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Chapter

Quantum Fourier Operators and
Their Application
Eric Sakk

Abstract

The application of the quantum Fourier transform (QFT) within the field of
quantum computation has been manifold. Shor’s algorithm, phase estimation and
computing discrete logarithms are but a few classic examples of its use. These initial
blueprints for quantum algorithms have sparked a cascade of tantalizing solutions
to problems considered to be intractable on a classical computer. Therefore, two
main threads of research have unfolded. First, novel applications and algorithms
involving the QFT are continually being developed. Second, improvements in the
algorithmic complexity of the QFT are also a sought after commodity. In this work,
we review the structure of the QFT and its implementation. In order to put these
concepts in their proper perspective, we provide a brief overview of quantum
computation. Finally, we provide a permutation structure for putting the QFT
within the context of universal computation.

Keywords: quantum Fourier transform, quantum computation, quantum circuit,
entanglement, unitary operators, permutation operators

1. Introduction

The quantum Fourier transform (QFT) has been applied in a number of differ-
ent contexts within the field of quantum computation [1–3]. As this operator is
central to so many quantum algorithms, a major thrust of current research is
directed toward its efficient implementation [4–9]. The QFT calculation is, to a
degree, based upon the discrete Fourier transform (DFT) where, given a discrete
sequence

x ¼ x0, x2,⋯, xN�1f g (1)

of length N, the DFT of x can be computed as

DFT xf g ¼ Fx (2)

with DFT matrix elements

Fjk ¼
1
ffiffiffiffi

N
p ei

2π
N jk j, k ¼ 0, 1,⋯,N � 1 (3)

Since the DFT matrix is N �N, the computational complexity of computing

DFT xf g is O N2
� �

. If the input sequence length of the input sequence x can be

written as N ¼ 2n (i.e. a power of two for some positive integer, n), there exist fast
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Fourier transform (FFT) implementations that can compute DFT xf g with
O N logNð Þ complexity. While there are other FFT implementations that do not
require N ¼ 2n, the ‘radix-2’ implementation will be the starting point as it is
relevant when introducing quantum computational bases. Before elevating the DFT
to its quantum description, in Section 2 we will take a brief tour of quantum
computation in order to provide some necessary context. We will then, in Section 3,
develop the QFT operator and discuss its quantum implementation. Finally, in
Section 4, we will discuss the QFT in the context of universal computation and its
formulation in terms of permutation matrices.

2. Quantum computation

A starting point for quantum computation begins with choosing a qubit
representation for the computational basis [3]

∣0i �
1

0

� �

, ∣1i �
0

1

� �

(4)

This qubit basis forms a complete orthonormal set so that any single qubit
quantum mechanical state can be written as the linear superposition

∣ψi ¼ α∣0i þ β∣1i: (5)

where the coefficients α and β are complex scalars. If hψ ∣ represents the
Hermitian conjugate of ∣ψi, according to quantum mechanics, the inner product

ψ jψh i ¼ αj j2 þ βj j2 ¼ 1 (6)

is normalized so that ψ represents a probability density function. This implies
that, at any given instance in its time evolution, a quantum system can simulta-

neously be in the logical states ∣0i and ∣1i with their associated probabilities αj j2 and
βj j2. This is in stark contrast to classical digital computation whose operations must
always exclusively evaluate to a value of either 0 or 1. Quantum computation allows
an algorithm to simultaneously visit both logical states ∣0i and ∣1i of a single qubit. If
n qubits (i.e. multiple qubits) are applied, then a quantum system, in principal, has
the potential to simultaneously visit 2n logical states (again, with their associated
probabilities). This exponential computational capacity is the source of quantum
parallelism. However, there is a catch. Only when some observable is measured can
we ascertain the current logical state of the system. Hence, quantum computers
require large samples of measurements in order to build up the statistics necessary
to determine the outcome of any given algorithm.

2.1 Unitary operators

The time evolution operator U associated with a quantum system must be
unitary meaning that

U†U ¼ I (7)

where U† is the conjugate transpose of U. A major implication of this require-
ment is that the forward time system evolution must (at least mathematically) be
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reversible. This requirement, in turn, constrains computations that are
implemented by quantum operators to be reversible. Therefore, logical
operations such as AND, OR, and XOR (exclusive-or) would not be a quantum
mechanical possibility unless some additional input information were to be pre-
served. This is because, in the absence of information about the input, measuring
the output of these operations is not enough to ascertain the values of the inputs.
Hence, these boolean processes, by themselves, are not reversible. However, there
is a theory of reversible computation that can augment these logical operations so
that input information is recoverable. Furthermore, much thought has gone into
phrasing reversible computation in the context of unitary operators. Given the
discussion so far, it is appropriate to give a short list of standard single qubit
operators:

I ¼
1 0

0 1

� �

,H ¼ 1
ffiffiffi

2
p 1 1

1 �1

� �

,Rϕ ¼
1 0

0 eiϕ

� �

(8)

X ¼
0 1

1 0

� �

,Y ¼
0 �i

i 0

� �

,Z ¼
1 0

0 �1

� �

(9)

The reader can check that these are all unitary. As a simple example of how to
apply such operators, consider the action of X on the basis vector ∣0i

X∣0i ¼
0 1

1 0

� �

∣0i ¼
0 1

1 0

� �

1

0

� �

¼
0

1

� �

¼ ∣1i (10)

where ∣0i and ∣1i are ‘swapped’, indicating a form of logical inversion. H is a
Hadamard transform (i.e. a DFT for a sequence of length N=2). X, Y and Z are Pauli
matrices. Rϕ is a generalization of Z ¼ Rπ and I ¼ R0. While these are single quhit
operators, the next sections discuss how they can be extended to the multiple qubit
case. Amazingly, this set of quantum operators can be applied to devise some very
powerful quantum algorithms (e.g. QFT computation) [3, 10].

2.2 Tensor product (Kronecker product)

The Kronecker product of an m� n matrix A with a p� q matrix B is
defined to be

A⊗B ¼

a11B a12B ⋯ a1nB

a21B a22B ⋯ a2nB

⋮ ⋮ ⋮ ⋮

am1B am2B ⋯ amnB

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: (11)

Furthermore, assuming the dimensions are compatible for matrix
multiplication, the following identity often proves useful

A⊗Bð Þ C⊗Dð Þ ¼ ACð Þ⊗ BDð Þ (12)

for matrices A,B,C,D.
The computational basis can be extended to any number of qubits using the

tensor product. For example, if two qubits are required for the computational space,
using Eq. (2), the basis becomes
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∣0i � ∣00i ¼ ∣0i⊗∣0i ¼
1

0

 !

⊗
1

0

 !

¼

1

0

0

0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

∣1i � ∣01i ¼ ∣0i⊗ ∣1i ¼
1

0

 !

⊗
0

1

 !

¼

0

1

0

0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

∣2i � ∣10i ¼ ∣1i⊗ ∣0i ¼
0

1

 !

⊗
1

0

 !

¼

0

0

1

0

0

B

B

B

B

B

@

1

C

C

C

C

C

A

∣3i � ∣11i ¼ ∣1i⊗ ∣1i ¼
0

1

 !

⊗
0

1

 !

¼

0

0

0

1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

(13)

To generalize this example for n qubits, the set of computational basis vectors
can, for the sake of brevity, be labeled in base 10 as

j0i, j1i, j2i,⋯, j2n � 1if g: (14)

On the other hand, in order to highlight the qubit values, this basis can equiva-
lently be expressed in base 2 as

∣k1k2⋯kni ¼ ∣k1i⊗ ∣k2i⊗ ∣⋯⊗ ∣kni (15)

where ki ∈ 0, 1f g for i ¼ 1,⋯, n. In other words, k1, k2,⋯, knf g represents the
binary expansion

k ¼ k12
n�1 þ k22

n�2 þ⋯þ kn�12
1 þ kn2

0 ¼
X

n

t¼1

kt2
n�t (16)

for the kth basis vector ∣ki � ∣k1k2⋯kni. We have chosen this bit index ordering
as it will prove convenient for the QFT formulation in the next section. An equally
acceptable (and, quite typical) bit index convention for an n qubit system could, for
example, be ∣qi � ∣qn�1qn�2⋯q1q0i.

Eq. (15) tells us that the n qubit basis is derived from the tensor product of single
qubits. This is important to keep in mind in order to avoid confusion when using the
symbol ∣0i. For example, when using n ¼ 1 qubit, ∣0i in decimal is equivalent to ∣0i
in binary; however,, when using n ¼ 3 qubits, ∣0i in decimal is equivalent to ∣000i
in binary. Hence, the number of qubits n is the anchor for the relationship between
Eq. (14) and Eq. (15). Assuming n qubits, there are 2n basis vectors that can be used
to construct a quantum state. Hence, all 2n basis vectors will simultaneously evolve
with their associated probabilities; again, this is the source of quantum parallelism.
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2.3 Quantum circuits

One particularly useful application of Eq. (12) arises when building up n qubit
quantum circuits (i.e. schematic depictions of quantum operations on qubits). For
instance, assume a two qubit system ∣q1q0iwhere two unitary operators H and Z act
on single qubits as

H∣q1i,Z∣q0i (17)

and the result is desired to be combined as

H∣q1i⊗Z∣q0i: (18)

Eq. (12) tells us that this action is equivalent to

H⊗Zð Þ jq1i⊗ jq0i
� �

: (19)

However, by construction, ∣q1i⊗ ∣q0i ¼ ∣q1q0i. Therefore,

H∣q1i⊗Z∣q0i ¼ H⊗Zð Þ∣q1q0i (20)

making it straightforward to develop multiple qubit quantum systems from
unitary operators. The schematic representation of H⊗Zð Þ∣q1q0i is show in
Figure 1.

With the groundwork laid for multiple qubits, it becomes possible to introduce
more unitary operators that facilitate reversible computation. For example, the
controlled NOT (CNOT) function can be phrased as a two qubit reversible XOR
operator

CNOT ¼

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2

6

6

6

4

3

7

7

7

5

: (21)

where c represents the control bit, t represents the target XOR function and
∣q1q0i ¼ ∣cti. This operator is a permutation matrix that is consistent with Table 1 in
that it swaps the ∣11i and ∣10i qubits. The XOR operation, by itself, can act as an
irreversible controlled NOT operation. For the sake of quantum computation, the
CNOT operator is unitary and a reversible XOR function is achieved because the
control bit ∣q1i is preserved from input to output.

There exist powerful tools for the simulation of quantum operations (referred to
as ‘quantum gates’) and for the rendering of multiple qubit quantum circuits [11].

Figure 1.
Two qubit quantum circuit for H⊗Zð Þ∣q

1
q
0
i.
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Figure 2 shows a schematic representation of the CNOT circuit corresponding to
Table 1. In this circuit, the control bit is used to swap the target ∣q0i (using an X
gate) if ∣q1i ¼ ∣1i.

For the sake of this work, we point out that an equally valid interpretation of the
quantum CNOT function can be realized if the roles of the control and target are
interchanged where ∣q1q0i ¼ ∣tci (see Table 2). In this case the CNOT operator
becomes

CNOT ¼

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

2

6

6

6

4

3

7

7

7

5

: (22)

which is a permutation matrix that swaps the ∣11i and ∣01i qubits and
corresponds to the circuit in Figure 3.

We shall have more to say about this implementation in the following sections.
For now, with this brief overview of quantum computation, we can now introduce
the quantum Fourier transform.

cin tin cout tout

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Table 1.
Controlled NOT.

Figure 2.
Two qubit CNOT quantum circuit swap of ∣11i and ∣10i using Qiskit [11].

tin cin tout cout

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 1

Table 2.
Controlled NOT where ∣q

1
q
0
i ¼ ∣tci.
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3. The quantum Fourier transform

It should be clear that the DFT matrix in Eq. (2) is unitary where

F†F ¼ I (23)

and F† is the Hermitian conjugate of F. Because of this unitarity, the potential for
using the DFT within the context of quantum computation naturally follows. How-
ever, such an application requires a decomposition involving tensor products of
unitary operations typically applied in quantum computation. As with the FFT, the
choice of the decomposition dictates the algorithmic complexity. There is much
introductory literature available regarding the QFT [3, 12–14]. Given a specific
quantum algorithm where the QFT is applied, current research endeavors reside in
attempts to improve the computational complexity [4, 7, 9, 15, 16].

The QFT matrix is defined as

Q ¼ 1
ffiffiffiffi

N
p

X

N�1

j¼0

X

N�1

k¼0

ei
2π
N jk∣kihj∣: (24)

For example, with N ¼ 2n and n = 1, we recover the Hadamard matrix

Q ¼ 1
ffiffiffi

2
p 1 1

1 �1

� �

, (25)

or, for n = 2,

Q ¼ 1

2

1 1 1 1

1 i �1 �i

1 1 1 �1

1 �i �1 i

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: (26)

As expected, this operator is unitary where, with

Q† ¼ 1
ffiffiffiffi

N
p

X

N�1

j¼0

X

N�1

k¼0

e�i2πN jk∣jihk∣, (27)

Figure 3.
Two qubit CNOT quantum circuit swap of ∣11i and ∣01i.
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it should be clear that

QQ† ¼ 1
ffiffiffiffi

N
p

X

N�1

j¼0

X

N�1

k¼0

ei
2π
N jkjkihjj

 !

1
ffiffiffiffi

N
p

X

N�1

j0¼0

X

N�1

k0¼0

e�i2πN j0k0 ∣ j0ihk0∣
 !

¼ 1

N

X

N�1

k0¼0

X

N�1

k¼0

X

N�1

j0¼0

X

N�1

j¼0

ei
2π
N jk� j0k0ð Þ∣ki jj j0h ihk0∣

¼ 1

N

X

N�1

k0¼0

X

N�1

k¼0

X

N�1

j0¼0

X

N�1

j¼0

ei
2π
N jk� j0k0ð Þδ j0j∣kihk0∣

¼ 1

N

X

N�1

k0¼0

X

N�1

k¼0

X

N�1

j¼0

ei
2π
N j k�k0ð Þ∣kihk0∣

¼ 1

N

X

N�1

k0¼0

X

N�1

k¼0

Nδk0kð Þ∣kihk0∣

¼
X

N�1

k¼0

∣kihk∣

¼ I:

(28)

In general, given a state vector

∣ψi ¼
X

N�1

j¼0

a j∣ji (29)

the QFT operates on ∣ψi to form

∣Ψi ¼ QFT jψif g ¼ QFT
X

N�1

j¼0

a jj ji
( )

¼
X

N�1

j¼0

a jQFT j jif g

¼
X

N�1

j¼0

a jQ ∣ji:

(30)

Given this result, let us consider the QFT of a single n qubit basis vector ∣jiwhere
N ¼ 2n. First, observe that while

QFT jjif g ¼ Q ∣ji ¼ 1

2n=2

X

N�1

j0¼0

X

N�1

k¼0

ei
2π
N j

0k∣ki j0jjh i

¼ 1

2n=2

X

N�1

j0¼0

X

N�1

k¼0

ei
2π
N j

0k∣kiδj0j

¼ 1

2n=2

X

2n�1

k¼0

ei
2π
2njk∣ki,

(31)
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given Eqs. (15) and (16), it will be more helpful to express this relation as

QFT jjif g ¼ 1

2n=2

X

1

k1¼0

X

1

k2¼0

⋯
X

1

kn¼0

e

i2πj

X

n

t¼1

kt2
�t

 !

∣k1k2⋯kni:

¼ 1

2n=2

X

1

k1¼0

X

1

k2¼0

⋯
X

1

kn¼0

ei2πj k12
�1þk22

�2þ⋯þkn�12
� n�1ð Þþkn2

�nð Þ∣k1k2⋯kni:

¼ 1

2n=2

X

1

k1¼0

X

1

k2¼0

⋯
X

1

kn¼0

ei2πj k12
�1þk22

�2þ⋯þkn�12
� n�1ð Þþkn2

�nð Þ∣k1i⊗ ∣k2i⊗ ∣⋯⊗ ∣kni:

¼ 1

2n=2
⊗
n

v¼1

X

1

kv¼0

ei2πj kv2
�vð Þ∣kvi:

(32)

This leads to the result that

Q ∣ji ¼ 1

2n=2
⊗
n

v¼1
j0ð i þ ei2πj2

�v j1iÞ: (33)

3.1 QFT qubit representation

To forge a path toward efficient implementation, it is important to recognize
how Eq. (33) can be decomposed into a set of operators relevant to quantum
computation (see Section 2.1). First, consider the n ¼ 1 single qubit case,

Q ∣ji ¼ 1
ffiffiffi

2
p j0i þ ei

2πj
2 j1i

	 


: (34)

Then, for each qubit state ∣ji ¼ ∣0i, ∣1i, it follows that

Q ∣0i ¼ 1
ffiffiffi

2
p j0iþj1ið Þ ¼ 1

ffiffiffi

2
p

1

1

 !

Q ∣1i ¼ 1
ffiffiffi

2
p j0i�j1ið Þ ¼ 1

ffiffiffi

2
p

1

�1

 ! (35)

as expected since Q ¼ H for the single qubit case. Hence, it should be nn surprise
that the v ¼ 1 contribution to Eq. (10) should be a Hadamard gate.

To handle the phase factors in the other contributions to the tensor product

(where v≥ 2), the keen eye will recognize that the terms ei2πj2
�v
could lead to a

unitary quantum mechanical operator. Before leveraging this observation in a QFT
algorithm, it will be helpful to consider the qubit representation ∣ji ¼ ∣ j1 j2⋯ jni. As
the index v ranges from 1 to n, the index j in the term ei2πj2

�v
experiences successive

divisions by 2 (i.e. successive right shifts of its binary representation by one bit):

v ¼ 1 : j2�1 ) j1 j2⋯ jn�1: jn
v ¼ 2 : j2�2 ) j1 j2⋯ jn�2: jn�1 jn

⋮

v ¼ n� 1 : j2� n�1ð Þ ) j1: j2⋯ jn�1 jn
v ¼ n : j2�n ) 0: j1 j2⋯ jn�1 jn

(36)
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Since these values appear in the phase factor, the integer parts will only result in
integer multiples of 2π and can therefore be discarded. Eq. (33) can then be
expressed as

QFT j jif g ¼ 1

2n=2
½ j0i þ ei2π jn2

�1 j1i
	 


⊗ j0i þ ei2π jn�12
�1þ jn2

�2ð Þj1i
	 


⊗⋯

⋯⊗ j0i þ ei2π j12
�1þ j22

�2þ⋯þ jn2
�nð Þj1i

	 


:

(37)

It is often this version of the QFT that is used as a starting point for quantum
circuit implementation when N ¼ 2n [3].

As an example, consider the two qubit case where n ¼ 2 and ∣ji ¼ ∣ j1 j2i, then

Q ∣ji ¼ Q ∣ j1 j2i

¼ 1

2
j0i þ ei2π j22

�1 j1i
	 


⊗ j0i þ ei2π j12
�1þ j22

�2ð Þj1i
	 
 (38)

If we let ∣ j1 j2i ¼ ∣01i, then

Q ∣ji ¼ Q ∣01i

¼ 1

2
j0i þ ei2π 1ð Þ2�1 j1i
	 


⊗ j0i þ ei2π 0ð Þ2�1þ 1ð Þ2�2ð Þj1i
	 


¼ 1

2
j0i�j1ið Þ⊗ j0i þ ij1ið Þ

¼ 1

2
j00i þ ij01i�j10i � ij11ið Þ

(39)

which corresponds to the column ∣01i entries in Eq. (26). If not already obvious,
it should be emphasized that the tensor product is not commutative and that
consistent qubit ordering is instrumental to the success of this calculation.

3.2 Quantum implementation

Based upon Eq. (37), it is sensible to introduce an iterable version of the R
operator introduced in Section 2.1:

Rv ¼
1 0

0 e
i2π
2v

� �

: (40)

Furthermore, because each qubit contribution contains phase terms involving
the binary expansion of j, one approach to addressing these interactions is to
introduce a controlled version of Rv:

CRv ¼
I 0

0 Rv

� �

: (41)

This operator can be used to induce the correct phase factor as follows. Assume
tci is the target/control structure for single qubits jr js were s> r in the binary
representation of ∣ji. Then, the following holds true

CRv∣ jr0i ¼ ∣ jr0i
CRv∣ jr1i ¼ e

i2π
2v jr ∣ jr1i

(42)
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Hence, the control bit determines when to introduce the phase factor involving
the target bit.

The goal of this section is to introduce enough nomenclature in order to put the
next section of this work in context. The reader is encouraged to visit the provided
references in order to fill in the details of a generalized quantum circuit that can
implement an n qubit QFT. For now, we provide an n ¼ 2 qubit example to
illustrate an algorithm for performing the QFT. Whatever principled series of
operations is chosen, the goal of the quantum algorithm (and, hence, the associated
quantum circuit) is to reproduce Eq. (11). Starting with ∣ji ¼ ∣ j1 j2i,

a. Apply H to ∣ j1i so that

∣ j1i⊗ ∣ j2i ! H∣ j1i⊗ ∣ j2i

¼ 1
ffiffiffi

2
p j0i þ ei2π j12

�1 j1i
	 


⊗ ∣ j2i
(43)

b. Apply CR2 to target qubit j1 controlled by j2. This yields

1
ffiffiffi

2
p j0i þ ei2π j12

�1 j1i
	 


⊗∣ j2i !
1
ffiffiffi

2
p j0i þ ei2π j22

�2þ j12
�1ð Þj1i

	 


⊗ ∣ j2i (44)

c. Apply H to ∣ j2i

1
ffiffiffi

2
p j0i þ ei2π j22

�2þ j12
�1ð Þj1i

	 


⊗ ∣ j2i !
1
ffiffiffi

2
p j0i þ ei2π j22

�2þ j12
�1ð Þj1i

	 


⊗
1
ffiffiffi

2
p j0i þ ei2π j22

�1 j1i
	 


¼ 1

2
j0i þ e

i2πj

22 j1i
	 


⊗ j0i þ e
i2πj

21 j1i
	 


(45)

Comparing this result with either Eq. (33) or Eq. (37), it is clear that this
algorithm, derived using quantum reversible operators, recovers the QFT from
Eq. (38) with one slight difference: the bit ordering is reversed. Given n qubits, it is
possible to apply n=2 swaps using, for example, tensor products involving an X
operator (see Section 2.1) in order to reverse the bit order. Such bit reversal per-
mutations are reminiscent of the radix-2 FFT algorithm. If one generalizes this
algorithm to n qubits, it can be shown that the algorithmic complexity is O n2ð Þ.
With N ¼ 2n, this is a considerable improvement over N logN ¼ n2n for the radix-2
FFT. However, algorithmic improvements and variations have been developed that
can further reduce QFT complexity to O n log nð Þ [9, 15].

4. QFT permutations

Universal computation, by its very nature, must involve some set of
permutation operators [17–20]. As with other universal gates applied in
quantum computation, in this section, we show that the QFT can generate
operators that have the properties of a permutation. Consider a successive

application of the QFT such as Q2 ¼ QQ and let us analyze the matrix elements
of such an operation:
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QQ½ � j,k ¼
1

N

X

N�1

m¼0

ei
2π
N jm∣jihm∣

	 


ei
2π
Nmk∣mihk∣

	 


¼ 1

N

X

N�1

m¼0

ei
2π
Nm jþkð Þ mjmh i∣jihk∣

¼
0 jþ k 6¼ 0 modN

1 jþ k ¼ 0 modN

8

<

:

� PQ2

h i

j,k
:

(46)

For an n qubit system ∣qn�1⋯q1q0i, it should be clear that PQ2 is a permutation

operator that leaves the position of ∣q0i unchanged and inverts the order of the
remaining qubits to form ∣q1⋯qn�1q0i. For example, the CNOT operator in Eq. (22)
is equal to PQ2 for n ¼ 2

CNOT ¼ Q2 ¼

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

2

6

6

6

6

4

3

7

7

7

7

5

¼ PQ2 (47)

having properties similar to that of a Sylvester shift matrix (i.e. a generalization
of a Pauli matrix). It is sensible that a CNOT operation followed by a CNOT

operation should result in the identity operation and, hence, that PQ2PQ2 ¼ Q4 ¼ I

(i.e. a double inversion recovers the original qubit sequence). These results can be
generalized for any n. For example, with n ¼ 3, Eq. (46) becomes

PQ2 ¼

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(48)

which, after the appropriate sequence of swaps, can be transformed into a
Toffoli (CCNOT) gate. Hence, PQ2 can be thought of as a generalization of swap

permutation operators and the QFT can be phrased as its square root. For example,
it is common to define a two qubit swap operator as

Sw ¼

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

2

6

6

6

6

4

3

7

7

7

7

5

(49)
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along with its square root

ffiffiffiffiffiffi

Sw
p

¼

1 0 0 0

0
1

2
1þ ið Þ 1

2
1þ ið Þ 0

0
1

2
1þ ið Þ 1

2
1þ ið Þ 0

0 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

: (50)

In a similar manner, Eq. (46) leads us to the following
Theorem 1 Given the N �N inversion permutation matrix defined as

PQ2

h i

j,k
¼

0 jþ k 6¼ 0 mod N

1 jþ k ¼ 0 mod N

�

, (51)

it follows that

Q ¼
ffiffiffiffiffiffiffiffi

PQ2

q

(52)

where Q is a QFT matrix.

In addition, given that Q4 ¼ I we have the following
Corollary 1 Any algorithm that iteratively applies the QFT can result in only one

of the following outcomes

a. Qk ¼ ffiffiffiffiffiffiffiffi

PQ2

p

if k ¼ 1 mod 4.

b. Qk ¼ PQ2 if k ¼ 2 mod 4.

c. Qk ¼ Q�1 if k ¼ 3 mod 4.

d. Qk ¼ I if k ¼ 0 mod 4.

These results indicate a deeper connection between universal computation, per-
mutations and the QFT. Furthermore, decomposing the QFT calculation into a
product of permutations indicates a potential for reducing the computational com-
plexity of QFT implementations.

5. Conclusions

In this work, we have revisited the quantum Fourier transform which is central
to many algorithms applied in the field of quantum computation. As a natural
extension of the discrete Fourier transform, the QFT can be implemented using
efficient tensor products of quantum operators. Part of the thrust of current
research deals with reducing the QFT computational complexity. With this goal in
mind, we have phrased the QFT as a permutation operator. Future research will be
directed toward quantum circuit implementation using QFT permutation operators
within the context of universal computation.

Acknowledgements

This research is funded by a grant from the National Science Foundation NSF
#1560214.

13

Quantum Fourier Operators and Their Application
DOI: http://dx.doi.org/10.5772/intechopen.94902



Author details

Eric Sakk
Morgan State University, Baltimore, MD, USA

*Address all correspondence to: eric.sakk@morgan.edu

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

14

Real Perspective of Fourier Transforms and Current Developments in Superconductivity



References

[1] Shor, PW.: Polynomial-Time
Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum
Computer. SIAM J. Comput., 1997; 26:
1484–1509.

[2] Josza, R.: Quantum Algorithms and
the Fourier Transform. Proc. R. Soc.
Lond. A, 1998; 454:323–337.

[3]Nielsen,MA., Chuang, IL.: Quantum
Computation andQuantum Information.
CambridgeUniversity Press. 2011.

[4] Barenco, A., Ekert, A., Suominen,
KA., Torma, P. : Approximate quantum
Fourier transform and decoherence.
Phys. Rev. A, 1996; 54.

[5] Fowler, A., Hollenberg, LCL. :
Scalability of Shor’s algorithmwith a
limited set of rotation gate. Phys. Rev. A,
2004; 70.

[6] Pavlidis,A., Gizopoulos, D.: Fast
Quantum Modular Exponentiation
Architecture for Shor’s Factorization
Algorithm. Quantum Information and
Computation, 2014; 14.

[7] Prokopenya,AN.: Approximate
Quantum Fourier Transform and
Quantum Algorithm for Phase
Estimation. International Workshop on
Computer Algebra in Scientific
Computing, 2015; 391–405.

[8] Ruiz-Perez, L., Garcia-Escartin, JC.:
Quantum arithmetic with the quantum
Fourier transform. Quantum Inf.
Process., 2017; 16.

[9]Nam, Y., Su, Y., Maslov, D.:
Approximate quantum Fourier
transform with O(n log(n)) T gates. NPJ
Quantum Information, 2020; 6(26).

[10] Barenco,A., Bennett,CH., Cleve, R.,
DiVincenzo,DP., Margolus, N., Shor,P.,
Sleator,T., Smolin,J.A., Weinfurter, H. :
Elementary gates for quantum
computation. Phys. Rev. A, 1995; 52.

[11]Open-Source Quantum
Development. https://qiskit.org/
[Accessed: 1 September 2020]

[12]Quantum Fourier Transform.
https://qiskit.org/textbook/ch-algorithms/
quantum-fourier-transform.html
[Accessed: 1 September 2020]

[13]QC - Quantum Computing Series.
https://medium.com/@jonathan_hui/
qc-quantum-computing-series-10ddd
7977abd [Accessed: 1 September 2020]

[14] Camps, D., Van Beeumen, R., Yang,
C.: Quantum Fourier Transform
Revisited.Numerical Linear Algebra
with Applications. 2020.

[15]Hales,L.,Hallgren,S.: An Improved
Quantum Fourier Transform Algorithm
and Applications. Proceedings 41st
Annual Symposium on Foundations of
Computer Science, 12-14 Nov. 2000,
Redondo Beach, CA, USA.

[16]Wang, SP., Sakk, E.: Quantum
Algorithms: Overviews, Foundations,
and Speedup. ICCSP 2021, Zhuhai,
China; January 8-10, 2021.

[17]DiVincenzo,DP.: Two-bit gates are
universal for quantum computation.
Phys. Rev. A, 1995. 51:1015–1022.

[18] Planat,M., Ul Haq,R.: The Magic of
Universal Quantum Computing with
Permutations. Advances in
Mathematical Physics, 2020.

[19] de Almeida,AAA., Dueck,GW.,
daSilva,ACR.: CNOT Gate
Optimizations via Qubit Permutations.
Journal of Low Power Electronics, 2019;
15:182–192.

[20]Ouyangab,Y.,Shen,Y.,Chen,L.:
Faster quantum computation with
permutations and resonant couplings.
Linear Algebra and its Applications,
2020; 592:270–286.

15

Quantum Fourier Operators and Their Application
DOI: http://dx.doi.org/10.5772/intechopen.94902


