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Chapter

Wavelet Transform for Signal

Processing in Internet-of-Things
(IoT)

Indrakshi Dey and Shama Siddiqui

Abstract

The primary contribution of this chapter is to provide an overview of different
denoising methods used for signal processing in IoT networks from the perspectives
of physical layer in the network. The chapter starts with the introduction to differ-
ent kinds of noise that can be encountered in any kind of wireless communication
networks, different kinds of wavelet transform and wavelet packet transform
methods that can be used for denoising sensor signals in IoT networks and the
different processing steps that are needed to be followed to accomplish wavelet
packet transform for the sensor signals. Finally, a universal framework based on
energy correlation analysis has been presented for denoising sensor signals in IoT
networks, and such a framework can achieve considerable improvement in
denoising performance reducing the effective noise correlation coefficient to
0.00001 or lower. Moreover, this method is found to be equally effective for
Gaussian or impact noise or both.

Keywords: denoising, sensor signals, Internet-of-Things (I0T), wavelet transform,
wavelet packet transform, energy correlation analysis

1. Introduction

Internet of Things (I0T) refers to a network of diverse range of smart devices
used in the domains of healthcare, industry, vehicles, homes, agriculture, retail,
poultry and farming, and many more. Typical equipment supporting the IoT func-
tionality include lightning, thermostats, TVs, sensors, mobile phones, speakers,
voice assistants, cameras, video cameras, etc. These devices are basically deployed
to facilitate the processes of monitoring and automation by transmitting and
receiving information via internet. Undoubtedly, IoT has emerged as a rapidly
growing ecosystem that promises to deliver unmatched global coverage, quality-of-
service (QoS), scalability, security and flexibility to handle different requirements
for a comprehensive list of use-cases. This has resulted in increasing number of IoT
devices (relays, sensors, transceiver, actuators etc.) being deployed in in all types of
urban, suburban and rural environments to cater to the innovative and emerging
applications.

Since more devices and appliances have been transforming into their smarter
version, we now have the applications such as smart cars with features of smart
dashboards, GPS, smart doors and auto-route designed to reduce the accidents.
Such applications clearly require high number of connected devices; in fact, it has
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been forecasted by International Energy Agency that the estimated number of
connected devices which was 15 billion in 2018 shall reach 46 billion in 2030 [1]. In
addition to the IoT devices, the evolution of IoT networking technologies has also
been remarkable over the past decade, where more and more IoT devices have been
shifting from using Long Term Evolution (LTE) to Narrowband-IoT (NB-IoT)
which offers a cost-effective and energy efficient solution for continued operation
of these systems. Naturally, the connected devices are expected to transmit large
volumes of heterogeneous data at high data rates, and we will be required to deal
with ever-increasing radio frequency noise.

The signals carrying IoT data are highly likely to face numerous obstacles and
can be corrupted by significant amount of noise present in the environment. White
Gaussian model has been commonly been used to quantify the noise faced by [1].
The types of noise which have been found to degrading the quality of IoT signals
vary from the impact noise resulting from high frequency interference and instan-
taneous disturbance on the initialization of large equipment to changing connec-
tions around the participating IoT devices [2]. All these kinds of noise negatively
influence the multi-device information fusion system [3]. Such noises should be
filtered out and the transmitted signal should be reconstructed back to its actual
form to ensure the accuracy and reliability of the transmitted information. Here,
accuracy of IoT solutions is measured in terms of the number of packets reporting
correct information, deviation between the reported and actual results and the
delivery to correct destination timely. Similarly, the reliability of IoT is measured
using information such as failure rate of the IoT devices, average time between two
consecutive failures, average repair time and probability for needing to change a
component within a certain time-frame.

Although this chapter mainly deals with algorithms for signal denoising, they
can be also be applied for image denoising, as images can be represented as
two-dimensional signals. Consequently, signal processing techniques applicable to
signals can be modified for images.

2. Noise consideration

The process of removing the noise while retaining and not distorting the quality
of the received signal or image is referred to as denoising. The traditional way of
denoising is to use a low or band-pass filter with cut-off frequencies. However, the
traditional filtering techniques are able to remove out-of-band noise. Therefore
many denoising techniques are proposed to overcome this problem.

Denoising is also an indispensable link in speech signal processing owing to the
varying origins and non-stationarity, and difficulty in modeling the noise affecting
the signal. Assuming that the received signal is affected by white additive Gaussian
noise (AWGN) which is also stationary in nature, the received signal y(i) can be
represented as,

y(i) =x(i) + oe(i), i=0,1,..,n—1 (1)

where x(i) is the noise-free transmitted signal, £(i) representing independent
normally distributed random variable and ¢ representing the intensity of the noise
affecting y (7). Reconstruction of the original signal x(i) from the instantaneous set
of y(7) values without actual assuming a specific model for x (i) or y(i) is the primary
aim of the process of ‘Denoising’. The most common approach is to recognize noise
components as the high frequency components present in the corrupted received
signal, apply Fourier transform and then filter out the high frequency components.
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Therefore, the most traditional way of denoising signals is based on Fourier analysis
and Fourier transform.

Another common denoising method is the modulus maxima method [4]. It is
based on the concept that signal and noise exhibit different characteristics when
projected to their maxima in space divided in multiple scales. Magnitude scales
increasing with decreasing extreme value points are filtered out to remove noise
and the extreme value points themselves are reconstructed back [5]. The modulus
maxima method in addition to the noise effect is better than any other method
when mixed with white noise and singular information is significant, but the com-
putational complexity is quite high. However, Fourier transform based denoising is
restricted due to its weakness in obtaining partial characteristic of the transmit
signals and possible Gibbs phenomenon [6]. If the signal has the same frequency as
the noise, filtering out those frequency components will cause noticeable loss of
information of the desired signal when considering the frequency representation of
the signal.

3. Wavelet transform

Wavelet Transform (WT) has emerged as a powerful tool for signal and image
denoising and processing, that have been successfully used in many scientific fields
such as signal processing, image compression, computer graphics and pattern rec-
ognition [7, 8]. On contrary to the traditional Fourier transform, WT is particularly
suitable for application of non-stationary signals which may instantaneously vary in
time. Primarily, the received signal is divided into different frequency components
using wavelets. The basis function of WT is scaled based on frequency and a subset
of small waves (known as mother wavelet) is used for implementing WT [9]. The
mother wavelet is a time-varying window function used for decomposition of x (i)
into weighted sets of scaled versions of (7). Consequently, using wavelet transform
in signal processing is the process of the partial transformation of the spatial domain
and the frequency domain, in order to get useful information accurately from it
though corrupted with noise.

Since different frequency levels are used for WT, it is quite convenient for
analyzing the signal characteristics at different frequencies and detecting removing
corrupting noise. Broadly, there are two types of WT, Continuous WT (CWT) and
Discrete WT (DWT).

3.1 Continuous wavelet transform (CWT)

CWT measures the congruence between an analyzing function and actual signal
by calculating the inner product and then integrating the product. The mother
wavelet window function can be shifted and moved over the time-axis by changing
scale and position parameters, thereby including different frequency components at
the different locations. Mathematically CWT can be represented as,

* 1 i —b
CWT(a, b x(i), y(i)) = J (i) (’ . )di 2)
where x (i) is the transmit signal, y(7) is the analyzing function (wavelet), a is the
scale parameter, b is a position in time and * represents complex conjugate.
Considering /(i) as the band-pass impulse response, scaling the wavelet varies the
bandwidth of the band-pass filter. CWT allows changing the support of the wavelet

to get better resolution in frequency domain. CWT can be realized on computer and
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the computation time can be significantly reduced if the redundant samples are
removed after using the sampling theorem.

3.2 Discrete wavelet transform (DWT)

If suitable transformation is applied to a group of selected wavelet, a collection of
orthogonal real-valued wavelets will be generated, a representation of the received
signal referred to as wavelet expansion. In this case, the properties of the generated
wavelets depend on the features of the mother wavelet. Since the newly generated
wavelets are a group of orthogonal wavelets, they provide a time-frequency localiza-
tion of the actual input signal, thereby concentrating the signal energy over a few
frequency coefficients. Scaling and translation of the mother wavelet generated. If the
scaling factor is a power of two, the wavelet transform technique is referred to as the
dyadic-orthonormal wavelet transform [10]. If the chosen mother wavelet has ortho-
normal properties, there is no redundancy in the discrete wavelet transforms. In
addition, this provides the multiresolution algorithm decomposing a signal into scales
with different time and frequency resolution [9].

DWT is an implementation of WT using mutually orthogonal set of wavelets
defined by carefully chosen scaling and translation parameters (a and b), such that
the normalized area between the analyzing functions is unity, leading to a very
simple and efficient iterative scheme for doing the transformation [11]. The trans-
lation equation can be expressed as,

DWTn,a/) = > slu lm—nlswin) = ——w () 3)

where 7 is the time delay introduced, N is the signal length and y is the discrete
mother wavelet windowing function. DWT operates on discrete wavelet sets
thereby yielding signal compression and reducing the computational complexity
considerably. Moreover, DWT provides better spatial and frequency localization, as
compared to other multi-scale signal maxima representation, thereby eliminating
redundancy. In DWT, signal is decomposed into ‘approximation’ and ‘detail” coef-
ficients at each level [12].

The process is repeated at multiple levels, a technique equivalent to consecutive
iterations of low pass and high pass filtering. As a result, the low frequency and high
frequency components of x(¢) yield the approximation and detailed coefficients
respectively, which can be mathematically expressed as,

(oo}

0 =3 | S Dul®hums® + 3 AR)bi(0) @)

m=1 | k=—oo k=—oc0

Where D,, (k) is the detailed coefficient, A;(k) is the approximation coefficient,
W (t) is 2"-scale discrete analyzing function, and ¢, ,(¢) is the 2’-scale scaling
function. After scaling and wavelet filtering, we get [13].

h(n) =27V2 < p(t), p(2t — n) >

(5)
gln) =272 <y (t), p(2t —n)> = (-1)"h(1 —n)
The approximation and the detailed coefficients are compared by applying FIR
filter bank. The filter bank uses a low-pass filtering / for generating the approxi-
mation coefficients and high-pass filtering g for generating the detailed coefficients,
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Figure 1.

The DWT decomposition and veconstruction steps of a 1D signal for level of 2; (a) decomposition,
(b) reconstruction.
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Figure 2.
The wavelet packet decomposition and reconstruction steps of a 1D signal for level of 2; (a) decomposition,
(b) reconstruction.

followed by down-sampling by a factor of 2 at each scale level. The entire process is
referred to as sub-band coding. The resultant tree structure is presented in Figure 1,
where, | 2 and 12 represents the processes of down-sampling and up-sampling
respectively. The DWT decomposition process can be applied on both sub part of
the signal, approximation coefficients and detail coefficients. This kind of decom-
position is referred to as wavelet packet transform or wavelet packet tree decom-
position. Figure 2 represents the wavelet packet decomposition and reconstruction
process.

3.3 Wavelet packet transform

Wavelet Packet Transform (WPT) is another powerful denoising tool. WPT is a
generalized form of DWT, in which both smooth and details parts are subject to
further transforms. A full transformed matrix contains j(= log,N) transform levels
for searching for the best basis. The best basis can be chosen using different criteria.
Shannon entropy is a very common one, which is defined as,
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S = —ij log (pj> (6)
j

for whichp; = ‘x]‘2/||x\|2 and plogp = 0 for p = 0. The optimized basis func-
tion will be a combination of both approximated and detailed coefficients and
minimum entropy which can be obtained by comparing all the possible combina-
tions of wavelet coefficients at different levels, minimizing )  log |x;|, numbers
larger than ¢ and Stein’s unbiased estimate of risk (SURE) [14].

Wavelet packet transform (WPT) has several advantages over WT (continuous
and discrete) as it sets no requirements of mother wavelet windowing function [15],
wavelet packet basis function [16], and selection of the number of decomposition
levels [17] and threshold [18]. WPT is introduced in [19] for denoising and har-
monic detection by computing the difference between the noise and the desired
signal. The effectiveness is also experimentally verified in [20] and tested against
dynamics of Electro-encephalogram (EEG) and Electro-cardiogram (ECG) mea-
surements in [21]. Image denoising is implemented by using an adaptive anisotropic
dual-tree complex WPT on a bivariate stochastic signal model in [21].

DWT has become a powerful tool for denoising experimental data over the past
few years. Original data is decomposed into a series of wavelets at different scales
and intensities. Using WT, where the signal is multiplied by a transformation
matrix; the detailed and the smooth parts are separated and the process is repeated
over log,N iterations. Depending on the length of the filtering steps, we can have
different types of wavelets. If the number of steps vary from 4 to 20, the wavelets
are referred to as Daublets. The Haar transform is a special case of Daublet 2. There
can also be multiple filters, each with different filter lengths. If there are 5 filters,
the wavelets are known as Coiflets, where each filter length is a multiple of 6. If
there are 7 filters, the wavelets are known as Symmlets, where each filter length is a
multiple of 2.

4. DWT for denoising data

The DWT denoising procedure consists of three steps. In the first step, if the
length of the data stream is of length of the order of power of two, it is transformed
to the wavelet domain. In the second step, coefficients with either zero magnitude
or criterion-based minimized values are selected. In the third or final step, the
minimized coefficients are reverted back to the original domain from the wavelet
domain to extract the denoised data. DWT-based denoising techniques can be
broadly classified into two categories - linear and non-linear. In linear DWT, signal
and noise are assumed to be belonging to the smooth and the detailed part of the
wavelet domain, where high frequency components are attenuated. While in non-
linear DWT, the filter removes the coefficients selected in the second stage with
amplitudes less than the threshold. In practicality, non-linear DWT is always pre-
ferred over linear DWT, as linear DWT introduces error due to the retention of
noise components and loss of signal components owing to wavelet filtering.

Whether linear or non-linear DWT denoising technique is used, performance
depends on the choice of the wavelet family and the length of the filter. The
traditional way for making this choice is based on visual inspection of the data, for
example, daublets are implemented when the data appears smooth in the wavelet
domain, while Haar or other wavelets are used when the data appears bursty and
discontinuous in the wavelet domain. In order to overcome the problems with DWT
denoising, correlation denoising method was introduced in [11]. Correlation
denoising method implements wavelet transformation and filtering in a way such
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that the correlation between wavelet coefficients of the signal part and the noise
part is different at each level. However, correlation denoising in its original form is
computationally complex. In order to reduce computational complexity, wavelet
threshold denoising method was proposed by [12]. The method is simple to calcu-
late and the noise can be suppressed to a large extent. At the same time, singular
information of the original signal can be preferred well, so it is a simple and
effective method. A brief overview of what happens when DWT is applied for
denoising is demonstrated in Figure 3.

The four major components of the DWT denoising technique are: wavelet-type
selection, threshold selection, threshold function selection and threshold applica-
tion to the wavelet coefficients.

1.Wavelet Selection - There is a wide variety of wavelets that can be used for
denoising. Selecting the optimum one depends on the selection of the
matching wavelet filter. Out of different wavelet transform based denoising
methods, only minimum description length (MDL) method has the flexibility
of choosing the filter type.

2.Threshold Selection - There are four basic types of threshold selection, mini-
max, Stein’s unbiased estimate of risk (SURE), and minimum description
length (MDL). The Universal threshold is computed using,

t=0x+/2x In(N) (7)

for which N is the length of the signal data array, and ¢ is the standard
deviation of noise. In practicality, in most cases, ¢ is unknown, but can be
estimated using the first detailed part of the wavelet coefficient x; through the
expression,

median(|x;
Oestimate ™ Tﬂsm . (8)

In the case of Minimax criterion using the estimates of the minimax risk
bounds for the transformed wavelets, a table is generated for threshold values
corresponding to each set of given data lengths. These threshold values are
always smaller than the universal threshold. The noise level estimates are
calculated using (8) and signal components are retained along with a few
number of noise components.

Original Signal

Original Signal
Denoised Signal

100 200 300 400 500 600 700 800 90047
Noisy Signal

o

Amplitude

0 100 200 300 400 500 600 700 800 900 100 200
Time

Figure 3.
Denoising with DWT.
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Stein’s unbiased estimate of risk (SURE) is used to obtain an unbiased

estimate of the variance between the filtered and unfiltered data. SURE is
defined as

N
SURE(t,x) =N — 2 X Mj<c + > (jxil')’ ©)

i=1

for which ¢, x;, N and M refer to the candidate threshold, wavelet coefficient,
data length and number of data points less than ¢. The value of ¢ that mini-
mizes the SURE value is selected as the threshold value while the final term of
the SURE function represents the residual energy left after thresholding. The
SURE threshold can be modified to yield global thresholds rather than local
ones by combining SURE method with cycle-spinning technique; a method
referred to as SPINSURE.

The Minimum description length (MDL) method for threshold computation
can be expressed as,

MDL(k %,m * ) = min leog (N) +%V log (>° (<2 —xfnk))) (10)

for which k, m, x,,, and x,,, represent the number of largest coefficients
retained after filtering, the filter type, the wavelet coefficients from m-type
wavelet transform, and the k largest coefficients in amplitude respectively.
Here k* and m* are the optimized values for the MDL criterion for threshold
selection, where & is selected as the threshold for the corresponding wavelet
coefficient. The 3/2k log (V) term represents the penalty function with value
proportional to the number of retained wavelet coefficients. The

(> (x2, —x2,)) characterizes the error between the reconstructed and the
original signal components.

3.Selecting threshold function - whether wavelet threshold denoising method
is good or bad depends on two decisive factors; one is the threshold 4 and the
other important factor is the selection of the threshold function. The most
basic threshold functions are the hard and soft threshold functions, compara-
tive performance of which is presented in Figure 4.
The Hard Threshold Function (HTF) nullifies the decomposition coefficients
to zero if they are less than the threshold and retains the coefficients if they are
more than the threshold [22]. The HTF preserves the local properties of a
signal with a few discontinuities introduced by the variations in the
reconstructed signals. HTF can be expressed as,

ks ol 24
ST — 11
" {o, @ j4] <2 )

The Soft Threshold Function (STF) [23] selects the threshold value such that
all decomposition coefficients are nullified to zero. A major drawback with
this technique is that a part of the high frequency components is lost owing to
their location above threshold. STF can be mathematically expressed as,

n j k| —A ) i 2/1
a)—j,k —_ { Sg (w],k) (‘w],k‘ ) |a)],k| (12)

0, | el <4
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Comparative hard and soft thresholding when implemented for DWT.

where @, @ j 1, 4, and sgn() denotes the estimated wavelet coefficients, post-
decomposition wavelet coefficients, threshold and symbolic piece-wise func-
tion respectively [24].

Garrote Threshold Function is proposed in [25] to improve the drawbacks of
HTF and STF, whose denoising effect is better than the above two methods
with respect to continuity of expressions,

2

o ®ip——, |opl>4
[OFTES / @ jk ’ J (13)

0, |(1)j’k|</1

The continuity in the soft threshold function is much better, but it has a
constant deviation. So, in order to overcome its shortcomings, the soft and
hard threshold algorithms are compromised process by the literature; the
semisoft threshold function [26].

. { sgn (@ j) (|0 | =TA), @ | 22 (14)

0, ij,k|</1

It is worth-mentioning here, that the values of the threshold T is fixed with
values between 0 and 1 in the case of HTF, STF, Garrote Threshold Function
and semi-threshold function.

Another variation is the Improved Threshold Function which can be given by,

sgn (@ ) | @ |- & @ jrl >4
o PP exp B alwjel-4)/4] ) T (15)
o, Ia)j,kl <A

S
;
I

The adjustment factor of the new function is different from the semisoft
threshold function. It consists of a complex exponential function

exp 2 |a(|w ;.| —1) /4] which has more adaptability; a is the normal number
which can be adjusted freely and the values of a are different with the different
signal. When |o ;x| = 4, @ ;x — 4, @ — 0.Therefore, continuously in place of
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A, the improved threshold function has the characteristics of soft threshold
function; when @, — o0, @ ;; — @ j; improved threshold function based on
@ ;) = ® j as the asymptotic line; it can be seen that, with the increase of w jx,
w i, will gradually be close to @ j.; when w j, becomes infinite, @ ;,~® ;. The
choice of a is crucial for the success of the technique and the variation in a
affects the denoising effect. When a = 0, improved threshold function reduces
to STF and when a = oo, improved threshold function reduces to HTF.

4.Thresholding or threshold application - thresholding is defined as the ways in

which threshold is applied for modifying wavelet coefficients. DWT is a multi-
level wavelet transform technique with different thresholds being applied at
different level of coefficients

Global Thresholding - This technique assumes the corrupting noise as Gauss-
ian distributed with amplitude and frequency distributions same for all
orthogonal bases for the entire data space. Global thresholding can be
implemented using either hard, soft, Garrote or firm-threshold functions,
expressed as,

e Hard:
0, if |x;| <t
x = ( .fl : (16)
Xis l,f |x1| >t
* Soft:
0, if |x;| <t
sign(x; ) (|oci|—2), if |xi| >t
e Garrote:
0, if |x;| <t
. { ik (9)
X; —t /x,-, zflxi|>t
e Firm:
Oa lf |xl| Stl
x; = q sign(x)ta(fxil—t1)/ (2 —t1), i t1<|xi| <t> (19)
X if |xi| >0

for which x; and x;* represents the wavelet coefficients pre- and post-
thresholding respectively. HTF partitions the wavelet coefficients into two
parts by the selected threshold eliminating coefficients with low magnitude.
STF reduces all coefficients by a factor equal to the threshold eliminating
smaller coefficients. Similarly, Garrote thresholding reduces all large coeffi-
cients by a factor of a non-linear continuous function. Firm thresholding
reduces only the middle coefficients while eliminating small and retaining
large coefficients.

Level-Dependent Thresholding - This technique uses different thresholds at
each level of wavelet transformations. It uses a combination of SURE and
global thresholding techniques to initiate a hybrid method. In this case, if the
sample variance at each level is sparse, global thresholding is applied, while
SURE thresholding is applied otherwise.
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Data-Dependent Thresholding - A Data-dependent threshold (DDT) tech-
nique selects a threshold such that empirical wavelet coefficients are shrunk.
The thresholding is achieved through statistical tests of hypotheses like linear
regression. The level of this statistical test is adjusted to control the smooth-
ness of the resulting estimator such that a good mean-squared error (MSE)
performance is achieved for different data analysis settings with smoothness
in estimator response. The main aim of this technique is to eliminate a group
of wavelet coefficients that exhibit characteristics of pure noise.

Cycle-Spin Thresholding - It combines the process of subspace identification,
projecting denoising and averaging of the projections. The subspace men-
tioned here refers to the region where most of the energy of the signal is
concentrated and signal corrupted with noise is projected on to this subspace.

5. Signal denoising for IoT networks

The huge amount of sensor data generated in an IoT network are used to take
decisions on a certain observation/ phenomenon based on real-time processing. The
decision-making procedure often involves detecting the signal energy level trans-
mitted from the sensors. If the received energy level is higher than a predefined
threshold, the target is detected to be present phenomenon and vice-versa. How-
ever, the sensor data gets crippled with noise contributed by the wireless environ-
ment and the internal electronics of the sensors, on its way to the data center for
processing. The WPT method will be the best option in this case for denoising the
sensor data, where the original signal coefficients are preserved while removing the
noise within the signal. The WPT method can decompose a signal in both scale and
wavelet space thereby revealing more details about both the sensor signals and the
crippling noise. If energy correlation analysis is used in conjunction with WPT,
signal energy from the sensor data can be analyzed and noise can be eliminated by
zooming into the signal characteristics at different time scales. Advantages of WPT
over WT is evident in Figure 5. Hence, in this section, a universal framework is
presented for denoising sensor signals in IoT networks. The framework is based on
energy correlation analysis and combines the processes of WP decomposition,
coefficient modification and WP reconstruction. The functional block diagram for
this framework is presented in Figure 6.

Heavy Sine Difference Between Wavelet Denoised and Original
10+
5 i
0
5F ]
. . . . A ) | -10¢ ‘ ‘ ) )
100 200 300 400 500 600 700 800 900 1000 200 400 600 800 1000
Noisy Heavy Sine Difference Between Wavelet Packet Denoised and Original
10r 1ol
5 5 L
0 0
5 5|
-10+
100 200 300 400 500 600 700 800 900 1000 200 200 600 800 1000

Figure 5.
Comparative performance of WPT and WT.
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Avchitecture of the universal framework.

5.1 Wavelet packet transfer for IoT

In WPT for IoT networks, for a given for a given orthonormal scaling function
¢(t) and wavelet function y(¢) the double scale Eq. [14] can be described as follows:

D(E) = V2 hoe(2t — k), (t) = V2) hup(2 — k) (20)
k k

where kg and 4y, are a pair of conjugate orthogonal filter coefficients. WP
functions for n = 0,1, ... can be defined as follows,

Won(t) = V2D hoxwn(2t — k), wan1(t) = V2D hywa (2t — k) (21)

keZ keZ

Whenn = 0,wo(t) = ¢(t),w1(t) = y(t). {wn(t)},c, represents the wavelet
packet assuming standard orthogonal wavelet basis can be constructed from the
scaling function. Scaling and wavelet functions generated as a result of this process
satisfy the properties of orthogonality over both scale and translation,

(Wt — k) -wn(t —1)) = 6 kylEZ
<7/02n(t Y k) . wz,,ﬂ(t — l)> =0 n=12,..

(22)

In the process of WP decomposition, scale space {V;} jez composed of scaling
functions and wavelet space {W} ._,, composed of wavelet functions can be
jE€Z

expressed in a unified way as follow:
US=V,U;=W; jez (23)
FromV; =V ;1@ W j4, then
U =U%,@U,,,, U} =U",eUY jeZnez’ (24)

where, U’ denotes the closed subspace of square and integrable space L*(R)

generated by the linear combination of wavelet packet w, after translation and
scaling operation.
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During the procedure of multi-resolution analysis, objective function is
decomposed into the subspace {V;} jez {w;} jez in L?(R) carried out further

decomposition according to binary mode as follows:

6
Wj= U} - U2j+1 ® U3j+1’ Uzj+1 = U‘;‘+2 ® U5j+2’ U3j+1 =U%,® U7j+2

25
W; = Ut#z ® U5j+2 ® U6j+2 ® U7j+2 ()
Consequently,
W, =UlleUt e .. eUy,! (26)
Finally, the wavelet packet coefficients can be computed [27] as follows:
J kj+1,2n _ Zho(zlfk) dlj,n, J kj+1,2n+1 _ thlik) dlj,n (27)
l l
where
dkj+1,n _ Z [hO(zl—k)dkj’zn i h1(2z—k)dkj’2n+1] (28)

k

Following this technique of WPT, the efficiency of the denoising process
improves quite a bit over the case where just WT is used for denoising the signals, as
is evident in Figure 5.

5.2 Energy correlation analysis

Digital signal energy computation is achieved by extracting and squaring
signal amplitude at different locations in the time domain and then adding
them together [28]. The influence of relative large energy is eliminated using
normalization technique [29]. This normalization can be avoided by selecting
the sum of absolute values of amplitudes at each sampling points as
approximations for evaluating energy; the mathematical formulation for which
can be represented as:

N
e=>Y Ifm)l, n=12,.,N. (29)
n=1
Any kind of non-deterministic relationship existing between two or more vari-
ables can be exploited and formalized using correlation analysis. Thus, different
kinds of signals can be differentiated by exploring the internal relation with corre-

lation analysis. x; and y; denote two random variables, respectively; the calculation
formula of correlation coefficient can be given as follows:

7 =Sxy/\/SexSxys  —1=Z7r<1, (30)
where Sy, = Zf‘L(xi - x)°, Sy = 2511(3’1' _y)z and Sy, = vazl(xi —%)(; - 7)-

13
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The correlation coefficient r is referred to as “Pearson product-moment correla-
tion coefficient,” or Pearson’s » and is used to estimate the relative relationship

between variables using the following principles.

1. The closer the absolute value of Pearson’s » to 1, more is the correlation
and closer is the Pearson’s  to 0, less is the correlation between the variables.

2.The polarity of the coefficient determines the direction of correlation, with
plus-sign representing positive and minus-sign representing negative

correlation.

| Original Signal |

| Parameter Initialization |

A
Determine
decomposition layer N

v

Perform wavelet packet
decomposition and obtain
coefficients

Threshold a f\'

| Modify coefficients | | Reconstruct node signals |

Get correlativity between

Calculate ratios of node
signal energy to original's node reconstructed

signals and the original
whold b

| Modify coefficients |

ﬂ Get filtered noise 1‘7 Acqmret:]zcgir;?;:ctlon of

The result
matches filterning
requirements

Figure 7.
Flowchart of wavelet packet coefficients based on energy-correlation analysis.
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5.3 Processing method for WP coefficients based on energy-correlation
analysis

An online filtering process capable of denoising both Gaussian and impact noise
is presented below based on the energy correlation between signal components
reconstructed from WP coefficients.

Step 1 - Obtain WP decomposition coefficients through the application of
appropriate decomposition level and mother wavelet.

Step 2 - Compare WP coefficients in each subspace to eliminate singular data
based on a pre-selected threshold through the application of multi-resolution analysis.

Step 3 - After reconstructing WP node signals from real coefficients, compute
the ratios of the energy of the reconstructed signal components to the actual signal
components to obtain the correlation between them. Subspace unsatisfied coeffi-
cients are processed through the use of a different threshold resulting in a series of
new coefficients.

Step 4 - Using the new set of modified coefficients on each node, signal compo-
nents are reconstructed and noise is eliminated. If the filtering requirements are not
satisfied, repeat steps to step 4 after increasing the decomposition level. A flow-
diagram for energy correlation analysis based WP coefficient processing is depicted
in Figure 7.

6. Performance analysis of denoising techniques

The best way to denoise a signal is to assume that the noise signal is Gaussian
distributed with values that are independent and identical real values. The perfor-
mance of the denoising process can be evaluated by comparing the quality of the
denoised signal with that of the original transmit signal. A variety of methods have
been proposed over years to measure the performance of denoising; the most
common of which are the metrics of SNR and the peak SNR (PSNR), generally
accepted to measure the quality of signal and images respectively. For 1-D signal,
measuring the performance of the denoising method by calculating the residual

SNR is given by, SNR = 101log ,, (ZWN:_(}xZ (n) /SN (®(n) — xV(n))z) where x(n)
is the original signal, x”(n) is the denoised signal and X(n) refers to the mean

value of x(n).
In order to measure the quality of image, PSNR is generally used, which is given

by PSNR = 101log ,, (L/Ef;ol M- (% (n,m) — %" (n, m))2> , where L, x(n), X(n,m)

m=0
and x”(n,m) refer to the quantized gray level of images, original image, mean value
of x(n) and the reconstructed image respectively. However, the choice of the noise
power is absolutely crucial for visible performance difference. SNR is more impor-
tant as compared to noise power when evaluating performance and with SNR above
3 dB, it is quite easy to isolate visible corruption.

7. Conclusions

Decomposition in time and frequency domain for Fourier Transform is replaced
by decomposition in space domain for WT thereby removing any ambiguity related
to time and frequency and offering high flexibility and quality to the overall
denoising process. Different threshold estimation methods, wavelet types, thresh-
old types and thresholding functions can be used for implementing WT depending
on the application scenario, network architecture, the kind of signal transmitted
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and the kind of noise commonly observed in the considered application scenario.
However, comparing performances of different thresholding methods, wavelet
types or threshold types when applied for the WT reveal that the number of
decomposition levels are more crucial to the denoising performance than the types
of wavelets or thresholds.

If the application scenario is considered to be an industrial IoT network, WPT
method is preferred over simple WT for denoising sensor signals. This is because in
WPT, signal is decomposed into an approximation and a detail component at each
layer of each decomposition level, therefore resulting in 2" number of components
at n decomposition levels in contrast to just 2 components at each of the #» decom-
position levels of WT. Moreover, WT decomposes only the low frequency compo-
nents in contrast to WPT which considers both low and high frequency components
at each level. If WPT is combined with energy correlation analysis, effectiveness of
the denoising process increases manifold owing to its immunity to diversity of
signals in an IoT network. Integration of energy and correlation can be used to
modify wavelet packet coefficients for eliminating Gaussian and impact noise
efficiently.

A. Appendix A

------------------------------------------------------------------------------------------------------------------------------------

Signal Generation

N =2048*2;

name = 'piece-regular’;

f0 = loadignal (name, N);

fO = rescale(f0,.05,.95);

sigma = 0.05;

f = fO + randn(size(f0))*sigma;
figure(1)

subplot(2,1,1); plot(f0); axis([1 N 0 1]);
title(’Clean signal’);
subplot(2,1,2);

plot(f); axis([1 N 0 1]);
title("Noisy signal’);

Thresholding

ThetaO = @(x,T)x.* (abs(x);T);

Thetal = @(x,T)max (0, 1-T./max(abs(x),1e-9)).* x;
t = linspace(-3,3,1024); T = 1;

figure(2)

plot( t, [ThetaO(t,T), Thetal(t,T)], 'LineWidth’, 2 );
axis(’equal’); axis(tight’);

legend(’@o’, OF);

Wavelet-Threholding

options.ti = 0; Jmin = 4;
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W = @(f) perform,aveletransf(f Jmin,+1,0ptions);
Wi = @ (fw)perform,aveletransf (fw,Jmin,-1,0ptions);
x = W(f);

x1 = ThetaO(x, 3*sigma);

figure(3)

subplot(2,1,1);

plot,avelet (x,Jmin); axis([1N -11]);

titleCW (£));

subplot(2,1,2);

plot,avelet (ThetaO(W (f),T),Jmin); axis([1N -11]);
title(’@O(W(f))’);

f1 = Wi(x1);

figure(4)

subplot(2,1,1);

plot(f); axis([1 N 0 1]);

title(’f);

subplot(2,1,2);

plot(f1); axis([1 N 0 1]);

title ’f});

x = W(f);

reinject = @(x1)assign(x1, 1:2min, x(1:2min));
ThetaOW = @(f,T)Wi(ThetaO(W(f),T));
ThetalW = @(f,T)Wi(reinject(Thetal(W(f),T)));

TTWT

options.ti = 1;

W = @(f) perform,aveletransf(f Jmin,+1,0ptions);
Wi = @ (fw)perform,aveletransf (fw,Jmin,-1,0ptions);
fw = W(f);

nJ = size(fw,3)-4;

figure(5)

subplot(5,1, 1);

plot(f0); axis(’tight’);

title(’Signal’);

i=0;

for j=1:3

i= i+1;

subplot(5,1,i+1);

plot(fw(:,1,nJ-i+1)); axis(’tight’);
title(strcat([’Scale=" num?2str(j)]));

end

subplot(5,1, 5);

plot(fw(:,1,1)); axis(’tight’);

title(CLow scale’);



Wavelet Theory

Author details

Indrakshi Dey"** and Shama Siddiqui®

1 National University of Ireland, Maynooth, Ireland

2 Trinity College Dublin, University of Dublin, Ireland
3 DHA Suffa University, Karachi, Pakistan

*Address all correspondence to: deyi@tcd.ie; indrakshi.dey@mu.ie

IntechOpen

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly cited.

18



Wavelet Transform for Signal Processing in Internet-of-Things (IoT)

DOI: http://dx.doi.org/10.5772/intechopen.95384

References

[1] A. A. Brincat, F. Pacifici and F.
Mazzola. IoT as a Service for Smart
Cities and Nations. IEEE Internet of
Things Magazine, 2(1), pp. 28-31, 2019.

[2] Z.-C. Liu, X.-G. Chen, and Y.-F. Li.
Detection and identification of abrupt
changes for on-line sensor output signal.
Transaction of Beijing Institute of
Technology, 26(12), pp. 1104-1108,
2006.

[3] A.M. Rao and D. L. Jones. A
denoising approach to multisensor
signal estimation. IEEE Transactions on
Signal Processing, 48(5), pp. 1225-1234,
2000.

[4] B. L. Jin, H. Li, N. J. Zhao et al. A new
denoising algorithm for wavelet
thresholding. Journal of Missile and
Missile, 31 (1), pp. 167-169, 2011
(Chinese).

[5] D. L. Donoho. De-noising by soft-
thresholding. IEEE Transactions on
Information Theory, 41(3), pp. 613-627,
1995.

[6] M. Ding and H. Zhu. Two-
Dimensional gibbs phenomenon for
fractional fourier series and its resolution.
Artificial Intelligence and Computational
Intelligence, vol. 7530 of Lecture Notes in
Computer Science, pp. 530-538, Springer,
Berlin, Germany, 2012.

[7] I. Daubechies. The wavelet
transform, time-frequency localization
and signal analysis. IEEE Transactions
on Information Theory, 36(5), pp. 961-
1005, 1990.

[8] A. S. Lewis and G. Knowles. Image
compression using the 2-D wavelet
transform. IEEE Transactions on Image
Processing, 1(2), pp. 244-250, 1992.

[9] S. Mallat and Z. Zhang. Matching

pursuits with time-frequency
dictionaries. IEEE Transactions on

19

signal processing, 41(12), pp. 3397-
3415, 1993.

[10] X. He and M. S. Scordilis.
Psychoacoustic music analysis based on
the discrete wavelet packet transform.
Research Letters in Signal

Processing 2008, pp. 1-5.

[11] D. L. Donoho and J. M. Johnstone.
Ideal spatial adaptation by wavelet
shrinkage. Biometrika, 81(3), pp. 425,
1994.

[12] D. L. Donoho. Denoising by soft-
thresholding. IEEE Trans. Inform.
Theory, 41(3), pp. 613-627, 1995.

[13] S. G. Mallat. A wavelet tour of signal
processing. Academic Pr., 1999.

[14] J. Gubbi, A. Khandoker, and M.
Palaniswami. Classification of sleep
apnea types using wavelet packet
analysis of short-term ECGsignals.
Journal of Clinical Monitoring and
Computing, 26(1), pp. 1-11, 2012.

[15] F. Adamo, G. Andria, F. Attivissimo,
A. M. L. Lanzolla, and M. Spadavecchia.
A comparative study on mother wavelet
selection in ultrasound image denoising.
Measurement, 46(8), pp. 2447-2456,
2013.

[16] R. R. Coifman and M. V.
Wickerhauser. Entropy-based
algorithms for best basis selection. IEEE
Transactions on Information Theory, 38

(2), pp. 713-718, 1992.

[17] A. M. Hasan, K. Samsudm, A. R.
Ramli, and R. S. Azmir. Wavelet-based
pre-filtering for low cost inertial

sensors. Journal of Applied Sciences, 10
(19), pp. 2217-2230, 2010.

[18] D. L. Donoho. De-noising by soft-
thresholding. IEEE Transactions on
Information Theory, 41(3), pp. 613-627,
1995.



Wavelet Theory

[19] P. Mercorelli. Denoising and
harmonic detection using non-
orthogonal wavelet packets in industrial
applications. Journal of Systems Science
Complexity, 20(3), pp. 325-343, 2007.

[20] Y. Li, T. Zhang, L. Deng, B. Wang
and M.Nakamura. Denoising and
rhythms extraction of EEG under +Gz
acceleration based on wavelet packet
transform. Proceedings of the 7th ICME
International Conference on Complex
Medical Engineering (CME ‘13),

pp. 642-647, Beijing, China, May 2013.

[21]]. Yang, W. Xu, Y.Wang, and Q. Dai.
2-D anisotropic dual-tree complex
wavelet packets and its application to
image denoising. Proceedings of the
15th IEEE International Conference on
Image Processing (ICIP ‘08), pp. 2328-
2331, October 2008.

[22] C. He, ]J. C. Xing, and Q. L. Yang.
Optimal wavelet basis selection for
wavelet denoising of structural
vibration signal. Applied Mechanics and
Materials, 578-579, pp. 1059-1063, 2014.

[23] ].-Y. Tang, W.-T. Chen, S.-Y. Chen,
and W. Zhou. Wavelet-based vibration
signal denoising with a new adaptive
thresholding function. Journal of
Vibration and Shock, 28(7), pp. 118-121,
2009 (Chinese).

[24] S. Badiezadegan and R. C. Rose. A
wavelet-based thresholding approach to
reconstructing unreliable spectrogram

components. Speech Communication,
67, pp. 129-142, 2015.

[25] X. Chen, S. Li, and W. Wang. New
de-noising method for speech signal
based on wavelet entropy and adaptive
threshold. Journal of Information and
Computational Science, 12(3), pp. 1257-
1265, 2015.

[26] K. L. Yuan. Wavelet denoising based
on threshold optimization method.

Engineering Journal of Wuhan
University, 48(1), pp. 74-80, 2015.

20

[27]]. Portilla, V. Strela, M. J.
Wainwright, and E. P. Simoncelli. Image
denoising using scale mixtures of
Gaussians in the wavelet domain. IEEE
Transactions on Image Processing, 12

(11), pp. 13381351, 2003.

[28] K. Zhang, B.-]. Pang, and M. Lin.
Wavelet packet analysis for acoustic
emission signals caused by debris cloud

impact. Journal of Vibration and Shock,
31(12), pp. 125-128, 2012.

[29] X.-H. Gu, G.-X. Zhang, D.-B. Hou,
and Z.-K. Zhou. Detection of water pipe
leak location using wavelet packet
decomposition and power feature

extraction. Journal of Sichuan
University, 37(6), pp. 145-149, 2005.



