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Abstract

Aquatic, marine and algae, is reservoir of bioactive compounds, which have 
considerable potential to supply novel ingredients toward the development of com-
mercial functional food products. Meanwhile, several valuable by-products gener-
ate during the manufacturing process. Seafood is still an intact reservoir of valuable 
compounds with significant potential to provide unique compounds applicable in 
functional food development. Seafood, as an important part of the diet all around 
the world, can be used as a source of functional components that are positively 
affecting the human health. Annually, 50–80 percent of the seafood processing is 
discarded as waste every year. Algae are also the novel natural resources for their 
biological and pharmacological properties. This chapter will be discussing the 
innovations in seafood and algae sector through the valorization of their by-prod-
ucts. Firstly, protein production, its characterization and the protein hydrolysates 
derived from seafood will be reviewed. Subsequently, bioactivity of the peptides 
obtained from these protein hydrolysates and other bioactive compounds such as 
carotenoid compounds derived from seafood including fish, shrimp, alga, and so on 
will be included. Finally, the main components of algae including sulfated polysac-
charides, pigments and proteins will be surveyed.

Keywords: seafood by-products, algae by-products, bioactive compounds, protein, 
pigments, carotenoids, sulfated polysaccharides

1. Introduction

It is well-known that the seafood has been one of the most important parts of 
the human nutrition for a long time. According to reports obtained from FAO, the 
annual discard from global marine capture between 2010 and 2014 was 9.1 million 
tons. This huge amount of by-products represents 10.8% (10.1% –11.5%) of the 
annual average catch of 2010 to 2014 [1]. Utilizing this discarded part of the fishery 
industries could be environmentally and economically profitable.

Several value added products can be generated from seafood processing by-
products depending on which kind of seafood is processed. Based on this, this chapter 
is divided into 3 major parts; (I) fish by-products, (II) crustaceans, and (III) seaweeds. 
This study has provided a review of use of fish by-products to produce some value 
added products including proteins, peptides, and oil. These products are the most 
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important major products that have a promising future in global market. During last 
decades, different efforts have been done to utilize the seafood by-products to generate 
these value added products [2]. Obtaining proteins and peptides as functional and 
nutritional compounds from seafood by-products have been the objective of many 
researches [3–9].

Algae are an important renewable source of food, medicines and fertilizers 
and their utilization have increased in all around the world. They are considered 
to possess a high nutritional value and their metabolites, and associated biological 
activities, have particular significance for multiple nutraceutical, cosmetic and 
pharmaceutical applications [10, 11]. Seaweed consumption has a long tradition in 
Asian countries and has increased in European countries in over recent decades, due 
to increased awareness of their beneficial effects [12]. Thus, development of way 
for the utilization of marine algae for food, feed, and bioenergy is essential. One of 
the best way is conversion of biomass into a variety of valuable products which is 
known as biorefinery [13].

In recent years, numerous compounds with biological activities or pharmaco-
logical properties such as antibacterial, anti-inflammatory, anticancer, antiviral and 
anticoagulant are discovered in algae. Algae by-products can be used for human and 
animal as food, animal feed and ingredients of dietary supplements. Sulfated poly-
saccharides, pigments, proteins and lipid are the main by-products of algae [12].

This chapter focuses on important value added bioactive chemicals identified in 
seafood by products over the last years and describes the range of biological activi-
ties as well as industrial applications for which they are responsible.

2. Fish by-products

2.1 Proteins

Fish by-products obtained from seafood processing industries contain huge 
amounts of head, skin, scales, bones, fins, viscera, and dark muscle. The protein 
content of these by-products is approximately 15%, which is similar to that of 
fish fillets. The muscle which is attached to this by-product contains two distinct 
type of proteins including structural (myofibrillar) (approximately 70–80%) 
and sarcoplasmic proteins (approximately 20–30%). These high nutritional value 
proteins (even more than red meat and milk casein) indicate remarkable functional 
and technological properties like water holding capacity, emulsifying activity, 
film forming ability, foam forming capacity, and gel forming ability [14–17]. 
Commercial gelatins are mostly obtained from mammalian (porcine and bovine) 
skins and bones. As the researches confirm, the substitution of mammalian gelatin 
with fish gelatin is an appropriate and appealing due to increasing concerns of 
researchers and consumers about the risks of transmission of the pathogenic vectors 
such as prions. Albeit, number of committees like the Scientific Steering Committee 
of the European Union, have stated that consumption of bovine bone gelatin is safe 
[18], researchers are still debating on this.

Nowadays, researches have become to notice on a unique protein which can be 
easily extracted from fish by-products especially skin, scales, bones, and fins. This 
valuable protein is collagen/gelatin. Collagen is the most abundant protein in tissues 
including skin and bones (approximately 30% of the total protein). The structural 
investigates show that collagen is a triple helix with three identical polypeptide 
chains. The primary structure of this protein is continuous repeating of the Gly-
X-Y-sequence. The positions of X and Y are mostly proline and hydroxyproline, 
respectively. Different types of collagen (29 distinct types) have been discovered 
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so far, which have right-handed triple helical conformation. The difference among 
these types is due to the variety in their amino acid sequences as a result of genetic 
variants [19–21]. Fish gelatin could be extracted from its by-products by a partially 
denaturation of collagen usually performed by hot water. Before extraction of fish 
by-products, some pretreatments are needed to ready them for being used as a gela-
tin source. The pretreatment step is ordinarily an alkaline and/or and acidic swelling 
process. The alkaline and/or acidic pretreatment is used to partial cleavage of rigid 
cross-links in the collagen and remove non-collagenous materials. The enzymatic 
aided chemical pretreatments are those which can be supplemented or replaced 
by enzymatic reaction. The “conditioning process” is the known name of this step 
by manufacturers of gelatin. Afterward, the gelatin (warm water soluble) will be 
extracted from collagen (not soluble) by hot water at a specific temperature and 
time. There are lots of studies performed in this research area. In a paper authored 
by Mirzapour-Kouhdasht, Moosavi-Nasab [22], gelatin was optimized at different 
levels of time and temperature using the response surface methodology (RSM). The 
responses including yield, protein content, gel strength, and viscosity indicated 
that the optimum conditions were 70.71°C and 5.85 h. Rheological, structural, and 
functional experiments showed that the gelatin characteristics were acceptable 
compared to the commercial bovine gelatin. The pretreatment in these experiments 
was performed by alkaline solution. In another study [23], gelatin was produced 
from Common carp wastes using alkaline protease from Bacillus licheniformis PTCC 
1595. The enzymatic reaction was performed in 5, 10, 15, 20, and 25 units per gram 
of wastes. The molecular weight distribution of the gelatin (Figure 1) showed that 
this gelatin could be successively replace the commercial gelatin.

In some researches also fish gelatin is modified by some functional groups or 
chemical agents to improve the functional characteristics. In a study performed by 
[24], rheological, emulsifying, and structural properties of phosphorylated fish 
gelatin was investigated. The results of this study revealed that phosphorylation in 
a short time, enhances gel and rheological behavior of fish gelatin. Phosphorylation 
could improve the emulsions stability of fish gelatin as well. Authors stated that the 
structural properties of fish gelatin were significantly affected by this modification 
Figure 2.

2.2 Peptides

Peptides obtained from seafood processing by-products have been reported to 
have potent biological activities including antioxidant activity [25–31], antihyper-
tensive, anticancer, anti-inflammatory, and anticoagulant properties [22, 32–37]. 
Among all these researches, the use of gelatin derived from fish by-products has 

Figure 1. 
Molecular weight distribution analysis by SDS-PAGE for gelatins. CG (commercial gelatin) and FG (fish 
wastes gelatin) (a) and for protease (b). Adapted from [23].
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been well investigated as a source of bioactive peptides with various biological 
activities. In a study performed by Jin, Teng [38], salmon skin collagen was hydro-
lyzed by different proteolytic enzymes including pepsin, trypsin, papain, and 
Alcalase 2.4 L. Hydrolysates obtained from trypsin hydrolysis reaction indicated 
the highest dipeptidyl peptidase IV (DPP-IV) inhibitory activity (66.12%). After 
fractionation and identification processes, a bioactive peptide with sequence 
of LDKVFR for DPP-IV inhibitory activity was detected to be responsible for 
this activity (IC50 value of 0.1 ± 0.03 mg/mL). In another research conducted 
by Mirzapour-Kouhdasht and Moosavi-Nasab [39], gelatin extracted from 
Scomberomorus commerson skin in combination with its hydrolysates obtained by 
Actinidin from kiwifruit was used to extent the shelf-life of whole shrimp (Penaeus 
merguiensis). The results revealed that the gelatin hydrolysates can be applied as a 
preservative coating agent for whole shrimp.

2.3 Oil

Nowadays, of the most important nutritional substances which have gained 
much attention are Omega-3 long-chain polyunsaturated fatty acids (LCPUFA). 
These LCPUFA are necessary for human and animal physiology due to their 

Figure 2. 
Micrographs of control and phosphorylated fish gelatin. SEM (A) and AFM (B). Adapted from [24].
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structural and regulatory functions [40]. Fish by-products are a good natural source 
of LCPUFA, especially EPA (eicosapentaenoic acid) and DHA (docosahexaenoic 
acid). Fish oil is rich in vitamins (E, D, A). Due to these valuable components, fish 
oil consumption could be a promising way to impede some health risks such as 
inflammation, coronary heart diseases, obesity, arthritis, autoimmune disorders, 
and cancer [41–44].

Generally, the extraction of oils from fish by-products can be divided in two 
categories including conventional and modern methods. Generally, in conventional 
methods the raw material (fish by-products obtained from fish processing indus-
tries) are first cooked. After the cooking, the by-products are sieved followed by 
pressing for oil extraction. Subsequently the extracted slurry is decanted and the oil 
is stored in oil storing tanks [45].

In comparison with conventional extraction method, the modern extraction 
methods such as supercritical fluid extraction (SFE) could be useful for reduc-
ing the oxidation of LCPUFA. In a research performed by Rubio-Rodríguez and 
coworkers [46], SFE method with carbon dioxide under moderate conditions 
(25 MPa and 313 K) was used to extract oil from different fish by-products. They 
resulted that SFE is an advantageous method for oil extraction from fish by-prod-
ucts. The authors stated that the SFE can impede lipid oxidation and reduce extrac-
tion of impurities. In another study conducted by Sabzipour and others [47], quality 
of rainbow trout (Oncorhynchus mykiss) by-products oil was investigated. However, 
the aim of this study was to determine the effect of different postmortem process-
ing times and blanching methods. The authors presented that the degradation of 
fish by-products oil occurs faster than the fish tissue oil. So they surveyed the effect 
of different treatments on the quality of the fish by-products oil. According to their 
report, salt blanching could decrease the effects of delayed processing and led to a 
higher quality.

However, the limitation of fish oil for utilization in food and pharmaceutical 
industries is related to the low stability and strong fishy flavor. The solution for this 
problem is to encapsulate the fish oil using different strategies to cover the off-flavor 
and also increase the stability. In a research performed by Drusch et al. [48], fish 
oil with was microencapsulated by spray-drying in a matrix of n-octenylsuccinate-
derivatized starch and sugars. The results of this study indicated that this protocol 
can increase the oxidative stability of fish oil without any significant changes in 
physicochemical properties of the oil such as particle size, oil droplet size, and true 
density. Another study conducted by Chen et al. [49], the fish oil co-encapsulated 
with phytosterol ester and limonene, prepared by spray-drying and freeze-drying 
methods. The wall material used for encapsulation were whey protein isolate and 
soluble corn fiber. Sensory analysis of the encapsulated fish oil showed that the 
addition of limonene could cover the fishy flavor. The authors also reported that this 
procedure could significantly enhance the oxidative stability of the fish oil during 
168 h of storage.

3. Crustaceans

3.1 Proteins and peptides

Tremendous amounts of shrimp processing by-products (head and body cara-
pace) are discarded annually, which could be an important source of bioactive mol-
ecules. The amount of by-products generated during processing is about 48–56% 
of the whole shrimp depending on the species. The major composition of these by-
products are protein (35–50%), polysaccharide (predominantly chitin) (15–25%), 
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minerals (10–15%), and a few percent carotenoids [50]. Recently production of 
bioactive peptides from shrimp by-products has gained attentions. Several research-
ers found that this source of by-products could be a good one to generate bioactive 
peptides with especial activities such as angiotensin converting enzyme inhibitory 
(ACE inhibitory) [51, 52], antimicrobial activity [53], antioxidant activity [52, 54], 
etc. More investigations are required to characterize the biological and functional 
properties of these peptides.

3.2 Chitin

The major value added product obtained from crustaceans is chitin which 
has the second position among frequent and used biopolymers in the world after 
cellulose [55, 56]. In fact, chitin is a polymer of β-(1 → 4)- N -acetyl- D–glucos-
amine units which is extracted mainly from shrimp and crabs. This polysaccharide 
could be found in arthropods exoskeleton or in the cell walls of fungi and yeast as 
the major prominent structural component [57–65]. Chitosan is a linear polysac-
charide derived from chitin deacetylation [66]. Chitin and chitosan have attained 
lots of attentions due to their non-toxicity, biocompatibility, biodegradability, and 
low cost [56, 67]. Chitosan is known as a biologically active component in many 
fields such as food and pharmaceutical applications. A number of activities of this 
polysaccharide such as making delivery systems [68], tissue engineering [69], food 
packaging and film forming [70, 71], and antimicrobial and wound healing [72] are 
investigated.

One of the most important characteristics of chitosan which can affect its 
pharmaceutical and functional properties is the degree of acetylation. In case 
of designing delivery systems, the molecular weight of this bioactive molecule 
becomes more important due to changing the encapsulation efficiency [73]. It is 
very important to know that chitosan has a higher solubility in lower pH values 
due to protonation of the amino groups of the molecule [74]. Permeation enhanc-
ers substances can increase the absorption of encapsulated biological active 
compounds in the gastrointestinal tract. One of the mechanisms of this action is 
opening the tight junctions of the epithelium cells [75, 76]. Chitosan has a muco-
adhesive nature and capable to open epithelial connections (tight junctions) of 
the epithelium cells [77, 78]. Figure 3 shows a schematically the action place of 
permeation enhancers to increase the absorbance of bioactive components in 
gastrointestinal tract.

Figure 3. 
The action place of permeation enhancers to increase the absorbance of bioactive components in gastrointestinal 
tract.
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4. Algae

4.1 Sulfated polysaccharides

Phycocolloids or hydrocolloids are polysaccharides have been one of the most 
accessible and widely used in food industry as thickening and gel forming agent. 
Indeed, numerous sulfated polysaccharides from algae including agars, carrageen-
ans and fucoidan (Figure 4) are the main bioactive components that have been 
determined to possess significant various biological activities [79].

Agar is polysaccharide comprised of two major components, agarose and 
agaropectin and has been extracted from seaweeds for industrial purposes in 
pharmaceutical, cosmetics and food industry as gelling and thickening agent [80]. 
The commercially used seaweeds for the extraction of agar are mainly Gracilaria 
and Gelidium species [81].

In addition, carrageenan is another linear sulfated polysaccharides that 
extracted from red seaweed and exhibits several applications in food industries 
as gelling, thickening, and emulsifying attributes, clarification of beer and wines. 
Carrageenan mainly obtain from two algae Kappaphycus and Eucheuma [82].

Fucoidans, a complex sulfated groups with fucose which found mainly in 
cell-wall matrix of brown macroalgae [83]. In addition to fucose, fucoidan contain 
other monosaccharides such as glucose, galactose, rhamnose, xylose, mannose and 
uronic acids [84]. Numerous brown seaweeds have been used for fucoidan extrac-
tion including Sargassum [85, 86], Undaria [87], Laminaria [88], Cladosiphon [89], 
Fucus [90], Saccharina [91] and Ascophyllum [92]. Several investigations have been 
confirmed the biological activities of fucoidan including antitumor, anticoagulant, 
antioxidant, immunomodulatory, anti-inflammatory, antiviral, antithrombotic, 
and hepatoprotective effects [93, 94]. This bioactivity of fucoidan is depend on 
its molecular weight, the monosaccharide composition, the sulfate content, the 
position of the sulfate ester group, the extraction technique, and fucoidan structure 
[94]. Thus, several extraction techniques are used such as conventional methods 
(hot water) [95] and non-conventional methods such as pressurized liquid extrac-
tion [84], ultrasound [96], enzyme assisted [90], microwave assisted [97] and 
subcritical water [91] extraction.

Subsequently, the green algae Monostroma nitidum is the commercial source of 
a sulfated polysaccharide named rhamnan sulfate [98]. Rhamnan sulfate found in 

Figure 4. 
The chemical structure of (a) agar; (b) carrageenan, (c) fucoidan and (d) Rhamnan sulfate.
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cell wall of M. nitidum and structurally consists of rhamnose with a sulfate-group 
substituent that forms main chains with branched side chains [98, 99].

This polysaccharide is extracted by hot water, though is poorly water soluble 
[100]. Several studies exhibit its biological activities such as antiviral, anticoagu-
lant, antitumor, anti-inflammatory, anti-hypercholesterolemic, anti-obesity and 
anti-hypertensive properties. Further, M. nitidum-derived rhamnan sulfate is 
considered to promote the human health [100].

Calcium spirulan (Ca-SP) is another novel sulfated polysaccharide isolated from 
blue-green alga Spirulina platensis. Ca-SP is an attractive candidate therapeutic 
agent for viral infectious diseases because of its antivirus and antitumor activities 
[101, 102].

4.2 Pigments

4.2.1 Carotenoids

Carotenoids and chlorophylls are generally wasted together with the residual 
biomass during the extraction of phycocyanin or sulfated polysaccharide, while can 
isolate as valuable product from algae [103].

Carotenoids are the most widespread class of pigments that are characterized 
as natural colorant and antioxidants with healthy effects including anti-cancer, 
anti-diabetic anti-obesity and eye diseases. The bio-functional properties of algal 
carotenoids make them potentially to use in nutraceuticals, cosmeceuticals and feed 
supplements in aquaculture sectors. Carotenoids divided into primary and second-
ary based on their metabolism and function. Primary carotenoids are structural and 
functional components in the photosynthetic apparatus, which take direct part in 
photosynthesis. Secondary carotenoids refer to extra-plastidic pigments produced 
in large quantities, through carotenogenesis, after exposure to specific environmen-
tal stimuli [104].

Microalgae are a potential renewable resource of primary and secondary carot-
enoids. α-carotene, β-carotene, lutein, fucoxanthin, violaxanthin, zeaxanthin, and 
neoxanthin, are characterized as primary carotenoids while astaxanthin, can-
thaxanthin, and echinenone are secondary carotenoids. Astaxanthin, zeaxanthin, 
fucoxanthin and lutein receive much attention as commercial carotenoids [104].

Seaweeds are the important sources of bioactive compounds which have sev-
eral human health benefits. The most predominant seaweed carotenoids, such as 
fucoxanthin, lutein, β-carotene and siphonaxanthin have remarkable biological 
functions and applications [105]. Pigments are waste during the polysaccharide 
extraction process. Thus, carotenoids are recovered from microalgae and seaweeds 
by different approaches including conventional solvent extraction, non-conven-
tional methods including pulsed electric field [106, 107], moderate electric field 
[108], supercritical fluid extraction [109], pressurized liquid extraction [110], 
microwave ssisted extraction [111, 112], ultrasound assisted extraction [113], high 
pressure homogenization [114].

Fucoxanthin (C42H58O6) is the predominant carotenoid in brown algae 
(Sargassum angustifolium, Laminaria japonica and Undaria pinnatifida) and some 
microalgae (Phaeodactylum tricornutum, Isochrysis galbana, Odontella aurita) that 
accounting for more than 10% of the estimated total natural production of carot-
enoids. This yellowish-brown pigment exhibit remarkable biological properties, 
including anticancer, anti-inflammatory, antiobesity and neuroprotective activity 
[115–117]. Moreover, fucoxanthin extraction can be by-product of fucoidan extrac-
tion process as Yip et al., [118] obtained the fucoxanthin-rich extract from S. binderi 
with yield of 7.4 ± 0.4 mg/g.
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Astaxanthin as king of antioxidant is found in microalgae such as Haematococcus. 
H. pluvialis is rich in astaxanthin and provide a natural and inexpensive source 
of astaxanthin [119]. The antioxidant activity of astaxanthin is 100 and 10 times 
greater than those of vitamin E and β-carotene. Moreover, astaxanthin has a 
superior preventive effect toward photo-oxidative compared with canthaxanthin, 
and β-carotene [120].

4.2.2 Phycobiliproteins

Phycobiliproteins are natural fluorescent dyes which participate in photosynthe-
sis. These pigments are assembled large, distinct granules as phycobilisomes, which 
are attached to the thylakoid membrane of chloroplast. These pigment-protein 
complex plays an important role in light-harvesting in cyanobacteria, red algae 
cryptomonads, glaucophytes and some pyrrophyceae [121, 122]. Phycobiliproteins 
are divided into two main groups; phycoerythrin (PE –bright pink red), phycocya-
nin (PC –deep blue). The main components of phycocyanins are C-phycocyanin 
(C-PC), R-phycocyanin (R-PC), and allophycocyanin (AP – bluish green) [121, 122].  
Moreover, there are differences between in their structural position. PE is at the tip 
of the rod-like phycobilisomes, PC is in the middle, while AP forms a core attached 
to the reaction and energy transfer proceeds successively from PE to PC to AP 
and to chlorophyll [123]. The other classification of phycobiliproteins is based on 
their spectral attributes which including phycoerythrobilin (PEB, A max 560 nm), 
phycocyanobilin (PCB, A max 620–650 nm), phycobiliviolin (PXB, A max 575 nm) 
and phycourobilin (PUB, A max 498 nm) [123]. These biopigments have attracted 
much attention in medicines, foods, cosmetics and fluorescent materials. The recent 
research has brought attention to the use of phycobiliproteins as food colorant, 
health drink and coloring agent in confectionary and cosmetics because they are 
hydrophilic and stable at low temperature with some preservative like citric acid, 
in acidic and basic solutions [121, 123]. Moreover, phycobiliproteins are used in 
diagnostic kits in immunology as fluorescent tracer of antibodies [123] and gel 
electrophoresis and gel exclusion chromatography as marker because of their high 
molecular absorptivity at visible wavelengths [122].

Phycocyanins have an apparent molecular mass of 140–210 kD and two sub-
units, α and β [124]. C-Phycocyanin is found in cyanobacteria strains such as 
Spirulina sp. (freshwater), Phormidium sp. (marine water) and Lyngbya sp. (marine 
water) [125]. However, the commercial source of this pigment is Spirulina which 
consists of about 20% of the dry weight of this algae [126]. Further, the other new 
source of phycocyanin is Anabaena oryzae SOS13 [124, 127].

Recent studies have demonstrated the role of C-PC as antioxidant, anti-inflam-
matory, hepatoprotective, and as well as free radical scavenger [128, 129]. Various 
techniques are used to extract phycocyanin from Arthrospira platensis (Spirulina) 
biomass including in various approaches such as physical (freeze–thaw) or an 
enzymatic (lysozyme) [124], supercritical fluid extraction [130] andsonication and 
microwave [131].

Phycoerythrin also have numerous health benefits, however, the absorp-
tion spectrum of cyanobacteria phycoerythrin is deferent from red algae. The 
cyanobacteria phycoerythrin exhibits a single peak at 565 nm in the visible 
wavelength region, while the absorption spectrum of red algae phycoerythrin 
includes three peaks in the visible wavelength region at 500, 550 and 565 nm 
(R-phycoerythrin) [123].

Allophycocyanin is a light-harvesting pigment protein complex found mainly in 
A. platensis. This water-soluble pigment is broadly used in biochemical techniques 
such as a fluorescent probe, especially for flow cytometry. Further, allophycocyanin 
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has promising applications as antioxidative, anti-inflammatory, antitumor, 
anti-enterovirus and hepatoprotective [132]. Despite its potential biochemical 
and therapeutic benefits, there are some challenges in its downstream process-
ing including difficulty in primary extraction and purification, containing lower 
proportion of phycobiliprotein rather than phycocyanin and the resistance of cell 
membrane to disruption cause extraction of 50–60% of A-PC by conventional 
methods. Moreover, the main objective of pigment extraction form spirulina is 
C-PC, consequently, remaining high content of A-PC (about 40–50%) in biomass 
after C-PC extraction [133].

4.3 Proteins

Algae protein waste is a by-product derived from water-extraction process of 
microalgae, during algae essence manufacturing. The underutilized algae wastes, 
containing above 50% protein, have low economical value to be used as animal feed. 
The pepsin hydrolysate from algae protein waste exhibited antioxidative activity in 
preliminary experiments, indicating that algae waste might become a new protein 
source for selection of novel antioxidative peptides [134].

Furthermore, protein hydrolysates from marine sources such as algae by-prod-
ucts, have generally been used to produce seafood flavorings. A high flavor quality 
is difficult to ensure for seafood flavoring that is produced from marine animal 
sources because of their high susceptibility to lipid oxidation and the high cost of 
removing excess fat. Seaweed by-products after agar extraction are good sources of 
plant protein and contain taste-active amino acids, such as aspartic acid, glutamic 
acid, arginine, and lysine, in addition to a low fat content [135].

A seaweed protein hydrolysate using 10% bromelain for 3 h, resulted in high 
level of arginine, lysine, and leucine as free amino acids. These amino acids exhib-
ited an umami taste and a seaweed odor [135].

Most microalgae contain high level of protein which discarded or damaged 
during biofuels production, while are good candidate for protein extraction and 
consequently, obtain lipid-rich product as by-product as feedstock for biofuels pro-
duction. Even though proteins are major algae biomass component, usually they are 
undervalued compared to minor components such as omega fatty acids, pigments 
or other possible valuable buy-products [136].

For instance, Garcia-Moscoso et al. [136] extracted more than 60 wt% of 
nitrogen content of Scenedesmus sp. by subcritical water medium then the lipid-rich 
residue used as suitable feedstock for biofuel production.

There are numerous investigations about algae protein waste and extraction of 
peptides or amino acids with functional properties. For instance, the antioxida-
tive peptide of VECYGPNRPQF was isolated by pepsin from Chlorella vulgaris. 
This peptide had some bioactivity such as DNA protective effect against hydroxyl 
radicals, gastrointestinal enzyme-resistance, and strong antioxidant properties. 
Fractionation of proteins exhibited the high level of aspartic acid, glutamic acid, 
leucine and lysine [134]. This amino acid sequence (VECYGPNRPQF) can act as 
cheap and natural anticancer peptide because had antiproliferation and induced 
a post-G1 cell cycle arrest in AGS cells with no cytotoxicity effect in WI-38 lung 
fibroblasts cells [137].

Moreover, protein isolation, as valuable by-product, from defatted 
Nannochloropsis, can be obtained after lipid extraction during biofuel production. 
Defatted and non-defatted Nannochloropsis contained 56.9% and 40.5% protein 
respectively. The protein yields by alkaline (pH 11 and 60 C) extraction method 
were 16% and 30% respectively. These isolated proteins had a high molecular 
weight approximately 250 kDa [138].
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Macroalgae are also a suitable protein source and rich in protein after extraction 
of their polysaccharide, lipid and polyphenols. Among three seaweed Porphyra 
umbilicalis, Ulva lactuca, and Saccharina latissimi, the highest protein isolated using 
pH- shift method (71%) was related to the P. umbilicalis. Furthermore, among 
different extraction methods including pH-shift method, accelerated solvent 
extraction and sonication in water and precipitation by ammonium sulfate, pH 
shift process is promising approach. However, the yield and extraction approach are 
influence by type and species of seaweed [139].

Brown algae such as Laurencia filiformis, L. intricata, Gracilaria domingensis and 
Gracilaria. birdiae can supply dietary proteins for human and animals because their 
protein content reported 18.3, 4.6, 6.2 and 7.1% respectively [140].

Combination of acid-alkaline process is another protein isolation from algae. 
First acid and then alkaline extraction is an alternative extraction by 59% protein 
recovery from brown seaweed Ascophyllum nodosum. The obtained protein had 
about 2–4 kDa molecular weight [141].

5. Conclusions

This chapter indicated that seafood by-products are one of the most important 
sources of value added products that can play an important role in the global market 
due to the increasing growth of demands for health beneficiary products. Through 
this opportunity and based on our research background for many years, we decided 
to provide important information about some value-added products obtained 
from seafood by-products. Proteins and peptides are a major part of the seafood 
by-products composition that can easily provide essential amino acids and bioactive 
peptides with health beneficent. Fish oil is another valuable product that could be 
extracted from seafood by-products. This source is rich in LCPUFA and decreases 
the risks of chronic diseases such as cardiovascular issues, thereby directly related 
to our health. Marine algae are a versatile, abundant, and valuable source of many 
compounds that have been widely used for many industries. The presence of bioac-
tive compounds such as sulfated polysaccharide, carotenoid, and protein makes 
them a suitable candidate in biomedical applications. It seems, they will play an 
important role in human life because of their broad applications in food, pharma-
ceutical, and cosmetic industries.
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