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Chapter

Conservation of Edible 
Ectomycorrhizal Mushrooms: 
Understanding of the ECM 
Fungi Mediated Carbon and 
Nitrogen Movement within Forest 
Ecosystems
Lu-Min Vaario and Norihisa Matsushita

Abstract

Most edible ectomycorrhizal (ECM) mushrooms are currently harvested from 
nature and many of them are high-priced. Demand for the wild mushrooms as a 
culinary delicacy has stimulated research that aims to understand (1) the puzzled 
role that the ECM fungi play in the forest ecosystem, and (2) nutritional and other 
requirements for fruiting, which is highly variable. In this review, we focus on 
understanding of the ECM fungi mediated carbon and nitrogen movement between 
the symbiotic partners and on the interactions with other fungi in forest ecosys-
tems. Thereby, we better understand the diverse nitrogen requirements for edible 
ECM fungal growth and mushroom fruiting. We attempt to provide a theoretical 
basis for the future research of edible ECM mushrooms in wild and controlled 
conditions.

Keywords: culture, cultivation, ectomycorrhizal fungi, edible mushrooms,  
nitrogen uptake

1. Introduction

Forests play a crucial role in the global environment and economy. Forest-based 
wood products as well as non-wood forest products have offered remarkable 
resources and benefits for the well-being of people [1, 2]. A healthy and well-
growing forest system is largely dependent on available soil nutrients and efficient 
nutrient cycling [3, 4], especially nitrogen (N). As we know, nitrogen is a limiting 
resource for plant growth in many temperate forests.

Nitrogen is necessary for plants. Most crops require N relatively high amounts, 
but only a small amount of available N is present in soil at a time. A large source 
of soil N is the atmospheric dinitrogen (N2), the major gas of air (79%) [5]. Only 
certain microorganisms can bind molecular nitrogen from air. All other organ-
isms need to take up nitrogen from soil. Soil organic matter (especially humus) 
acts as a storage and supplier of nitrogen for plant roots and microorganisms; 
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almost 90–95% of soil total nitrogen originates from soil organic matter [6, 7]. 
Plants acquire N mostly from the inorganic forms such as ammonium and nitrate. 
However, plants that associate with mycorrhizal fungi are considered to have 
greater access to organic nitrogen pools when compared to non-mycorrhizal 
plants [5].

ECM fungi play an important role in the nutrient cycle of terrestrial ecosystems. 
Especially in a forest poor in nutrients, the growth of trees depends on the existence 
of mycorrhizal fungi. The value of ECM fungi is evaluated from the global frame-
work. ECM fungi provide hidden biological fertilizers for increasing plant biomass, 
conventional afforestation, and ecosystem restoration practices; they also control 
soil pathogens [8–10].

In addition to benefits for forests, many ECM fungi produce edible mushrooms 
that are widely appreciated for their nutritional, medicinal, and gastronomic prop-
erties [11]. One of the major challenges of the twenty-first century is to produce suf-
ficient food. From that perspective, wild mushrooms as non-wood forest products 
are getting more and more attention globally [12]. It would be convenient if these 
mushrooms could be cultivated. However, most edible ECM mushrooms can only be 
collected from nature and not cultivated artificially [11]. The main obstacle to the 
cultivation of edible ECM mushroom is their need to be associated with a host plant 
in plantations. The association is obligatory for the successful growth and fruiting 
of the mushrooms. The unanimous discussion of the nutritional growth require-
ments of ECM edible fungi is a topic of interest for scientists.

An in-depth understanding of the nutritional requirements of ECM fungi and 
the role of ECM fungi in nutrient cycling, particularly in ECM fungi mediating 
carbon and nitrogen movement within forest ecosystems will be summarized in this 
chapter. The nutritional requirements to successfully culture and cultivate ECM 
fungi will be discussed.

2. Ectomycorrhizal fungi

2.1 Ectomycorrhizal fungi

Ectomycorrhizal fungi are found in association with the roots of most forest  
trees throughout the world. ECM fungi form obligate symbioses with many of 
the dominant trees in temperate and boreal forest, as well as in some tropical 
forests. ECM fungi do not penetrate their host’s cell walls. Instead, they form an 
entirely intercellular interface, known as Hartig net, consisting of highly branched 
hyphae that forms a latticework between epidermal and cortical cells [13]. Hartig 
net provides a large surface area for the two symbiotic partners and it is the site 
of nutrient exchange. Carbon (C) is transported to the fungus from a tree that 
receives limiting nutrients in exchange. The fungus can transport nutrients beyond 
the nutrient depletion zone surrounding the host’s root system and release from 
immobilized sources inaccessible to the plant [13, 14]. ECM fungi are thus regarded 
as key elements of forest nutrient cycles and as strong drivers of forest ecosystem 
processes [15].

Most (86%) terrestrial plant species obtain mineral nutrients through mycor-
rhizal symbionts as estimated using taxonomic and ecological extrapolation 
methods [16]. An estimate of ECM fungal species richness is likely between 20,000 
and 25,000 [16, 17]. These ECM fungi belong to more than 80 independently 
evolved lineages and to more than 250 genera, mainly in Basidiomycetes and 
Ascomycetes [18].
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2.2 General roles of ectomycorrhizal fungi in forest ecosystems

Ectomycorrhizal fungi are essential contributors in forest ecosystems by forming 
beneficial symbiosis plants. These fungi drive forest soil processes such as soil organic 
matter decomposition, nutrient cycling, and carbon sequestration [19–21].

ECM fungi have the ability to provide hosts not only nitrogen but a variety of 
other major nutrients, including phosphorus, potassium, calcium, magnesium, 
sulfur, as well as micronutrients such as iron, zinc, copper, and manganese. 
However, they are often ignored because N is the main growth-limiting element 
in many forest ecosystems, particularly in the Northern Hemisphere [19, 22, 23]. 
In addition to nutrients, trees receive several other benefits. First, the resistance of 
trees against pathogens is improved due to the mycelial network [24]. Second, the 
ECM mycelial networks are involved in water transport [25]. Third, ECM fungi can 
relieve salt and heavy metal stress of the host plants [9]. The benefits that the ECM 
fungi offer are complicatedly regulated by the host type, ECM species, as well as 
climatic and environmental conditions. Recently, a study based on a climate change 
model predicted that the global abundance of ECM-associated trees will decline 
by 10% by the end of 2070, and the majority of this will take place in boreal and 
temperate ecotones [26]. Therefore, the conservation of ECM fungi should be taken 
as an important issue.

2.3 Structure of ectomycorrhizas is diverse

Fungal mycelium has been estimated as one of the largest living organisms on 
Earth [27]. Hyphae is composed of fungal mycelium and other structures including 
rhizomorphs. Rhizomorphs are structures through which fungi can spread in their 
environment and search for new substrates to colonize. The structure of ectomycor-
rhiza is diverse. Agerer [28] proposed that ECM mycelia systems influence on their 
patterns of differentiation and putative ecological importance. Mycorrhizal fungi 
have been classified into four exploitation types depending on the extent of hyphal 
development: contact, short-distance, medium-distance, and long-distance.

ECM fungi are characterized according to the water repellence of the mycelium. 
Fungi vary from extremely hydrophobic to extremely hydrophilic types [29]. All 
fungal growth parameters such as hyphal hydrophilicity, presence of rhizomorphs, 
and mat formation correspond together to how fungi interact with and exploit the 
environment [28, 30]. The function of extraradical mycelia of ECM fungi is the 
transportation of nutrients between plant and soil environment [13, 31].

Ectomycorrhizas differ in their ability to take up and transport nutrients, 
and thus, promote tree growth [32, 33]. The differences in ECM effectiveness are 
often species specific or even strain specific [34]. It is evident that the amount and 
differentiation of extraradical mycelium is an important ecological factor for tree 
performance [35–37] and soil nutrition [38].

3.  Contribution of ectomycorrhizal fungi to nitrogen cycling in forest 
ecosystems

3.1 Forms of nitrogen in forest soil

The major N sources in the forest floor can be divided into external and internal 
sources. Atmospheric nitrogen deposition is an external source, and the living 
organisms and their decomposition products are an internal source [39, 40]. 
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Ammonium and nitrate are the two major pools of inorganic N. Ammonium is most 
often the dominant inorganic N pool available to trees in coniferous ecosystems. 
Nitrate concentrations are usually relatively low in mature forests [41].

Most of the nitrogen in forest soils is bound to organic compounds [42]. It is well 
known that over 90% of N occurs in organic forms in most surface soils [7, 43]. The 
forms of organic N can be roughly divided into two categories. (I) Organic residues 
consisting of undecomposed animal and plant residues and partial decomposition 
products, and (ii) soil organic matter or humus. The humus is composed of non-
humic, easily identifiable compounds (e.g. amino acids, carbohydrates, nucleic acids, 
etc.) and complex humic substances, such as high-molecular-weight amorphous and 
aromatic compounds, formed during the decomposition process. The importance of 
humus is widely recognized in maintaining and improving soil fertility [7].

The distribution of major N compounds was investigated in different climatic 
and geological conditions including arctic, cool, temperate, subtropical, and tropi-
cal climates early [44]. The results indicated that about 33–42% of soil N occurs 
as free and protein amino acids. The amino acid composition of all soils, however, 
was remarkably similar. The composition and concentration of amino acids has 
shown generally constant throughout the growing season [45], which suggests 
that amino acids originate from a common source or through similar biochemical 
processes. However, the distribution of N compounds at different regions seems to 
be related to decomposition process and as well as forest types [46]. Soil proteins 
are often not free, they are bound to humic compounds and are not soluble. These 
N forms cannot directly be used by plants, they need to be depolymerized by 
microorganisms and converted into plant available monomeric organic or mineral 
N forms.

3.2 Diversity in nitrogen uptake in Ectomycorrhizal Fungi

Ectomycorrhizas occur widely in forest ecosystems. Most of the terrestrial plant 
species are in symbiosis with mycorrhizal fungi, about 3% of them are ectomycor-
rhizal. The most common tree species belong to Pinaceae, Salicaceae, Betulaceae, 
Fagaceae and Myrtaceae [13, 47]. The general mechanism of ECM fungi to improve 
plant nutrition is the so called Hartig net structure that increase the surface area of 
roots to absorb nutrients.

Ectomycorrhizal fungi are able to take up both inorganic and organic forms of 
N. Ammonium is generally recognized as the most readily utilizable form for most 
ECM fungi when studied in mycelial cultures [48, 49] or with ECM roots in vitro 
and in the field [50]. Nygren and colleagues [51] demonstrated that 68 species of 
ECM fungi used nitrate as the sole N source in a pure culture. However, the pure 
culture conditions do not reflect the N preference of ECM fungi in nature [52]. 
Laccaria laccata was shown to uptake nitrate and transfer it to the host plant when 
in nitrate-rich conditions [53].

In other studies, ECM seedlings demonstrate a strong preference for amino acids 
over ammonium [54]. Already in 1953, Melin and Nilsson [55] demonstrated that 
15N labelled glutamate was absorbed by the mycelium of Boletus variegatus, and that 
the nitrogen was transferred to the shoots of pine seedlings that had been infected 
with the fungi in an aseptic culture. Many ECM fungi are able to grow with amino 
acids as the N source in pure culture and also in association with host trees [56–59].

The capacities of ECM fungi to mineralize organic N differ. Abuzinadah and 
Read [60] found that ECM fungi such as Suillus bovinus, Amanita muscaria, Paxillus 
involutus, Cenococcum geophilum, and Rhizopogon roseolus were able to use peptides 
and proteins as their sole N sources. In contrast, Laccaria laccata and Lactarius 
rufus had little ability to grow with peptides and proteins but they grew well with 
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ammonium. It was further demonstrated that different fungal species, even differ-
ent strains had different abilities to utilize organic N and/or transfer the assimilated 
N to their host plants [60]. Some ECM fungi might take up the nitrogen compound 
completely and some break the molecules into smaller organic or inorganic forms. 
The difference in the ability of ECM fungi to transfer N from chitin, protein, and 
other organic substances in litter and humus was explained by differences in their 
enzyme secretion profiles [61].

ECM fungi have several functionally distinct metabolic pathways to transfer N. 
ECM fungal hyphal morphology, species niche (original living conditions), genetic 
characteristics and carbon costs to host plants may influence on their capacity to 
utilize and mineralize organic N.

3.2.1 Mycelium structure determines the efficiency of ECM transport nitrogen

ECM fungal hyphae morphology is diverse. Morphology seems to have a great 
influence on the hyphal enzymatic ability of ECM fungi. ECM species with hydro-
philic ectomycorrhizal hyphae have proteolytic activities and they are adapted to 
N-limited conditions [62]. In contrast, other ECM fungi with hydrophobic ecto-
mycorrhizal hyphae, similar to many saprotrophic fungi, form aggregated hyphae 
(rhizomorphs) for long-distance transport of elements. This is presumably an 
adaptation for patchily distributed resources [63].

In addition to hydrophobicity, another aspect is to consider the size of mycelia. 
The species that form extensive extraradical mycelia (e.g. Cortinarius, Suillus, 
Tricholoma species) have different capacity to utilize organic N than those species 
that form diffuse, spatially limited extraradical mycelia (e.g. Amanita, Lactarius 
species). These differences in mycelia are thought to be associated with differ-
ent reproductive and colonization strategies [58, 62]. It is believed that extensive 
mycelia are established infrequently, but it is long- living. In contrary, the diffuse 
mycelia become more stable, usually by spores for the generation, but the mycelia 
do not persist. The long-living extraradical mycelia is believed to be more efficient 
to process N than short-living mycelia.

Studies based on the stable N isotope ratios in ECM fungal fruitbodies have 
provided new insights and evidence for the N sources of ECM fungi. As we know, 
the relative abundance of stable isotopes in food webs follows from discrimination 
against heavier isotopes in several biochemical processes [64]. The ratio is useful 
particularly in studying nitrogen cycling mediated by mycorrhizal fungi [65]. Stable 
N isotope ratios in ECM fungal fruitbodies showed that those having long-living 
mycelia exhibited higher δ15N than those having short-living mycelia [58, 66, 67].

Thus, the signature of 15N in ECM fruitbodies was determined by the morpho-
logical characteristics of the mycelia. Another observation revealed by the isotope 
studies is that ECM fungal species that can utilize organic N exhibited higher δ15N 
in their fruitbodies than those that are restricted to mineral N sources [67, 68].

3.2.2  Nitrogen utilization of ECM fungi is related to the nitrogen status  
of the habitat

The form of nitrogen in the environment influences N mobilization by ECM 
fungi. The species common in low inorganic N soils grew well with protein, 
glutamine, and serine whereas species in high inorganic N soils grew well with 
glutamine, but poorly with protein and serine [67]. Differences among ECM fungal 
species in their ability to access and take up different N forms indicate that the form 
and abundance of N in the environment may be a defining factor for ECM fungal 
species niche [69]. ECM species are selected by the N form that is predominant in 
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their environment. Recently, an increasing number of studies showed that inorganic 
N enrichment in forest soils caused by pollution, fertilization or natural causes are 
leading to a reduction in the level of plant root colonization by ECM fungi, also shift 
fungal community in soils away from ECM fungi specialized in organic N acquisi-
tion to more generalist nitrophilic species and saprotrophs [70–72].

Other studies have concluded that differences in proteolytic activity between 
the species of ECM fungi could be explained by soil-derived selection pressures. For 
example, Hebeloma crustuliniforme expressed proteolytic activity in the presence of a 
readily available N source such as ammonium [73]. Ammonium has also been shown 
to repress the expression of amino-acid transporters and enzymes in N assimilation 
pathways in ECM fungi [74, 75]. The presence of inorganic N tightly down regulated 
soil organic matter degradation by Paxillus involutus as proved [76]. Such facts suggest 
that ECM fungal degradation activity would be controlled by environmental factors.

Different ECM species occupy different successional stages in forest develop-
ment. This seems to be related to the proteolytic activity of fungi. When resource 
quality declines and organic matter accumulation declines during forest develop-
ment, fungi with limited proteolytic activity is favored. For the cultivation of edible 
mushrooms, this means that we should pay attention to the natural preferences of 
the species for nitrogen uptake. This may concern especially the ECM species that 
are difficult to cultivate artificially.

3.2.3 Fungal genetic characteristics determines the efficiency of N transition

Recently, advances in genetics and molecular biological techniques have 
provided better understanding about nitrogen metabolism. The acquisition of 
inorganic N and the mineralization of organic N by ECM fungi have been proved by 
many molecular investigations. Ectomycorrhizal fungi encode a number of trans-
porters to acquire nitrate and ammonium from soil, as well as a suite of enzymes 
and transporters necessary for utilizing organic N sources [77–79]. Ammonium 
importers such as AMT1, AMT2 and AMT3 have been functionally characterized 
in several ECM fungal species, such as, Hebeloma cylindrosporum [75, 80], Tuber 
borchii [81] and Amanita muscaria [82]. Nitrate transporters, such as LbNRT2 in 
Laccaria bicolor [83] and HcNRT2 in H. cylindrosporum [84], are also present in 
ECM genomes allowing N transport.

Ectomycorrhizal fungi have all evolved from their saprotrophic ancestors, and 
hence, ECM have the ability to decompose organic matter [85, 86]. The utilization 
of proteins by fungi requires the enzymatic degradation of proteins to peptides 
and amino acids before cellular uptake. Lindahl and Taylor [87] studied the genetic 
potential of ECM fungi to produce N-acetylhexosaminidases that hydrolyze chitin 
to N-acetylglucosamine. Thus, N-acetylglucosamine and amino acids replace 
ammonium and nitrate as the N sources [19].

Recently, the genomes of ECM fungi were found to contain the same or smaller 
number of copies of genes coding for secreted N and P targeting hydrolases than 
saprotrophs, pathogens, or ericoid mycorrhizal fungi [88]. This observation is 
surprising because the well-documented ability of ECM fungi to hydrolyze organic 
phosphate compounds and scavenge nitrogen through the degradation of proteins 
accumulated in litter. Miyauchi and colleagues [88] also showed that the ECM 
fungus Paxillus involutus was able, while assimilating organic N, to significantly 
modify organic matter with a free-radical-based mechanism similar to that of 
saprophytic brown-rot fungi [76]. Unlike the saprophytic fungi, P. involutus did not 
show any expression of genes encoding extracellular enzymes needed to metabolize 
the released C. This suggests that the degradation mechanism of this ECM fungus 
has evolved to assimilate organic N rather than C.
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3.2.4 ECM utilizing organic N in relation to receiving C from trees

ECM fungi are able to breakdown soil organic N with differing efficiencies. It 
has been found that the uptake of amino acids by mycorrhizal fungi is related to 
the N content and carbon structure of the amino acid [89]. One hypothesis was 
proposed that the rate at which mycorrhizal fungi degrade large organic N polymers 
in soils is also controlled by the plant C resources available to the fungi to construct 
extracellular enzymes, as well as the bond strength and structural diversity of the 
target organic N compound although the direct tests of the hypothetical mecha-
nism is still needed. Another study by Näsholm et al. [90] tested a model for C–N 
exchange between trees and mycorrhizal fungi. They found that ECM fungi trans-
port smaller amounts of absorbed N to trees in N-limited than in N-rich conditions. 
The study found further that the greater allocation of C from trees to ECM fungi 
increases N retention into soil mycelium. The growth of these fungi is stimulated, 
and thus, N is immobilized and sequestered in soil. This mechanism was suggested 
to drive boreal forests towards a more severe N limitation at low N supply.

ECM fungi have diverse evolutionary origins and they use diverse decomposi-
tion mechanisms to access organic nitrogen entrapped in soil organic matter [91]. 
The timing and magnitude of decomposition activity seem to be controlled by the 
below-ground nitrogen quality and the above-ground carbon supply. Some ECM 
fungi might act as decomposers, not primarily to obtain C to their metabolism, but 
to search for organic N in the absence of readily available inorganic N [76, 92–94].

4.  Challenges in establishing edible ectomycorrhizal fungal culture  
with fruitbody formation

More than thousand species of ECM fungi produce edible mushrooms 
[95]. Some of them, such as Amanita caesarea (Scop.) Pers. Boletus edulis Bull., 
Cantharellus cibarius Fr. and Tricholoma matsutake (S. Ito and S. Imai) Singer, have 
economical value on international markets. The problem is that edible ECM fungi 
are usually more difficult to cultivate than saprophytic fungi because of the sym-
biotic relationship with a host tree is needed. In the past few decades, significant 
progress has been made in the cultivation of some fungi, such as Lactarius deliciosus 
(L.) Gray [96–98], Lactarius hatsudake Nobuj. Tanaka [99], Suillus granulatus (L.) 
Roussel [96], Rhizopogon roseolus (Corda) Th. Fr. [100], and Lyophyllum shimeji 
(Kawam.) Hongo [101]. In controlled conditions, however, the successful fruitbody 
or primordium formations are limited. Most of edible ECM fungi still cannot be 
cultivated. The major issues that need to be understood are the trophic relation-
ships, biotic, edaphic, and climatic requirements for each mushroom. In this review, 
we focus on the nitrogen acquisition of edible ECM fungi for their mycelial culture 
and its effect on fruitbody formation. Secondly, we take T. matsutake as an example 
and discuss in detail about its ability to acquire nitrogen, its preferences, and pos-
sible strategies. Finally, we discuss about the further challenges – to conserve proper 
ecological conditions for edible ECM fungi to grow.

4.1 Nitrogen sources in edible ECM fungal cultures

We summarize the nitrogen sources used in mycelium culture and the cultiva-
tion experiments of edible ECM fungi in combination with ECM fungal morpho-
logical characteristics reported from the published studies (Table 1). As known, 
most edible ECM fungi are difficult for cultivation so far. We could get some 
hints for the ECM cultivation from experimentally observed nitrogen preferences 
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ECM fungi Mycelium 

growth

Mycorrhization Fruitbody formation Ref Hydrophobicity Exploration 

type

δ
15N (‰) 

(Mean ± SD) (n)

Ref.

Amanita Hi Medium-smooth 3.1 ± 0.5 (35) [102]

A. caesarea NH4
+ (poor on 
orgN)

[103]

Boletus Ho Long 5.8 ± 1.0 (17) [102]

8.66 (1) [104]

B. edulis orgN [105]

B. reticulatus NH4
+ and orgN [106]

Boletus sp. NH4
+ and orgN [107]

Cantharellus Hi 4.3 ± 1.4 (8) [102]

C. cibarius NH4
+ (poor on 
orgN)

[48]

Cortinarius Ho Medium-fringe 6.8 ± 0.3 (100) [102]

C. variecolor orgN [67]

Hebeloma Ho Short/
medium-fringe

2.7 ± 1.1 (7) [102]

H. 

cylindrosporum

orgN (but a variable 
among strains)

[59]

ON [57]

H. radicosum NH4
+ [108]

Hebeloma sp. orgN [108]

Hydnum Ho Medium-fringe 12 (1) cap [102]

H. repandum NO3
− or ON 

(poor on NH4
+)

[109]

Laccaria Hi Short 0.5 ± 0.6 (15) [102]
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ECM fungi Mycelium 

growth

Mycorrhization Fruitbody formation Ref Hydrophobicity Exploration 

type

δ
15N (‰) 

(Mean ± SD) (n)

Ref.

L. lacata orgN [110] 3.0 ± 0.4 (3) cap [111]

NH4
+ (poor on 
orgN)

[112]

L. bicolorNH4
+ 

(poor on NO3
−, 

or orgN)

[113] 1.8 (1) cap [111]

NH4
+, NO3

− (poor 
on amino acid, 
good on urea)

[114]

NH4
+ (poor on 
orgN)

[67]

Lactarius Hi Contact/
Medium-smooth

4.2 ± 0.3 (54) [102]

4.3 ± 0.5 (3) [111]

L. deliciosus NH4
+ plus orgN [98]

L. rufus orgN (a variable 
among strains)

[67]

Lyophyllus

L. shimeji NH4
+ and orgN [115]

Paxillus Ho Long 7.1 ± 0.7 (7) [102]

P. involutus orgN [113]

Scleroderma

S. citrinum NH4
+ or orgN [112] Ho Long

Suillus Ho Long 8.2 ± 0.7 (17) [102]

S. bovinus Forest soil [116]
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ECM fungi Mycelium 

growth

Mycorrhization Fruitbody formation Ref Hydrophobicity Exploration 

type

δ
15N (‰) 

(Mean ± SD) (n)

Ref.

S. lutus NH4
+ (poor on 
orgN)

[112]

S. variegatus orgN [113] 5.7 ± 1.1 (4) cap [111]

Tricholoma Ho Medium-fringe 9.3 ± 0.6 (35) [102]

T. imbricatum NH4
+ or NO3

− or 
orgN (gained 

better grwoth in 
iorgN)

[117]

T. bakamatsutake NH4
+ or orgN 

(poor on NO3
−)

[118]

T. matsutake NH4
+ pluse orgN [119] 16.8 ± 2.3 (15) [120]

orgN [121]

orgN (sustaining 
symbiotic 

relationship)

[122]

T. terreum orgN (gained 
better growth)

[123]

Tuber Hi Short 15.1 ± 0.6 (9) [102]

T. sinense orgN( gained 
better growth)

[124]

* NH4
+, ammonum nitrogen; NO3

−, nitrate nitrogen; orgN, organic nitrogen. Ho, hydrophobic; Hi, hydrophibic.

Table 1. 
Fungal growth, symbiosis and fruitbody formation observed using different nitrogen sources in edible ectomycorrhizal fungi in combination with the information of hydrophobicity, exploration 
type and δ15N of the fruitbodies.



11

Conservation of Edible Ectomycorrhizal Mushrooms: Understanding of the ECM Fungi…
DOI: http://dx.doi.org/10.5772/intechopen.95399

and mycorrhizal formation. In pure culture conditions, most of the studied 
fungi appeared to favor ammonium N. Some species, namely Amanita caesarea, 
Cantharellus cibarius, Lactarius bicolor, Suillus variegatus were not able to grow 
nitrate as the sole N source [48, 103, 113].

However, many of the edible ECM fungi, namely Amanita caesarea [103, 105], 
Cantharellus cibarius [48], Cortinarius variecolor [67], Paxillus involutus, Suillus 
variegatus [113], Tricholoma terreum [123], and Tuber sinense [124] were able to 
grow on the media containing organic N (protein) as the sole nitrogen. Moreover, 
some fungi belonging to Lactarius genus had limited capacity to utilize protein 
N [113, 114]. Hebeloma cylindrosporum was able to experimentally utilize a wide 
range of amino acids and other simple (e.g. urea) or complex (e.g. proteins) 
compounds [6, 59].

The studied forms of N often predominate soil solution and the culturing results 
might be assumed to hold true in nature. However, it is worth mentioning is that the 
optimal nitrogen in the mycelium culture does not necessarily reflect the nitrogen 
preference of the ECM fungus under natural conditions because environmental 
factors affect. This was shown with H. cylindrosporum growing in nature. Wild 
dikaryotic strains of H. cylindrosporum isolated from two different habitat types had 
different N preferences [6].

Cultivation of edible ECM mushrooms has been successful in cases of two 
truffles Tuber melanosporum Vittad. and Tuber aestivum Vittad. They are cultivated 
commercially around the world [125]. In addition, some success has been achieved 
with Lactarius deliciosus [126, 127] and Boletus edulis [128]. Regarding truffle 
production, it has been suggested that most soils contain enough N to maintain both 
fungal and tree growth [125]. Similarly, Lactarius deliciosus was cultivated experi-
mentally in forest soil, which was observed to meet the demands for fruitbody 
formation [126]. It has also been demonstrated that the nutritional properties of 
soil and the forestry history the natural development of ECM mushrooms in forest 
ecosystems [129]. A productive and diverse ECM mushroom community resem-
bling natural communities developed when abandoned farmland in Mediterranean 
dry area was forested with Pinus sp.

In summary, productive ECM community can grow in natural soils. However, 
the challenges faced in artificial cultivation has not been solved.

4.2  Nitrogen source requirements for Tricholoma matsutake mycelial culture 
and mycorrhizal synthesis

Tricholoma matsutake is among the most economically valuable mushrooms 
in the world. Its taxonomy, distribution, ecology, physiology, and cultivation has 
been studied widely [130]. Here, we summarize the key results linking matsutake 
ecological characteristics and nutrient requirements focusing on nitrogen.

Matsutake colonizes the roots of its host trees via an ECM association  
(Figure 1a and b). It develops an extraradical mycelium in the rhizosphere and in 
the surrounding soil area. This can be seen as a white rhizosphere area and it corre-
sponds to the mycelium-soil aggregated zone, called a shiro [131] (Figure 1c and d). 
Matsutake shiro grows in the form of a concentric or horseshoe-like circle, depend-
ing on the rhizosphere conditions, around the host plant at the rate of approxi-
mately 10–15 cm per year [131, 132]. The production of matsutake mushrooms 
changes periodically. Based on our field observations, the part of mycorrhizal root 
tips is degraded prior to matsutake fruiting. The extraradical mycelium might grow 
towards new roots and colonizing. Such a hyphal growth strategy indicates that 
matsutake symbiosis may often need to be renewed and form new mycorrhizas to 
acquire nutrients (data not published). Among the mycorrhizal associations, such 
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a phenomenon does not seem to be rare. Hortal and colleagues [133] found that 
the plant had the ability to limit the root tip colonization of the least cooperative 
symbiont, and therefore, influence the outcome of ECM fungi competition. Such 
reduction in colonization did not result in a reduction in carbon allocation to the 
fungus providing the lowest amount of nitrogen.

It is worth noting that decayed mycorrhizal roots together with mycelium-soil 
aggregated zone might be important organic nutrient sources for matsutake. 
Recently, the natural abundance of isotopes data showed a very high δ15N value 
in T. matsutake fruitbodies, which were sampled from Finland and Japan [120]. 
Matsutake usually grow at B layer of mineral soil [131], such taxa obtain their N 
could explain for high δ15N values (see review [102]). More importantly, the high 
δ15N value in matsutake is an indicator of organic N uptake from soil because the 
great variation of 15N content observed among ECM taxa has been reported to be 
related to the differences in organic N utilization [111]. In addition, a literature 
study shows that mycorrhizal taxa with proteolytic activities generally show high 
δ15N values [67]. Therefore, we conclude that matsutake has a greater proteolytic 
activity to digest chemically complex 15N-enriched organic matter in soil during 
matsutake fruitbody development.

In addition to proteases, matsutake produces organic matter degradation 
enzymes such as acid proteinase [134, 135] and β-glucosidase [136]. Relatively high 
enzyme activities, β-glucosidase and xylosidase, were detected from matsutake 
cultures in vitro and in shiro soil [137, 138]. The genome of T. matsutake encodes 

Figure 1. 
The ectomycorrhizal edible mushroom—Tricholoma matsutake (a) the root of Pinus sylvestris seedling 
is colonized by T. matsutake fungal mycelium, forms mycorrhizas; (b) the transverse section of ECM root 
showing the Hartig net (hn) development within the cortex; (c) matsutake mushrooms form in a conifer mixed 
forest in southern of Finland; (d) the matsutake shiro (arrow) after the mushrooms be harvested (photos were 
taken by Lu Min Vaario).
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two GH7 cellobiohydrolases [88], which is in agreement with its known facultative 
saprotrophic activity [136, 138]. However, no further evidence of any strong sap-
rotrophic characteristics of matsutake was found. It could be speculated that these 
ECM fungi produce certain levels of carbohydrase, not to fully degrade organic 
matter to access C but N. Kawai and Abe [121] reported that dried beer yeast, corn 
steep liquor, casein hydrolysate, and polypeptone were good N sources for mat-
sutake mycelium culture whereas nitrate was not. Dry beer yeast (Ebios, Asahi Beer 
Inc., Tokyo, Japan), as the sole N source, showed promising matsutake mycelium 
growth and as well mycorrhizal formation [139] (personal communication with Dr. 
A. Yamada).

Several agar media such as MMN, MNC, Hamada containing both inorganic 
and organic N are widely used to culture the mycelium of T. matsutake [119, 140]. 
However, the question whether matsutake prefers organic nitrogen is worth of 
considering. Usually, more inorganic N than organic N is present in the soil top 
layer. Some studies suggested that increased N deposition could reduce fruitbody 
production [141]. Nohrstedt [142] reported a 30% decrease in sporocarp produc-
tion by Cantharellus cibarius in a central Swedish pine forest after the application of 
150 kg N ha−1 ammonium nitrate. The presence of nitrate ions has been shown to 
have negative effects on the development of some ECM fungi both in vitro and in 
soil [143, 144]. Removal of the litter layer has been considered an important method 
to improve the productivity of matsutake in many Asian countries [145]. It has 
also been shown that the removal of the upper organic soil layers of the forest floor 
can improve the sporocarp production of some other ECM fungi [146, 147]. The 
explanation might be that competition with other microbes diminishes. Litter and 
organic soil provide carbon and nutrients for microbes, especially for saprotrophic 
fungi that would compete with T. matsutake in the shiro [148].

4.3 Research prospects

Cultivation of ectomycorrhizal mushrooms is still facing many challenges. 
Although some species of ECM fungi can form the primordium of fruiting bodies 
on several media, they usually do not develop further into mature fruiting bod-
ies. So far, the most successful efforts have been carried out with the mycorrhizal 
plants growing in soil. Soil nutrients and soil microbial communities together with 
climatic factors have shown to affect significantly the persistence of ectomycor-
rhizas in outplanted inoculated plants, and further, the successful fruiting. The 
observed suppression of many mycorrhizal mushrooms has been linked to indirect 
effects of air pollution, in particular to increases in nitrogen deposition accumulat-
ing into litter and humus [149, 150]. A thorough understanding of the ecological 
and environmental factors regulating the ECM fungal species is a prerequisite for 
their cultivation.

Ectomycorrhizal fungi colonize the roots of their host plants and improve plants’ 
access to nutrients, especially nitrogen. In exchange, host plants deliver a significant 
portion of their photosynthesized carbon to the ECM fungi. However, we need 
more accurate understanding of the ECM fungi mediated C and N movement 
within forest ecosystems. ECM fungi may follow a similar pattern with the amount 
of C delivered being related to the amount of N sourced by the fungus [77, 151], 
although this is still controversial [133]. Production of ECM mushrooms do need a 
balanced nutrient either assimilating by ECM fungi or by other soil microbial.

It has been suggested that the growth of ECM fungi and the formation of mycor-
rhizas are promoted by certain mycorrhizosphere bacteria, termed ‘mycorrhizal 
helper bacteria’ [152]. Some mycorrhizal fungi-associated bacteria are also known 
to fix nitrogen [153, 154]. However, there is still no evidence that the fungus would 
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directly benefit from its associated bacteria. Sporocarps of Cantharellus cibarius 
contain large amount of bacteria, in particular fluorescent Pseudomonas [155]. Some 
species of bacteria such as Streptomyces spp., Paenibacillus spp. and Bacillales spp. 
were isolated from the mycorrhizal root tips and fruitbodies of T. matsutake as well 
[156–158]. Otherwise, the information about mycorrhizas-associated bacteria and 
their effect on the nutrient uptake of ECM fungi is limited. These studies, however, 
hint that the production of ectomycorrhizal mushrooms may require teamwork to 
obtain enough nutrients from the environment.

In conclusion, ECM fungi play an important role in the nutrient cycle of forest 
ecosystems, especially on mediating C and N movement. A better understanding 
of the nitrogen status of the habitat of ECM fungi, nutrients movements within the 
ecosystems, as well as the ECM fungal hyphal structures should be the first step for 
cultivation of ECM edible mushrooms. The methodological advances in these areas 
in combination with forest management may allow the successful establishment of 
commercial plantations and production of edible ECM mushrooms in forests.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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