Þ2
�

þ
X

r

k¼1

∂
2U

∂N2
k

Nk �Nk0ð Þ2 þ
X

i

X

j i6¼jð Þ

∂
2U

∂Xi∂X j
ΔXiΔX j

3

5þ … ,

(2)

where ΔXi � Xi � Xi0, with Xi ¼ S,V,N1,N2, … ,Nr and Xi0 ¼
S0,V0,N10,N20, … ,Nr0. Notice that last term that explicitly appears in Eq. (2) in
wich the simplified notation Xi is introduced represents all possible combinations of
double partial derivatives obtained from the extensive variables of the energy. Besides,
see that i 6¼ j in the same term due to already computed previous terms to i ¼ j.

By analogy with the one-variable differential calculus and due to the postulate of

minimum energy (d2U >0, see Refs. [1–3]), taking a stationary point
S0,V0,N10,N20, … ,Nr0ð Þ, we know that all first-order derivatives in Eq. (2) are
null at this point

∂U

∂S
¼ 0,

∂U

∂V
¼ 0and

∂U

∂Nk
¼ 0withk ¼ 1, ::, rð Þ, (3)

and therefore

U S,V,N1,N2, … ,Nrð Þ ¼ U S0,V0,N10,N20, … ,Nr0ð Þ þ
1

2!

∂
2U

∂S2
S� S0ð Þ2

�

þ
∂
2U

∂V2 V � V0ð Þ2 þ
X

r

k¼1

∂
2U

∂N2
k

Nk �Nk0ð Þ2 þ
X

i

X

j i 6¼jð Þ

∂
2U

∂Xi∂X j
ΔXiΔX j

3

5þ …

(4)

Let us define in Eq. (4) ΔS � S� S0, ΔV � V � V0, ΔNk � Nk �Nk0, ΔU �

U S,V,N1,N2, … ,Nkð Þ � U S0,V0,N10,N20, … ,Nr0ð Þ, and also ~U � 2! ΔUð Þ. Thus,
it is possible rewriting Eq. (4) as follows.

~U S,V,N1,N2, … ,Nrð Þ ¼
∂
2U

∂S2
ΔSð Þ2 þ

∂
2U

∂V2 ΔVð Þ2 þ
X

r

k¼1

∂
2U

∂N2
k

ΔNkð Þ2

þ
X

i

X

j i6¼jð Þ

∂
2U

∂Xi∂X j
ΔXiΔX j þ …

(5)

Notice that ~U in above expression must be interpreted the same way as the U,
being only mathematically multiplied and suppressed by the constants 2! and

U S0,V0,N10,N20, … ,Nr0ð Þ, respectively. Physically, ~U also obeys minimum

energy postulate and keep the dependence with the extensive parameters, ~U ¼
~U S,V,N1,N2, … ,Nrð Þ. On the other words, ~U is the original energy function U, at
less than a multiplicative constant, and additive. We should not forget that the
expression given by Eq. (5) has more terms than those explicitly listed, with third-
order, fourth-order derivatives and so on. However, if we take only terms until the

second-order derivatives, it is possible to see that hypersurface defined by ~U is a
complete quadratic form, in an rþ 2ð Þ-dimensional thermodynamic space (see
quadratic forms in Refs. [8, 9]). Then, some mathematical generalities can be
extracted of the thermodynamic energy written as Eq. (6) below:
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~U ¼  
∂
2U

∂S2
ΔSð Þ2 þ

∂
2U

∂V2 ΔVð Þ2

þ
X

r

k¼1

∂
2U

∂N2
k

ΔNkð Þ2 þ
X

i

X

j i 6¼jð Þ

∂
2U

∂Xi∂X j
ΔXiΔX j:

(6)

The matricial form of the quadratic expression in Eq. (6) is given by

~U ¼ ΔS ΔV ΔN1 ΔN2 … ΔNrð Þ

∂
2U

∂S2
⋯ ⋯ :

⋮
∂
2U

∂V2

∂
2U

∂Xi∂X j
⋮

∂
2U

∂N2
1

⋮
∂
2U

∂X j∂Xi
⋱ ⋮

: ⋯ ⋯
∂
2U

∂N2
r

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

ΔS

ΔV

ΔN1

ΔN2

⋮

ΔNr

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

, (7)

where the second-order derivatives above and below of main diagonal represent
all combinations of double partial derivatives in relation to the extensive variables
of the energy. Explicitly showing the terms of mixed partial derivatives in the
matricial equation given by Eq. (7), we have

~U ¼ ΔS ΔV ΔN1 ΔN2 … ΔNrð Þ

∂
2U

∂S2
∂
2U

∂S∂V

∂
2U

∂S∂N1
…

∂
2U

∂S∂Nr

∂
2U

∂V∂S

∂
2U

∂V2

∂
2U

∂V∂N1
…

∂
2U

∂V∂Nr

∂
2U

∂N1∂S

∂
2U

∂N1∂V

∂
2U

∂N2
1

…
∂
2U

∂N1∂Nr

⋮ ⋮ ⋮ ⋱ ⋮

∂
2U

∂Nr∂S

∂
2U

∂Nr∂V

∂
2U

∂Nr∂N1
…

∂
2U

∂N2
r

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

ΔS

ΔV

ΔN1

ΔN2

⋮

ΔNr

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

:

(8)

Resuming the previous discussion in which the extensive variables are
compactly defined as Xi, we can also express the energy in Eq. (8) of a compact way

~U ¼ ΔXið ÞTM ΔXið Þ, (9)

where

M �

∂
2U

∂S2
∂
2U

∂S∂V

∂
2U

∂S∂N1
…

∂
2U

∂S∂Nr

∂
2U

∂V∂S

∂
2U

∂V2

∂
2U

∂V∂N1
…

∂
2U

∂V∂Nr

∂
2U

∂N1∂S

∂
2U

∂N1∂V

∂
2U

∂N2
1

…
∂
2U

∂N1∂Nr

⋮ ⋮ ⋮ ⋱ ⋮

∂
2U

∂Nr∂S

∂
2U

∂Nr∂V

∂
2U

∂Nr∂N1
…

∂
2U

∂N2
r

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, (10)
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ΔXi is a column vector with ΔS, ΔV, ΔN1, … , ΔNr components, and ΔXT
i is the

transpose of ΔXi. As M is a symmetric matrix, a diagonalization procedure can be

applied to simplify the investigation of mathematical features of ~U and its physical
consequences. At first, the choice to expanding the thermodynamic energy in
Taylor’s series up to the second-order is due to the appearance of a complete
quadratic form with a known mathematics of many-variable calculus. Accordingly,

the canonical form ~U ¼ ΔX0T
i DΔXi

0 obtained by diagonalization allows visualizing
interesting physical features more easily. Notice that D is the eigenvalues matrix of
M with rþ 2ð Þ-components, and the ΔX0

i is the column eigenvector (with ΔS0, ΔV 0,

ΔN0
1, … , ΔN0

r components) of the diagonal matrix D as well as ΔX0T is the
transpose. A review on quadratic forms diagonalization can be found in Ref. [9].

The canonical form to ~U can be expressed by Eq. (11)

~U ¼ ΔX0
i

� �T
D ΔX0

i

� �

¼

ΔS0 ΔV 0
ΔN0

1 ΔN0
2 … ΔN0

r

� �

λS 0 0 0 0

0 λV 0 0 0

0 0 λN1 0 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋱ 0

0 0 0 0 λNr

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

ΔS0

ΔV 0

ΔN0
1

ΔN02

⋮

ΔN0
r

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

¼ λS ΔS0ð Þ
2
þ λV ΔV 0ð Þ

2
þ λN1 ΔN0

1

� �2
þ … þ λNr

ΔN0
r

� �2
:

(11)

See that in the canonical form of ~U given by Eq. (11) are eliminated the mixed
partial derivatives of Eq. (6). Besides, the minimum energy postulate imposes to the

function ~U S,V,N1,N2, ::,Nrð Þ in Eq. (11) the following mathematical condition:

~U ¼ λS ΔS0ð Þ
2
þ λV ΔV 0ð Þ

2
þ λN1 ΔN0

1

� �2
þ … þ λNr

ΔN0
r

� �2
>0: (12)

It is possible to see that this conditon occurs only when λS >0, λV >0, λN1 >0,
… , λNr

>0 for any sets of values of ΔS0, ΔV 0, ΔN0
1, … , ΔN0

r. To obtain the λi
(i ¼ S,V,N1, … ,Nr) eigenvalues, it is necessary diagonalize M (see Eq. (8)) by
solving the equation λiI �Mð ÞXi ¼ 0, where I is an indentity matrix (see Ref. [9])
that provides the determinant below

∂
2U

∂S2
� λ

� �

∂
2U

∂S∂V

∂
2U

∂S∂N1
…

∂
2U

∂S∂Nr

∂
2U

∂V∂S

∂
2U

∂V2 � λ

� �

∂
2U

∂V∂N1
…

∂
2U

∂V∂Nr

∂
2U

∂N1∂S

∂
2U

∂N1∂V

∂
2U

∂N2
1

� λ

� �

…
∂
2U

∂N1∂Nr

⋮ ⋮ ⋮ ⋱ ⋮

∂
2U

∂Nr∂S

∂
2U

∂Nr∂V

∂
2U

∂Nr∂N1
…

∂
2U

∂N2
r

� λ

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ 0: (13)
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Observe that Eq. (13) implies an equation in λ of rþ 2ð Þ-degree. Besides, all λi
are necessarily positive due to the minimum energy postulate.

So far, we have show some generalities about thermodynamic energy in an
rþ 2ð Þ-dimensional space. Notice that diagonalizing M by solving Eq. (13) is not an
easy task. For a system with great number of chemical components analytical
solutions of Eq. (13) can become increasingly hard.

If we take the entropy of the system instead of energy, all above formalism
remains valid by simple exchanging U and S variables in the equations. In addition,
due to the maximum entropy postulate, all eigenvalues of second-order derivatives
matrix (similar to M by exchanging U and S) must be negatives (λU <0, λV <0,
λN1 <0, … , λNr

<0). Then, in this case we have Eq. (14) instead Eq. (12).

~S ¼ λS ΔU0ð Þ
2
þ λV ΔV 0ð Þ

2
þ λN1 ΔN0

1

� �2
þ … þ λNr

ΔN0
r

� �2
<0: (14)

In a two-dimensional thermodynamic space, a discussion on the eigenvalues of
M and the physical consequences of its positivity is presented in Ref. [10]. In this
case, the conditions of thermal and mechanical stability are naturally demonstrated
through the signs of the second-order derivatives of some thermodynamic function
of two-variables. The two-dimensional problem arises when is considered a one-
component system and, in particular, we can take the thermodynamic energy per
mol, reducing the dependence of such energy function for only the variables
entropy (s) and volume (v) per mol (u ¼ u s, vð Þ).

The stability conditions of a thermodynamic system are intrinsically related to
the signs of the second-order derivatives of the energy, being the exact calculating
of the eigenvalues of Eq. (13) (of previously known signs) an important factor in
order to understand the physical origin of the stability of the system. In next
section, we present a discussion of eigenvalues of the energy in a three-dimensional
thermodynamic space.

3. Diagonalization of the energy in a three-dimensional thermodynamic
space

Let us define the energy in a three-dimensional thermodynamic space. To do
this, we consider a system with one chemical component and explicitly write the
energy U ¼ U S,V,Nð Þ in terms of the involved extensive parameters S,V and N.
Similarly of Eq. (3) and by analogy with one-variable calculus, we have ∂U

∂S ¼ ∂U
∂V ¼

∂U
∂N ¼ 0 (at a stationary point (S0,V0,N0)) due to the minimum energy principle.

Besides, in order to investigate the second-order derivatives of U (or ~U, there are no
physical difference), a simple matricial quadratic form can be obtained by
application of Eqs. (6), (7) and (8), as follows:

~U ¼ ΔS ΔV ΔNð Þ

∂
2U

∂S2
∂
2U

∂S∂V

∂
2U

∂S∂N

∂
2U

∂V∂S

∂
2U

∂V2

∂
2U

∂V∂N

∂
2U

∂N∂S

∂
2U

∂N∂V

∂
2U

∂N2

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

ΔS

ΔV

ΔN

0

B

@

1

C

A
¼ ΔXið ÞTM 3x3ð Þ ΔXið Þ,

(15)
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where

M 3x3ð Þ ¼

∂
2U

∂S2
∂
2U

∂S∂V

∂
2U

∂S∂N

∂
2U

∂V∂S

∂
2U

∂V2

∂
2U

∂V∂N

∂
2U

∂N∂S

∂
2U

∂N∂V

∂
2U

∂N2

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

(16)

ΔXi is a column vector with ΔS, ΔV, ΔN components, ΔXT
i is the transpose of

ΔXi, and M 3x3ð Þ is a symmetric matrix that provides three eigenvalues for ~U by

diagonalization of M 3x3ð Þ. Thus, by using the canonical form of ~U combined with

minimum energy principle, we know that all signs of the eigenvalues λ1, λ2, and λ3
of M 3x3ð Þ are positive

~U  ¼ ΔX0
i

� �T
D 3x3ð Þ ΔX0

i

� �

¼ ΔS0 ΔV 0
ΔN0ð Þ

λ1 0 0

0 λ2 0

0 0 λ3

0

B

B

B

@

1

C

C

C

A

ΔS0

ΔV 0

ΔN0

0

B

B

B

@

1

C

C

C

A

¼ λ1 ΔS0ð Þ
2
þ λ2 ΔV 0ð Þ

2
þ λ3 ΔN0ð Þ

2
>0:

(17)

Note that D 3x3ð Þ in Eq. (17) is the eigenvalues matrix of M 3x3ð Þ given by Eq. (16).

As in Eq. (13), here we need solve the eigenvalues equation λI 3x3ð Þ �M 3x3ð Þ

� �

Xi ¼ 0

that provides the following determinant

∂
2U

∂S2
� λ

� �

∂
2U

∂S∂V

∂
2U

∂S∂N

∂
2U

∂V∂S

∂
2U

∂V2 � λ

� �

∂
2U

∂V∂N

∂
2U

∂N∂S

∂
2U

∂N∂V

∂
2U

∂N2 � λ

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ 0: (18)

The determinant given by Eq. (18) provides a third-degree equation in λ.

�λ3 þ
∂
2U

∂S2
þ

∂
2U

∂V2 þ
∂
2U

∂N2

� �

λ2 þ
∂
2U

∂S2
∂
2U

∂V2 þ
∂
2U

∂S2
∂
2U

∂N2 þ
∂
2U

∂V2

∂
2U

∂N2 þ
∂
2U

∂S∂N

∂
2U

∂N∂S

�

þ
∂
2U

∂V∂N

∂
2U

∂N∂V
þ

∂
2U

∂S∂V

∂
2U

∂V∂S

�

λþ
∂
2U

∂S2
∂
2U

∂V2

∂
2U

∂N2 þ
∂
2U

∂S∂V

∂
2U

∂V∂N

∂
2U

∂N∂S

�

þ
∂
2U

∂V∂S

∂
2U

∂N∂V

∂
2U

∂S∂N
�

∂
2U

∂N∂V

∂
2U

∂V∂N

∂
2U

∂S2
�

∂
2U

∂N∂S

∂
2U

∂S∂N

∂
2U

∂V2

�
∂
2U

∂S∂V

∂
2U

∂V∂S

∂
2U

∂N2

�

¼ 0:

(19)
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The above equation is commonly known as characteristic equation, and its
solution necessarily imply in three positive roots due to the minimum energy
postulate. After some algebraic manipulations [8, 11, 12] in order to solve Eq. (19)
and considering λ1 >0, λ2 >0 and λ3 >0 (three positive roots), we find the following
relations

∂
2U

∂S2
>0,

∂
2U

∂V2 >0,
∂
2U

∂N2 >0 asexpected fromone� variable calculusð Þ, (20)

∂
2U

∂S2
∂
2U

∂V2 �
∂
2U

∂S∂V

∂
2U

∂V∂S
>0, (21)

∂
2U

∂S2
∂
2U

∂V2

∂
2U

∂N2 þ
∂
2U

∂S∂V

∂
2U

∂V∂N

∂
2U

∂N∂S
þ

∂
2U

∂V∂S

∂
2U

∂N∂V

∂
2U

∂S∂N

�

�
∂
2U

∂N∂V

∂
2U

∂V∂N

∂
2U

∂S2
�

∂
2U

∂N∂S

∂
2U

∂S∂N

∂
2U

∂V2 �
∂
2U

∂S∂V

∂
2U

∂V∂S

∂
2U

∂N2

�

>0:

(22)

Observe that Eq. (22) is equivalent to the determinant of M 3x3ð Þ (see Eq. (16)),

being positive to energy representaion, and so ∣M 3x3ð Þ∣>0. Besides, considering that

the product of the three roots x1x2x3 ¼ �d=a in a general third-degree equation

ax3 þ bx2 þ cxþ d ¼ 0 is a known expression of more elementary courses, Eq. (22)

can be easily obtained due to the positivity of all eigenvalues of ~U (see that d is the
last bracket term in Eq. (19), and a ¼ �1) in the condition of minimum introduced
by the thermodynamic postulate. In addition, notice that first relation in Eq. (19) is
the determinant of the upper left 1x1 submatrix of M 3x3ð Þ, while Eq. (20) is the

determinant of the upper left 2x2 submatrix of M 3x3ð Þ.

In short, to obtaining in which conditions at equilibrium point (S0,V0,N0)
~U ¼ ~U S,V,Nð Þ has a minimum in this three-dimensional thermodynamic space,

the set of relations given by Eqs. (20)-(22) must occur, where the relations ∂
2U
∂V2 >0

and ∂
2U

∂N2 >0 in Eq. (20) were introduced for a more physical than mathematical

reason during analytical solution of Eq. (19). A general approach about mathemat-
ical second derivative test for many variable functions can be found in Ref. [8].

We must solve Eq. (19) permuting U and S in an equivalent entropy represen-
tation. Besides, by imposing all negative values due to maximum entropy postulate,
it is possible to obtain a set of relations as in Eqs. (20)-(22). Solving eigenvalues
equation below

�λ3 þ
∂
2S

∂U2 þ
∂
2S

∂V2 þ
∂
2S

∂N2

� �

λ2 þ ½
∂
2S

∂U2

∂
2S

∂V2 þ
∂
2S

∂U2

∂
2S

∂N2 þ
∂
2S

∂V2

∂
2S

∂N2 þ
∂
2S

∂U∂N

∂
2S

∂N∂U

þ
∂
2S

∂V∂N

∂
2S

∂N∂V
þ

∂
2S

∂U∂V

∂
2S

∂V∂U

�

λþ
∂
2S

∂U2

∂
2S

∂V2

∂
2S

∂N2 þ
∂
2S

∂S∂V

∂
2S

∂V∂N

∂
2S

∂N∂U

�

þ
∂
2S

∂V∂U

∂
2S

∂N∂V

∂
2S

∂U∂N
�

∂
2S

∂N∂V

∂
2S

∂V∂N

∂
2S

∂U2 �
∂
2S

∂N∂U

∂
2S

∂U∂N

∂
2S

∂V2

�
∂
2S

∂U∂V

∂
2S

∂V∂U

∂
2S

∂N2

�

¼ 0,

(23)

and imposing λ1 <0, λ2 <0 and λ3 <0 (all negative eigenvalues due to maximum
entropy postulate), we obtain
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∂
2S

∂U2 <0,
∂
2S

∂V2 <0,
∂
2S

∂N2 <0 asexpected fromone� variable calculusð Þ (24)

∂
2S

∂U2

∂
2S

∂V2 �
∂
2S

∂U∂V

∂
2S

∂V∂U
>0 (25)

∂
2S

∂U2

∂
2S

∂V2

∂
2S

∂N2 þ
∂
2S

∂U∂V

∂
2S

∂V∂N

∂
2S

∂N∂U
þ

∂
2S

∂V∂U

∂
2S

∂N∂V

∂
2S

∂U∂N

�

�
∂
2S

∂N∂V

∂
2S

∂V∂N

∂
2S

∂U2 �
∂
2S

∂N∂U

∂
2S

∂U∂N

∂
2S

∂V2 �
∂
2S

∂U∂V

∂
2S

∂V∂U

∂
2S

∂N2

�

<0:

(26)

As it happened for energy, here Eq. (24) is expected from one-variable calculus
and its last two relations were introduced for a more physical than mathematical
reason during analytical solution of Eq. (23). It is important to emphasize that
although Eq. (25) keeps the same format and sign of Eq. (21), the sign in Eq. (26)
for the entropy formalism is now negative. This should not cause any surprise and
can be concluded even without explicitly calculate the three eigenvalues of charac-
teristic equation due to the known expression to the product between the three

roots, x1x2x3 ¼ �d=a in a general third-degree equation ax3 þ bx2 þ cxþ d ¼ 0.
Then, as all eigenvalues are now negative, Eq. (26) is easy verified from character-
istic equation (see Eq. (23) where d is the last bracket term, and a ¼ �1). The set of
Eqs. (24)-(26) provides the mathematical conditions of maximum for entropy

thermodynamic function ~S ¼ ~S U,V,Nð Þ at U0,V0,N0ð Þ.
Some physical problems require the use of thermodynamic potentials of Helm-

holtz, enthalpy and Gibbs as well as the grand canonical potential instead of ther-
modynamic energy to be more easy solved. These thermodynamic functions are
introduced in the next topic.

3.1 Second-order derivatives of other thermodynamic functions

By using Legendre transformations, it is possible to change the extensive vari-
ables, or part of them, in the thermodynamic energy function. In this subsection,
we are considering the same energy of three extensive variables defined by U ¼
U S,V,Nð Þ in which making appropriate Legendre transformations the intensive
variables are introduced. A discussion on extensive and intensive thermodynamic
variables can be found in Ref. [1]. Legendre’s transformation is, in short, a process
of change of variables.

3.1.1 Helmholtz potential

In order to introduce Helmholtz potential that is an energy function that instead
of being a function of S, V and N it is written in terms of T, V and N, we need to
make Legendre transformation (change S by T) in extensive parameter S. This
process of introducing intensive parameter T is described below. Before let us write
U S,V,Nð Þ as

dU S,V,Nð Þ ¼
∂U

∂S
dSþ

∂U

∂V
dV þ

∂U

∂N
dN, (27)

where the temperature can be defined by T � ∂U
∂S with V and N constant, the

pressure is defined by P � � ∂U
∂V with S and N constant, and the chemical potential is

defined by μ � ∂U
∂N with S and V constant. With these definitions, we have to Eq. (27)
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dU ¼ TdS� PdV þ μdN: (28)

Taking

d TSð Þ ¼ TdSþ SdT

TdS ¼ d TSð Þ � SdT,
(29)

and substituting Eq. (29) into Eq. (28)

dU ¼ d TSð Þ � SdT � PdV þ μdN

d U � TSð Þ ¼ �SdT � PdV þ μdN

dF ¼ �SdT � PdV þ μdN,

(30)

where

F � U � TS beingFknownasHelmholtz potentialð Þ: (31)

See of the Eq. (30) that F is a function of T, V and N. Then F ¼ F T,V,Nð Þ,
and the energy F defined as function of T, V and N has modified its concavite in
relation to the new introduced parameter by Legendre transformation in S, i. e.,
the second-order derivatives of F on T is negative now, keeping positive the signs of
F on V and N as in original energy (see Eq. (32) below).

∂
2F

∂T2 <0,
∂
2F

∂V2 >0,
∂
2F

∂N2 >0: (32)

It is a general fact that Legendre transformation change the sign of the second-
order derivatives of the new introduced function in relation that intensive parame-
ter. A demonstration of this consideration to molar Helmholtz potential f ¼ f s, vð Þ is
shown in Re. [10], and a treatment on Legendre transformations can be found in
Ref. [13]. Recently, the thermodynamic stability of chignolin protein was theoreti-
cally investigated by using of a computational methodology of decomposition of the
Helmholtz energy profile that indicates that intramolecular interactions predomi-
nantly stabilized certain conformations of the protein [14]. Besides, in the same
study the direct Helmholtz energy decomposition provides the predominant factor
in the thermodynamic stability of proteins.

Following the same procedure used to derive the stability conditions of the
energy and entropy functions, it is possible to obtain a complete set of relations that
Helmholtz potential must obey. Mathematically F is known as a saddle surface. This
feature of F stems from the imposition that some eigenvalue of the canonical form
of F (similarly to the Eq. (17)) have opposite sign to the others. The saddle surface
of Helmholtz of three variables has a maximum in relation to the temperature but a
minimum in relation to the volume and mole number. The relations given by
Eq. (32) are sufficient to conclude on the physical stability of a system, as demon-
strated in Section 4, and the other expressions to the second-order derivatives of F
are not shown here. However, the curious reader can be computing all signs of the
second-order derivatives to Helmoltz and to other thermodynamic functions that
follow below, as already discussed to energy and entropy functions.

3.1.2 Enthalpy potential

The enthalpy potential is also mathematically a saddle surface. In this case,
Legendre transformation is applied in the extensive parameter V and introduced
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the intensive parameter P. Further, H keep unaltered with a minimum in relation to
the entropy S and N but becomes a maximum on P, and so H ¼ H S,P,Nð Þ.
Remembering that dU ¼ TdS� PdV þ μdN, then

d pVð Þ ¼ PdV þ VdP

�PdV ¼ �d PVð Þ þ VdP,
(33)

and substituting Eq. (33) into Eq. (28), we have

dU ¼ TdS� d PVð Þ þ VdPþ μdN

d U þ PVð Þ ¼ TdSþ VdPþ μdN

dH ¼ TdSþ VdPþ μdN,

(34)

where

H � U þ PV beingHknownasenthalpy potential
� �

: (35)

Due to Legendre transformations, it is possible to conclude that

∂
2H

∂S2
>0,

∂
2H

∂P2 <0,
∂
2H

∂N2 >0, (36)

and other inequalities can be obtained the same way as previously presented to
energy and entropy functions,i. e., by diagonalization of H S,P,Nð Þ.

3.1.3 Gibbs potential

It is possible to write a function obtained by double Legendre transformation in
the extensive parameters S and V, namely Gibbs potential. This is a function on
introduced intensive variables T and P. To do that, we combine Eqs. (29) and (33)
into Eq. (28). Then,

dU ¼ TdS� PdV þ μdN

dU ¼ d TSð Þ � SdT � d PVð Þ þ VdPþ μdN

dU � d TSð Þ þ d PVð Þ ¼ �SdT þ VdPþ μdN

d U � TSþ PVð Þ ¼ �SdT þ VdPþ μdN

dG ¼ �SdT þ VdPþ μdN,

(37)

where

G � U � TSþ PV beingGknownasGibbs potentialð Þ: (38)

Legendre transformations provide the following relations, and G ¼ G T,P,Nð Þ as
seen in Eq. (37).

∂
2G

∂T2 <0,
∂
2G

∂P2 <0,
∂
2G

∂N2 >0: (39)

Here the second-order derivatives in relation to T and P are negative now as well
as the G ¼ G T,P,Nð Þ becomes a surface of maximum in relation of these two
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parameters. See that energy keeps unaltered in relation to N, and Gibbs potential
has a minimum in relation to mole number because Legendre transformations are
applied only in S and V, introducing T and P respectively. Besides, by diagonaliza-
tion of quadratic form obtained by expanding of G, it is possible to compute other
inequalities in additon those expressed by Eq. (39), as already discussed to the
energy and entropy formalisms.

3.1.4 Grand canonical potential

A function of T, V and μ is known as grand canonical potential J. To obtaining
J ¼ J T,V, μð Þ let us introduce the intensive parameter μ of the extensive parameter
N as follows. Taking

d μNð Þ ¼ Ndμþ μdN

μdN ¼ d μNð Þ �Ndμ,
(40)

and combining the above equation with Eq. (29) into (28), we have

dU ¼ TdS� PdV þ μdN

dU ¼ d TSð Þ � SdT � PdV þ d μNð Þ �Ndμ

dU � d TSð Þ � d μNð Þ ¼ �SdT � PdV �Ndμ

d U � TS� μNð Þ ¼ �SdT � PdV �Ndμ

dJ ¼ �SdT � PdV �Ndμ,

(41)

where

J ¼ U � TS� μN ¼ F � μN being Jknownasgrand canonical potentialð Þ: (42)

Thus, by Legendre transformations in S and N, T and μ intensive variables are
introduced, respectively, the relations below are naturally obtained.

∂
2J

∂T2 <0,
∂
2J

∂V2 >0,
∂
2J

∂μ2
<0: (43)

These relations indicate that G has now a maximum in relation to intensive
parameters T and μ, keeping a minimum on V. Legendre transformations applied in
the entropy formalism are also useful to derive other thermodynamic functions that
are not treated here. The appropriate choice of the thermodynamic function is
relevant in practical problems. Besides, thermodynamic functions are convex func-
tions of their extensive variables (positive signs of the second-order derivatives)
and concave functions (negative signs of the second-order derivatives) of their
intensive variables [1].

Novel geometric approaches aimed at obtaining thermodynamic relations
in a systematic way for a number of thermodynamic potentials and formally
derived the classical Gibbs stability condition has been recently investigated [15].

So far, we demonstrate the mathematical conditions that second-order deriva-
tives of the thermodynamic functions must satisfied. In the next section, we use
these conditions to directly obtain the mechanical and thermal stability of a general
system.
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4. The stability conditions of a system

Let us start this section remembering some quantities of physical interest
defined below [1–3]:

α �
1

V

∂V

∂T
(44)

cV �
T

N

∂S

∂T
(45)

cP �
T

N

∂S

∂T
(46)

kT � �
1

V

∂V

∂P
(47)

kS � �
1

V

∂V

∂P
, (48)

where α (at p constant) in Eq. (44) is the coefficient of thermal expansion, cV
and cP in Eqs. (45) and (46) respectively, are the specific heats at V or P constant,
kT (T constant) in Eq. (47) is the isothermal compressibility and kS (S constant) in
Eq. (48) is the adiabatic compressibility. All these quantities are relevant in physical
applications and their exact values as well as their increase or decrease tendencies
can say a lot about the stability of the physical system.

The thermal expansion is related to changes in dimensions of physical systems
due to temperature variations. We can understand the behavior of materials on the
macroscopic or microscopic scale when subjected to temperature changes by the
abosolute values of α that can be positive or negative.

Specific heats are useful to understand the thermal properties of physical sys-
tems in several length scales (macroscale and microscale). Besides, the specific
heats are positive physical quantities associated to the thermal stability of the
system, as will be mathematically demonstrated in this section.

The isothermal and adiabatic compressibilities are positive physical quantities,
being related to the mechanical stability of the system. A deep comprehension of
the physical origin of the mentioned quantities in terms of the signs of the
second-order derivatives of thermodynamis functions, it is relevant to theoretical or
experimental researchers.

In order to better investigate the physical consequences of the signs of the
second-order derivatives of the energy, see the first relation in Eq. (20)

∂
2U

∂S2
>0: (49)

Remembering the temperature definition T ¼ ∂U
∂S , we have by derivation of

temperature T side by side in relation to the S entropy

∂T

∂S
¼

∂
2U

∂S2
>0: (50)

Then, if we combine Eq. (50) and the definition of specific heat (at V constant)
given by Eq. (45), it is possible to obtain

T

NcV
¼

∂
2U

∂S2
>0

) cV >0:

(51)
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A positive specific heat (cV >0) is obtained due to the absolute temperature is
positive. Besides, N is a positive amount. The same physical conclusion can be

obtained of the first relation in Eq. (32), ∂
2F

∂T2 <0. As F is a function of T, V and N

(F ¼ F T,V,Nð Þ), an infinitesimal of dF is given by

dF ¼
∂F

∂T
dT þ

∂F

∂V
dV þ

∂F

∂N
dN (52)

that compared with Eq. (30) provides

�S ¼
∂F

∂T
, (53)

�P ¼
∂F

∂V
, (54)

and

μ ¼
∂F

∂N
: (55)

If we take the derivation side by side of Eq. (53) in relation to T considering V
and N constant

�
∂S

∂T
¼

∂
2F

∂T2 : (56)

It is possible to observe that the left side of Eq. (56) is relationed to the specific
heat at V constant and the sign of the second-order derivatives can be checked by
comparing with Eq. (32), and so

�
∂S

∂T
¼

∂
2F

∂T2 <0, (57)

and from definition of specific heat in Eq. (45)

�
NcV
T

<0 )
Ncv
T

>0 ) cv >0: (58)

Note that Eq. (58) represents the same result already obtained in Eq. (51), only
taking different formalisms to thermodynamic function, and so analyzing distinct
second-order derivatives. The specific heat must be interpreted as the necessary
amount of heat to increase or decrease the temperature of the physical system. A
negative specific heat would imply in an inexistent physical situation because we
would have a system capable of receiving some quantity of heat (postive) and
decreasing its temperature (negative dT). There is still another non-physical situa-
tion with negative specific heat in the hypothetical situation in which the system
loses heat but increases its temperature.

We investigate now the signs of second-order derivatives of Gibbs potential. The
relation given by first inequality in Eq. (39) provides an important conclusion to
specific heat at P constant, with cP >0. To demonstrate that, let us take a differential
element dG of Gibbs potential G ¼ G T,P,Nð Þ

dG ¼
∂G

∂T
dT þ

∂G

∂P
dPþ

∂G

∂N
dN: (59)
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The above equation can be compared with Eq. (37), and we obtain

�S ¼
∂G

∂T
, (60)

V ¼
∂G

∂P
, (61)

and

μ ¼
∂G

∂N
: (62)

Deriving Eq. (60) side by side in relation to T at P constant, we have

�
∂S

∂T
¼

∂
2G

∂T2 , (63)

and from definition of specific heat at P constant in Eq. (46) and by comparing
with the first inequality in Eq. (39)

�
NcP
T

¼
∂
2G

∂T2 <0

NcP
T

>0 ) cP >0:

(64)

Notice that specific heat at P constant is also positive. The positivity of the
specific heats previous shown is related to the thermal stability of the physical
system. Then, it is possible to see that the thermal stability emerge as consequence
of the signs of the second-order derivatives previously treated. Thus, appropriately
computing the eigenvalues of the matricial energy or other thermodynamic func-
tion is essencial to finding the stability conditions.

Resuming Eq. (54) and by derivation of the left and right sides in relation to V
keeping T constant

∂P

∂V
¼ �

∂
2F

∂V2 : (65)

Comparing Eq. (66) with the definition to isothermal compressibility in
Eq. (47), we can obtain

∂P

∂V
¼ �

1

VkT
: (66)

As the sign of the second-order derivative in Eq. (66) is positive, we have

�
1

VkT
¼ �

∂
2F

∂V2

1

VkT
¼

∂
2F

∂V2 >0 ) kT >0:

(67)

Notice that the sign of the second-order derivative of the appropriately chosen
potential leads to a relevant relation for the sign of physical quantity of interest.
Besides, in the definition given by Eq. (47) that increments of pressure in the
system leads to decrease in volume due to the ever positive isothermal
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compressibility, and this is an intuitive conclusion. From Eq. (67) we mathemati-
cally demonstrated that isothermal compressibility is always positive due to specific
features of the potentials. In particular, the positive value of kT appears from
curvature of some chosen potential. The same way kS >0 can be obtained from

enthalpy potential through the the sign of the second relation (∂
2H
∂P2 <0) in Eq. (36),

and after some algebraic manipulations. A positive value of this physical quantity is
associated with the mechanical stability of the physical system, as in kT .

It is relevant to clarify that α does not to have a positive defined sign that can be
obtained from some function. The well-known case of the water shows that volume
increases when temperature decreases below at 4oC, being negative α in this regime.
Yet, thermodynamic books [1–3] show some relations between the physical quanti-
ties, as cp ¼ cv þ TVα2=NkT, cp=cv ¼ kT=kS as well as cp ≥ cv and kT ≥ ks obtained by
reduction of thermodynamic derivatives and by using Maxwell’s relations. But this
is not the purpose of this chapter.

It is worthy of emphasis that some stability condition can be deduced by the
signs of the second-order derivatives of energy (or any thermodynamic function),
as presented in this chapter. In a three-dimensional (or higher) thermodynamic
space the complexity in obtain with success the stability conditions for some poten-
tial is associated to the matrix order of the second-order derivatives. Besides, to all
cases one or several second-order relations must be manipulated to conclude about
the thermal and mechanical stability of the system.

5. Conclusions

In this chapter, we show the useful of specific linear algebra topics in addition
with many-variable calculus that coupled to minimum energy postulate appear as in
important insight to understand the stability of thermodynamic systems. We find
the thermal and mechanical stability of physical systems are directly associated with
the signs of the second-order derivatves of thermodynamic energy or other taken
representation.

We present a general addressing to the energy representation in terms of matrial
equations whereby the stability conditions arise of an eigenvalues fundamental
problem. Besides, the minimum energy postulate provides the signs of the second-
order derivatives. Accordingly, of a physical point of view the stabilility of a system
occurs due to minimum energy postulate.

Formal caracteristics of postulational thermodynamic theory and, particularly,
about the second-order derivatives of the thermodynamic functions are discussed
with relevant consequences on the thermal and mechanical stability. The presented
analytical formalism is an important support to conclude how the stability of a
system arises, and can be useful in any field of the exact sciences. We hope that this
methodology can be extended to higher-order matrices of energy as well as some of
the obtained relations can be used in specific problems of applied physics.
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