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Chapter

Phytochemical Antioxidants:  
Past, Present and Future
Yasuko Sakihama and Hideo Yamasaki

Abstract

Most diseases that are difficult to prevent and cure are “syndromes” that are 
governed by multiple components with complicated interactions. Whatever the 
cause of such diseases, overproduction of harmful reactive oxygen species (ROS) 
can often be observed in progression of the disease. Under such conditions, the 
cells may be challenged by “oxidative stress” due to excessively generated oxidants. 
Antioxidants can be defined as chemical compounds that scavenge ROS or free 
radicals over-produced in the cells under oxidative stress conditions. The plant pig-
ments flavonoids and betalains, rich in fruits and vegetables, are reactive not only 
with ROS but also with reactive nitrogen species (RNS) and possibly with reactive 
sulfur species (RSS). Here, we provide an overview of updates on the antioxidative 
functions of the plant pigments along with some prospects for future research on 
phytochemical antioxidants.

Keywords: flavonoid, betalain, reactive oxygen species (ROS), reactive nitrogen 
species (RNS), reactive sulfur species (RSS)

1. Introduction

Fruits and vegetables are appreciated as “healthy foods” compared with beef 
or pork meat. Many epidemiological studies as well as clinical investigations 
have suggested that a vegetable-based diet is beneficial in preventing chronic 
diseases including cancer, coronary heart disease, stroke and hypertension [1, 2]. 
Meanwhile, traditional herbal medicines have used specific plant species that con-
tain phytochemicals exhibiting pharmacological activities [3]. Novel compounds 
have been isolated from such plants and they have been chemically synthesized for 
pharmaceutical production [4]. Nobody doubts that edible plants are beneficial in 
human health.

In “western” medicine, a disease can be defined as dysfunction of a physiological 
mechanism. Based on this concept, a drug in general is presumed to act on a specific 
component of a physiological mechanism. In many cases, these are inhibitors of 
enzymes or transporters, showing the “one-to-one” relationship between drug and 
target molecule. While recent drug designs have drastically changed due to a rapid 
development of computer technology [5] as well as gene therapy [6], the hunt for 
novel bioactive compounds contained in plants is still active for new drug discovery.

The “one-to-one” philosophy in medicine and pharmacology works well, if the 
cause of a disease is ascribed to a single component such as a protein or an enzyme. 
However, most diseases that are difficult to prevent and cure are “syndromes” that 
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are governed by multiple components with complicated interactions. Whatever the 
cause of such diseases, overproduction of harmful reactive oxygen species (ROS) 
can often be observed in progression of the disease. Under such conditions, the cells 
may be challenged by “oxidative stress” due to excessively generated oxidants. The 
oxidative stress potentially impairs cellular functions eventually leading to death 
[7, 8]. This is a common biological feature that can be seen in all living organisms 
including bacteria, fungi, plants and animals. Living organisms have evolved to 
cope with the oxidative stress induced by biotic (pathogen attack or biological 
interactions) and abiotic (or environmental) stresses. Thus, under stress condi-
tions, living organisms need to control cellular ROS levels for their survival. In this 
context, antioxidant systems are essential in any living organisms. This is a biologi-
cal rationale for the importance of antioxidants in prevention and cure of diseases 
in humans.

Plant antioxidant research shows a history of twists and turns. Some early 
studies had suggested concepts opposite to the present recognition. Plant antioxi-
dants had sometimes even been considered to be toxic or carcinogenic to animals. 
Contradictory reports in the old literatures may lead non-specialists to a state of 
confusion. Thus, to follow the current state of research advances in phytochemical 
antioxidants, understanding its historical background is of help for non-specialists 
and new researchers. Highlighting the research progress of plant pigments flavo-
noids and betalains, here, we provide an overview of phytochemical antioxidants 
with some prospects for future research.

2. Historical perspective of plant antioxidants

2.1 The vitamin that prevents the disease of age of discovery

A retrospective of the history of research on plant antioxidants needs to go 
back to the age of discovery. When voyagers such as Magellan, Columbus, Vasco da 
Gam and Cook were sailing over the world’s oceans, more than three times as many 
sailors died due to the mysterious disease “scurvy” as soldiers died in the American 
Civil War [9]. For hundreds of years, the cause of the disease had not been clari-
fied and there had been no cure for this disease of sailors [10]. In 1747, James Lind 
working as a naval surgeon at sea on the HMS Salisbury conducted “clinical trials” 
of potential cures for the disorder. In Treatise of the Scurvy published in 1753, he 
reported that there was no effect with the potential remedies vinegar, mustard, 
garlic purges, elixir of vitriol, but citrus fruits (orange and lemon) showed a 
significant cure effect [11]. It is now known that scurvy is caused by a vitamin C 
(L-ascorbate) deficiency due to a lack of fresh fruits and vegetables.

Historically, antioxidant and vitamin studies have developed independently in 
chemistry and health science, respectively. In chemistry, antioxidants were defined 
as chemical compounds that can suppress oxidation reactions. In early studies, 
oxidation was observed as absorption of molecular oxygen in a reaction such as 
polymerization reaction of natural rubber. On the other hand, a vitamin (the name 
“vitamine, vital + amine” was the original proposal and it was later renamed to 
“vitamin”) was defined as an organic nutrient that is essential for human health 
care. The major recognized vitamins are vitamin A, B1, B2, B3, B5, B6, B7, B9, B12, 
C, D, E, and K. The biochemical requirements of these vitamins were revealed after 
their chemical identifications. Among these vitamins, vitamin A, C and E have been 
highlighted again in the late 20th century due to their antioxidant activities that 
potentially reduce the oxygen toxicity.
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2.2 The oxygen toxicity and ROS

Although molecular oxygen (O2) is required for respiration in animals, a high 
concentration or high partial pressure of oxygen often damages the central ner-
vous and pulmonary systems, which leads to disease or death. Oxygen toxicity in 
the central nervous system and that in pulmonary system had been referred to as 
the Paul Bert effect and the Lorrain Smith effect, respectively [12]. Although the 
toxicity of oxygen itself was implied by Joseph Priestley in 1774 (dephlogisticated 
air at that time) [13], the modern style of experimental science has been opened up 
by Bert (1833–1886), the Father of Aviation of Medicine [14, 15]. In his La Pression 
Barometrique (1878), Bert described that a high partial pressure of breathing oxygen 
(hyperoxia) can lead to death of animals, the first experimental demonstration for 
the toxicity of pure oxygen [14]. Since his pioneering discovery had not been appre-
ciated for a long time, unfortunately, eye damage (retinopathy of prematurity) to 
premature infants frequently occurred due to the use of pure oxygen [16].

The biochemical basis of the oxygen toxicity is ascribed to overproduction of 
reactive oxygen species (ROS) in cells. The ROS firstly produced in cells is mostly 
superoxide radical (O2

−), which is the reaction product of the one electron reduction 
of molecular oxygen (O2) [17]. Whereas chemists have known the inorganic reaction 
that produces O2

− from O2, the biological relevance of the reaction had not been con-
sidered in biochemistry. At that time most biochemists were fascinated by the oxida-
tive phosphorylation that is the final step of ATP synthesis in aerobic respiration. For 
mitochondrial ATP synthesis, the presence of O2 is prerequisite to drive the respiratory 
electron transport. Therefore, the toxicity of O2 had been overlooked. The discovery 
of the enzyme superoxide dismutase (SOD) that destroys O2

− is a landmark in the 
research history of oxygen toxicity [18]. The discovery of the antioxidant enzyme SOD 
has drastically changed our recognition: O2 might be toxic for living organisms.

To prevent oxygen toxicity, it has been revealed that antioxidant enzyme systems 
are essential for the survival of all living organisms, including humans. The ROS 
O2

− and H2O2 can be removed by the enzymatic reactions of SOD and peroxidases, 
but other unstable ROS molecules, hydroxyl radicals (•OH) for example, cannot 
be destroyed by those enzymatic reactions. These molecules are scavenged by 
antioxidants. Vitamin A or carotenoid can scavenge singlet oxygen (1O2) that could 
be produced in the eyes or skin under ultraviolet (UV) light [19]. Vitamin E, or 
𝛼- tocopherol, can react with the ROS radicals produced in lipophilic environments 
such as in lipid membranes. Vitamin C (ascorbate) serves as a universal reduc-
ing power to the antioxidant enzyme systems while the ascorbate molecule itself 
scavenges various types of ROS (except H2O2) by its spontaneous reactions [20]. It is 
important to note that humans need to acquire these essential antioxidant vitamins 
(A, C, E) from dietary foods, largely from fruits and vegetables.

2.3 Vitamin P concept and plant pigments

Historically, there was a short-lived Vitamin P concept. Albert Szent-Györgyi, a 
Nobel prize winner who isolated ascorbate, demonstrated that flavonoid glycosides 
rich in citrus fruits can behave similar to ascorbate in maintaining capillary perme-
ability [21]. Based on his observations, Szent-Györgyi proposed that the plant 
flavonoids, as a group of plant pigments, are also essential nutrients and referred 
to them as vitamin P (permeability) [22]. However, this vitamin P concept did not 
gain broad acceptance due to the chemical diversity of flavonoids. More recently, his 
idea that flavonoids can complement the function of ascorbate has been renewed 
with the development of the antioxidant hypothesis.
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Plant fruits and flowers display beautiful colorations ranging from blue to red. 
These plant colorations are produced with three major pigments i.e., chlorophylls, 
carotenoids and flavonoids. In plants, biological functions of chlorophylls and 
carotenoids have been known as the photosynthetic pigments that absorb light 
energy to drive photosynthesis. In contrast, only the visual attraction for flower 
pollinators such as bees or butterflies had been proposed as a biological function of 
colored flavonoids for a long time [23]. The chemical diversity of flavonoids found 
across plant species had made it difficult to consider common physiological or 
biochemical functions. Conversely, the huge chemical diversity of flavonoids was 
useful for plant taxonomy until amino acid or DNA sequence information available.

In 1990s, red anthocyanin, a flavonoid subgroup, was highlighted to account for 
the paradoxical epidemiological observation termed the “French paradox”. French 
people have a relatively low incidence of coronary heart disease even though they 
consume a diet relatively rich in saturated fats [24]. Researchers were interested 
in anthocyanins and polyphenols contained in red wine that may suppress heart 
disease through their antioxidant activities [24]. Similarly, the longevity of Japanese 
people was explained by their daily consumption of green tea rich in catechin, 
another subgroup of flavonoid [25, 26]. These epidemiological reports have stimu-
lated biochemical screening of natural antioxidants contained in plants.

To date, health science, biochemistry, botany and other different field of studies 
have been integrated into antioxidant research. A timeline for antioxidant research 
of phytochemicals is summarized in Figure 1.

3. Plant pigment flavonoid

3.1 Flavonoids in plants

Flavonoids are representative secondary metabolites of land plants. The pigments 
commonly accumulate in epidermal cells of the organs such as in flowers, leaves, 
stems, roots, seeds and fruits [27, 28]. Flavonoids are found as glycosidic forms 
(glycosides) and non-glycosidic forms (aglycones). Subcellular localization of the 
glycosides is largely confined to hydrophilic regions such as vacuoles and apoplasts. 
The aglycones are localized in lipophilic regions e.g., oil glands and waxy layers.

Figure 1. 
A timeline of antioxidant research of phytochemicals. Flavonoids are major plant pigments that are widely 
appreciated as natural antioxidants. Historically, antioxidant studies, vitamin studies and flavonoid studies 
have independently progressed in health science, biochemistry and botany, respectively. These different lines of 
studies have been integrated into the present plant antioxidant studies.
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The term “flavonoid” originated from its yellow color (the Latin word flavus 
means yellow). Bioactive flavonoids such as flavones and flavonols are sometimes 
referred as to “bioflavonoids”. Figure 2 shows the basic structures of flavonoids. 
The general structure of flavonoids includes a C6-C3-C6 carbon skeleton with 
two phenyl rings (A- and B-rings) and a heterocyclic ring (C-ring). Based on the 
structure of the aglycones, flavonoids can be classified into subgroups: chalcone, 
flavanone, flavone, isoflavone, flavonol, and anthocyanidin (Figure 3). According 
to the IUPAC nomenclature, flavonoids are recommended to be subcategorized into 
flavonoids (bioflavonoids), isoflavonoids and neoflavonoids [29]. Since this classi-
fication has yet not been widely adopted, in this chapter, traditional phytochemical 
names and classifications are used to avoid confusions. Most of these subgroups 
show yellowish coloration while anthocyanins exhibit multiple colorations depend-
ing on the aglycone structure, the presence of metal, pH and conjugation with other 
molecules (Figure 3).

Common glycosylation positions are the 7-hydroxyl in flavones, isoflavones and 
dihydroflavones; the 3- and 7- hydroxyl in flavonols and dihydroflavones; the 3- and 
5-hydroxyl in anthocyanidins [30]. The typical sugars involved in glycoside formation 
are glucose, galactose, rhamnose, xylose and arabinose. In addition to the glycosyl-
ation, methylation, isoprenylation and dimerization occur at those positions [30]. 

Figure 2. 
Chemical structures of flavonoids. Chemical structures of flavonoids include a C6-C3-C6 carbon skeleton with 
two phenyl rings (A- and B-rings) and a heterocyclic ring (C-ring). Left, the basic structures of a flavone, 
isoflavone and flavonol. Right, the basic structures of anthocyanin. The –R on the rings can be replaced by other 
molecules including sugars to make a huge variety of chemical structures of flavonoids.

Figure 3. 
Representative flavonoid subgroups. Based on the aglycone structures, flavonoids can be classified into flavone, 
isoflacone, flavonol, chalcone and anthocyanidin. Representative flavonoids with parenthesis along with 
apparent visual colorations are shown.
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These modifications produce a huge structural diversity of flavonoids. More than 
9,000 chemical structures of flavonoids have been reported to date [31].

Enzymes and genes involved in flavonoid biosynthesis have been identified  
[27, 32–35]. Figure 4 shows an outline of biosynthetic pathways of the major sub-
classes of flavonoids. Flavonoids are synthesized from phenylalanine, an aromatic 
amino acid produced in the shikimate pathway. Phenylalanine is sequentially 
metabolized by phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, and 
4-coumarate CoA ligase to 4-coumaroyl CoA. This 4-coumaroyl CoA and 3 molecules 
of malonyl CoA are condensed by chalcone synthase to form the flavonoid chalcone 
(yellow). Chalcone is isomerized to the flavanone naringenin (colorless) by chalcone 
isomerase. Naringenin is further converted to flavones (pale yellow) and isoflavone 
(pale yellow) catalyzed by flavone synthase and isoflavone synthase, respectively. 
Naringenin is hydroxylated to dihydroflavonol by flavanone 3-hydroxylase and 
further metabolized to flavonol (yellow) by flavonoid synthetase. Dihydroflavonol is 
converted to anthocyanidin (red, red-violet or blue-violet), an aglycone of anthocy-
anin, by dihydroflavonol 4-reductase and anthocyanidin synthase. Anthocyanidin is 
glycosylated by UDP-glycose-dependent glycosyltransferase. Manipulation of those 
genes has been challenged to change of flower or fruits coloration [28].

3.2 Antioxidant activity of flavonoids

Antioxidant activity or antioxidant capacity of flavonoids has been experimen-
tally evaluated with either assays based on hydrogen atom transfer (HAT) reaction 
or assays based on electron transfer [36]. There are several protocols or assays 
that have been proposed. The ORAC (oxygen radical absorbance capacity), TRAP 
(total radical trapping antioxidant parameter) and crocin bleaching assays are 
based on HAT. TEAC (Torolox equivalent antioxidant capacity), ABTS (2,2′-azino-
bis-(3-ethyl-benzthiazoline-6-sulfonic acid)) and DPPH (1,1-diphenyl-2-picryl-
hydrazyl) assays are based on the electron transfer activity. Among these protocols, 
the DPPH assay has been widely used for plant materials because it is an easy and 
accurate method suitable for measuring antioxidant activity of fruits, vegetable 
juices or plant extracts [36]. Inhibition of the lipid peroxidation reaction is also a 
measure to assess the antioxidant activity of plant polyphenols [37].

Figure 4. 
An outline of flavonoid biosynthesis pathways in plants. The synthesis of the flower pigment anthocyanins 
requires multiple steps including the shikimate pathway, phenylpropanoid pathway, via chalone and flavanone. 
The number of required enzymatic steps reflects the evolutional order of the pigments.
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In addition to the reactions with model radical substrates, it has been demon-
strated that flavonoids can directly react with a various type of ROS. The flavonol 
quercetin was demonstrated to show quenching activity for the singlet oxygen 
(1O2), a non-radical ROS molecule [38]. The flavonol kaempferol [39] and the 
anthocyanidin cyanidin [40] in vitro were shown to scavenge superoxide radical 
(O2

−). The flavonol quercetin was reported to scavenge hydroxyl radicals (•OH) 
produced by radiolysis of water [41, 42]. The flavonols rutin and quercetin were 
demonstrated to scavenge the hydroperoxide of linoleic acid (LOO•) to inhibit lipid 
peroxidation [43]. It is now evident that flavonoids are natural plant antioxidants 
contained in fruits and vegetables.

In principle, the OH groups on the aromatic rings of flavonoids are responsible 
for the antioxidant or free radical scavenging activity. Most antioxidant flavonoids 
share the catechol structure with two hydroxy groups (-OH) and/or the double 
bond between C2-C3 and carbonyl structure [44, 45]. Antioxidant flavonoids sat-
isfying such criteria bear multiple hydroxy groups in a molecule, thereby the name 
of “polyphenols” being synonymously used for plant antioxidants by the public. It 
should be noted that polyphenol structure can be found not only in flavonoids but 
also in other plant phenolic compounds such as hydroxycinnamic acid [35].

When polyphenols scavenge ROS, either through a direct chemical reaction 
or as an electron donor for an enzymatic reaction, polyphenolic compounds are 
oxidized and phenoxyl radicals are generated [46]. The phenoxyl radicals are 
unstable, forming dimers or polymers as a result of spontaneous reaction. Tannin 
and lignin are the polymerization products of such phenoxyl radical reactions. 
In the presence of reductant such as ascorbate, the phenoxyl radicals produced 
are rapidly regenerated into their parent compounds [46]. The enzyme monode-
hydroascorbate reductase (MDAR) was demonstrated to regenerate flavonoids 
from their phenoxyl radicals, a possible recycling system of antioxidants [47]. In 
plants, it has been proposed that flavonoids complement the ascorbate antioxidant 
system [35].

4. Betalain in red beets and cactus

4.1 Structures and biosynthesis of betalains in plants

Plant coloration can be mostly attributed to spectral property of the colored 
flavonoids, i.e., anthocyanidins. The plant pigment betalains are exceptional. The 
term “betalain” comes from the Latin name of the common beet (Beta vulgaris) 
from which betalains were first extracted. Betalains are a class of tyrosine-derived 
pigments that are distributed in only 13 families of Caryophyllales order such as 
red beet (Amaranthaceae) and cactus (Cactaceae), and in some fungi [48], where 
they replace anthocyanin pigments [32]. To date, anthocyanins and betalains 
have never been detected jointly in plant tissues [48]. The biological meaning of 
the mutually exclusive relationship between betalains and anthocyanidins is still 
unknown [49, 50].

Betalains are immonium derivatives of betalamic acid [4-(2-oxoethylidene)-1,2,3,4-
tetrahydropyridine-2,6-dicarboxylic acid] [48]. Betalains are classified into two groups: 
betacyanin (red-violet) and betaxanthin (yellow) as shown in Figure 5. Betacyanin 
is a conjugate with cyclo-dopa and its glycoside, while betaxanthin is a conjugate with 
amino acid or amine (Figure 5).

In contrast with flavonoids, biosynthetic pathway of betalains in plants has 
not been fully clarified [32, 50, 51]. Hydroxylation of tyrosine by tyrosinase or 
polyphenol oxidase produces L-dopa, which is catalyzed by 4,5-dopa dioxygenase 
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to form betalamic acid, the basic common skeleton of betalains. Cyclo-dopa, a 
component of betacyanin, had been considered to be formed by spontaneous 
chemical reaction after L-dopa is oxidized to dopaquinone by tyrosinase. Recently, 
the cytochrome P450 CYP76AD1 has been identified as the enzyme which catalyzes 
the conversion of L-dopa to cyclo-dopa, a novel biosynthesis route [52]. CYP76AD1 
is a bifunctional enzyme that catalyzes tyrosine hydroxylation as well as cyclo-dopa 
synthesis. This P450 enzyme appears to play important roles not only in betacyanin 
synthesis but also in betalain synthesis. Furthermore, CYP76AD6 that catalyzes 
only tyrosine hydroxylation has also been reported [53]. No enzyme for condens-
ing the obtained betalamic acid with a cyclo-dopa or an amino acid/amine has been 
found to date; instead, these condensations likely occur by a spontaneous reaction 
to form betacyanin or betaxanthin, respectively. Betacyanin usually accumulates 
as a glycoside, and two routes are estimated for glycosylation: cyclo-dopa being 
condensed with betalamic acid after it is glycosylated and cyclo-dopa and betalamic 
acid being condensed to be betacyanin and then glycosylated. Both are catalyzed by 
glucosyltransferases [54].

4.2 Antioxidant functions of betalains

Similar to flavonoids, betalains exhibit antioxidant or radical scavenging 
activity [55, 56]. In contrast with flavonoids, however, the chemistry of the 
antioxidant mechanism of betalains is less understood. It has been suggested that 
the common skeleton betalamic acid may contribute to their antioxidant activi-
ties [57–59]. Phenolic hydroxy group in cyclo-dopa moiety of betacyanin and the 
amino acid/amine portion of betaxanthin may increase the radical scavenging 
activities of betalamic acids [58]. Betalains can act as an electron donor for the 
enzyme peroxidases to detoxify hydrogen peroxide (H2O2) [60]. In food chem-
istry it has been suggested that the degradation of betalains during storage is 
suppressed in the presence of ascorbate, suggesting that betalain radicals formed 
by the oxidation might be reduced by ascorbate back to the parent molecules, 
similar to flavonoids.

Figure 5. 
Structures and biosynthesis pathways of betalains. Betalains are synthesized from L-tyrosine via L-dopa. The 
intermediate betalamic acid is condensed with cyclo-dopa glycoside or amino acid/amine to betacyanin and 
betaxanthin, respectively.
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5. Reactions of the phytochemicals with RNS and RSS

5.1 RNS and RSS

It is now evident that plant antioxidants remove ROS and free radicals that 
increase under oxidative stress conditions within cells. In addition to ROS, new 
players behaving similar to ROS have recently been identified, namely, reactive 
nitrogen species (RNS) and reactive sulfur species (RSS) [61]. As ROS refers to a 
group of reactive molecular species originating from molecular oxygen (O2), RNS 
and RSS are named for the groups of reactive molecular species derived from nitric 
oxide (NO) and hydrogen sulfide (H2S), respectively. Both NO and H2S are simple 
gaseous molecules that had initially been appreciated within the life sciences only 
for their toxicity [62]. Recent investigations have confirmed that NO and H2S are 
essential biomolecules synthesized in plants and animals. RNS and RSS are involved 
in the regulation of a variety of physiological processes. Along with carbon mon-
oxide (CO), NO and H2S are categorized as “gasotransmitters” [62]. Until recently, 
many enzymes that produce NO and H2S have been identified in plants, animals 
and bacteria.

It is important to note that NO and H2S are involved not only in physiologi-
cal regulations (positive effect) but also in dysfunctions or disorders (negative 
effect). Similar to ROS, unregulated RNS and/or RSS production potentially 
causes dysfunction of metabolism under biotic as well as abiotic stress condi-
tions, leading to sickness or death in humans [17]. Although a limited number of 
studies are available on anti-RNS and anti-RSS functions of phytochemicals, it 
has been reported that flavonoids and betalains could remove RNS and possibly 
RSS too.

NO reacts rapidly with O2
− to produce the RNS peroxynitrite (ONOO−) following 

the reaction:

 − −+ →O NO ONOO2   (1)

ONOO− at physiological pH is unstable and is in rapid equilibrium with its 
conjugate acid, peroxynitrous acid (ONOOH, pKa 6.8) [63]. In early studies, NO 
was considered to act as an antioxidant because NO removes O2

− from a solution 
as the consequence of the spontaneous reaction. However, this is half-side of a 
coin since the reaction product ONOO− attacks proteins and nucleic acids. The 
nitrated amino acid 3-nitrotyrosine (3-NO2-Tyr) is produced when ONOO− reacts 
with tyrosine residues of proteins, which potentially disturbs enzyme activities 
that may lead dysfunction of metabolism, a situation referred as to “nitrosa-
tive stress” [64]. It is now widely accepted that ONOO− is a major cytotoxic 
agent of RNS.

H2S is synthesized in plants and animals by multiple enzyme systems [62]. 
Biogenic H2S production is involved in various physiological mechanisms as a 
signaling molecule [62]. Analogous to ROS and RNS, H2S (or HS−) produces 
many reactive molecular species such as persulfide, polysulfide, polysulfane 
and others [65]. These RSS modify thiol (-SH) groups of the cysteine residue of 
proteins and change enzymatic activities, resulting in both positive regulation 
and negative inhibition. Uncontrolled overproduction of RSS is a potential risk 
to damage the cells. Although there is yet little evidence to confirm that flavo-
noids and betalains scavenge RSS, results of epidemiological studies imply that 
dietary phytoantioxidants also contribute to reduce the cytotoxicity of RSS in 
humans [66].
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5.2 Chemical reactions with RNS and RSS

Plant phenolic compounds, such as anthocyanin [67, 68] and p-hydroxybenzoic 
acid [69], have been reported to scavenge ONOO− [70]. Betalains also react with 
ONOO− [71, 72]. As the consequence of these reactions, the phytochemical antioxi-
dants inhibit the ONOO−-induced L-tyrosine nitration and DNA damage [35, 71]. 
In flavonoids, -OH group at the C3 position of the C-ring has been proposed to be 
involved in the ONOO− scavenging activity [69, 73]. As the result of the reaction 
with ONOO−, the phytochemical antioxidants are nitrated [74]. These in vitro stud-
ies have suggested that flavonoids and betalains potentially protect the cells from 
the nitrosative stress that may induce disorders or mutations [75, 76].

Reactions of the phytochemicals that contribute to reduce the toxicity of RSS 
are largely unknown. The plant phenolic hydroxycinnamic acids are known to be 
sulfated by sulfotransferases highly expressed in the human liver and intestine 
[66]. Flavonoids act as inhibitors of the human sulfotransferases (SULTs) [66]. In 
plants, sulfate esters of flavonoids are rare compounds [77, 78] that are found in 
species occurring coastal and swampy areas as well as arid habitats [78]. Functions 
of sulfated flavonoids in plants and animals are not clear [79]. Sulfated flavonoids, 
such as quercetin 3-sulfate or quercetin persulfate, have been demonstrated with 
animals to show antioxidant activity, anti-inflammatory activity, antitumor activity 
and anticoagulant activity [80–83]. These different lines of studies may imply that 
sulfated phytochemicals might be associated with physiological regulations in stress 
tolerance or disease in plants and animals. Although, at present, it must be a specula-
tion to consider specific reactions of flavonoids and betalains with RSS, it is promis-
ing that the future investigations of S-containing phytochemicals including sulfated 
flavonoids or sulfoflavonoids will open up a new research field in life sciences.

6. Antioxidant phytochemicals in human health

In modern science, a great number of studies have suggested health benefits of 
vegetable-based diets for humans. Many compounds identified from plants have 
been tested to evaluate their biochemical or pharmacological actions in prevention, 
mitigation and cure of diseases. According to the “one-to-one” principle, researchers 
have searched for novel bioactive phytochemicals that interact with specific target 
enzymes or molecules associated with disorders or diseases. The pharmacokinetic 
action of antioxidants, however, does not follow the “one-to-one” principle. The 
actual target is not a specific enzyme or protein but ROS. Since production of ROS is 
exclusively involved in any types of diseases including cancer, antioxidant activity of 
phytochemicals has attracted attention not only from researchers but also from the 
public due to their perceived “cure-all” actions. Nowadays, the antioxidant hypoth-
esis described above has been accepted as the most probable explanation for the 
health benefits of vegetable-based diets.

Recent progress in medical science has clarified that unregulated RNS and RSS 
production are observed in many disorders or diseases, echoing findings from ROS 
research. Although a little is known how plants and animals might regulate RNS and 
RSS in the cells to achieve a fine balance, there is accumulating evidence to support 
the hypothesis that phytochemical antioxidants, such as flavonoids and betalains, 
also reduce the toxicity of RNS and RSS. The occurrence of nitrated flavonoids as 
well as sulfated flavonoids may imply the possible associations of the phytochemi-
cal antioxidants with RNS and/or RSS metabolisms in plants and animals. In this 
context, the term “antioxidant” for phytochemicals may need to be given a new 
name to reflect the latest research findings.
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In 2020, more than million people died due to the coronavirus disease 2019 
(COVID-19) pandemic. There is no promising specific drug or treatment (as of 
December 2020) for the severe hospitalized patients. A “cytokine storm” occurs 
in severe cases of COVID-19 and the anti-inflammatory steroid dexamethasone 
has been applied to lower mortality [84]. COVID-19 and the common “cold” both 
present a syndrome of disease states. It seems unrealistic to rely on a single drug or 
chemical to cure the disease. In prevention of the infection, ascorbate and vegeta-
bles appears to be effective. The antioxidant flavonoids can reduce inorganic nitrite 
(NO2

−) to generate NO in an acidic solution [85]. The vegetable diets and beverages 
such as the beet juice have been reported to prevent hypertension probably because 
of increase in NO bioavailability due to nitrite-dependent NO production [2, 86]. 
It is likely that vegetable-based foods and beverages could prevent or mitigate 
COVID-19 through their phytochemical antioxidant activities along with their 
provision of nitrate/nitrite supplementation [84, 87].

7. Prospects for future research

Oxygen toxicity can be attributed ultimately to the biological evolution of 
oxygenic photosynthesis. In the ancient earth, H2S and NO concentrations are 
considered to have been much higher than the present day due to active volcanism 
[62]. The concentration of these “old” gasses fell down following the evolutional 
development of oxygenic photosynthesis in cyanobacteria [62]. It is presumed that 
most living organisms that were dominant at that time went extinct but some of 
them successfully developed antioxidant systems to cope with new oxic environ-
ments. The survivors from the lethal environments are the ancestors of the present 
animals. Even for plants, a high partial pressure of O2 made by photosynthesis is yet 
a great risk. To protect the photosynthetic apparatus, green plants have developed 
their unique antioxidant systems along with creation of many types of antioxidant 
molecules [88]. The left panel of Figure 6 represents a conceptual illustration for 
ROS, RNS and RSS in biological evolution in the earth history from past to the 

Figure 6. 
The ONS gradient in evolution and habitats. In plants, antioxidants can be found abundantly in leaves 
where oxygenic photosynthesis occurs, with a risk of overproduction of ROS. If oxidative stress is defined as a 
condition of disturbance of the fine-tuned redox balance, knowing the interplays among ROS, RNS and RSS is 
important for understanding cellular homeostasis. Oxygen tension would alter the best balance for each living 
organism in the field where there is the ONS (O2-NO-H2S) gradient from surface to the deep in soils, which 
also reflects the order of their evolutional development (from ancient to the present) [54].
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present. The order (ROSRNSRSS) can be found in ecological niches from 
surface to deep such as in soils (Figure 6, right). In the case of plants grown in the 
field, leaves are in oxic environments and roots are in hypoxic environments where 
there exists a gradient of O2, NO and H2S. Taking into account that sulfated plant 
phenolic compounds are found in plants inhabiting harsh environments, we con-
sider it plausible that novel bioactive phytochemicals associated with RNS and RSS 
metabolisms might be found in the roots grown in such hypoxic environments [89].

8. Conclusions

Flavonoids and batalains are natural antioxidants that mitigate oxidative stress 
in plants and animals. In life sciences, oxidative stress can be defined as an imbal-
ance of pro-oxidants and antioxidants in cells. Oxidative stress can be also defined 
as a disruption of redox signaling and control, emphasizing the importance of a 
dynamic but fine-tuned redox balance in cellular homeostasis [90]. According to 
this new definition, the ROS scavenging activity may be just a part of the pleiotropic 
functions of phytochemicals. Flavonoids and betalains could tune a fine redox 
balance through modulating the interplays among ROS, RNS and RSS. We are now 
entering into the next stage of plant “antioxidant” research.
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