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Chapter

A Combination of Finite
Difference and Finite Element
Methods for Temperature and
Stress Predictions of Early-Age
Concrete Members
Tu Anh Do

Abstract

A combination of finite difference and finite element methods was employed to
develop a model for predicting the temperature development and thermally
induced stresses in early-age concrete members (such as bridge footings, piers,
columns, girders, and slabs). A two-dimensional finite difference (FD) scheme was
utilized for heat generation and transfer within a hydrating concrete member. A
finite element (FE) plane strain model was then established to compute the thermal
stresses in the concrete subjected to the temperature changes. The FD-FE model can
be easily created using any programing language, and the methodology can be used
to predict the temperatures and stresses as well as assess the possibility of early-age
cracking in concrete members.

Keywords: finite difference, finite element, early-age concrete, heat of hydration,
thermal stress, thermal cracking, insulation layer

1. Introduction

Thermal cracking is one of the biggest concerns regarding early-age concrete.
Hydration of a large amount of cement results in higher peak temperatures as well
as larger temperature differences between the concrete surface and the core. Such
large temperature differentials can cause substantial tensile stresses that might
increase the likelihood of early-age cracking in the concrete [1].

In order to control the temperature in early-age concrete structures, thus miti-
gating the risk of thermal cracking, temperature and stress analyses should be
performed beforehand. Different methods have been used for predicting the tem-
peratures and thermal stresses concrete structures at an early age. Among them, the
Schmidt’s method is a simple approach but has been widely used for computing the
temperatures for single nodes in the concrete [1]. The finite difference (FD)
method was also employed in spreadsheet programs [2, 3] or in computer programs
[4, 5] for calculating temperature–time histories in concrete elements. A two-
dimensional model for thermal analysis based on the finite volume method (FVM)
was introduced by Yikici and Chen [6]. The finite element (FE) method has been
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commonly utilized for both thermal and stress analyses of early-age concrete
structures [7–13].

This chapter presents a two-dimensional FD scheme for thermal analysis of a
concrete element. An FE analysis was then used to calculate the temperature-
induced stresses in the concrete. The analysis results were compared with
measurements of actual concrete elements. The combined approach can be a simple
and useful tool for analyzing temperatures and thermal stresses in early-age
concrete elements.

2. FD scheme for solving heat transfer

The heat evolution and temperature in a concrete element can be known by
solving the governing differential equation as described in Eq. (1):

ρcp
∂T

∂t
¼ k

∂
2T

∂x2
þ

∂
2T

∂y2
þ

∂
2T

∂z2

� �

þ _Q (1)

where ρ is density; cp is specific heat; T is temperature; t is time; k is thermal
conductivity; x, y, and z are coordinates; and Q ̇ is heat evolution rate.

The finite difference formulation for any node in the system can be written
as [14]:

X

All sides

_Q
i
þ _E

i
¼ ρcpV

T iþ1
m � T i

m

Δt
(2)

where Q ̇i = rate of heat conduction at time step i; Ėi = rate of heat generation at
time step i; Ti

m and Ti+1
m = temperatures of node m at time step i and i + 1,

respectively; and Δt = time interval.
During the actual construction stage of concrete structures, the concrete is

usually covered by formwork and/or insulation materials. Heat generated from
cement hydration is conducted through the formwork and/or insulation layer
before being dissipated to the surroundings by surface convection (Figure 1).

Considering a formwork/insulation layer covering the concrete, and assuming
a unit square mesh for the concrete (Δx = Δy = l) and an insulation thickness
of d (Figure 2), the FD formulation for the interior node can be computed
using Eq. (3).

T iþ1
m,n ¼ τF T i

m�1,n þ T i
mþ1,n þ T i

m,nþ1 þ T i
m,n�1

� �

þ T i
m,n 1� 4τFð Þ þ τF

_em,nl
2

k
(3)

where T i
m,n = temperatures of node (m,n) at time step i;

T i
m�1,n,T

i
mþ1,n,T

i
m,nþ1,T

i
m,n�1= temperatures at neighboring nodes; and

τF = dimensionless Fourier number,

τF ¼
kΔt

ρcpl
2 (4)

Using Eq. (2), the FD equations for each of the four outer corner nodes of the
insulation can be derived. For instance, the quarter size volume element of the
insulation layer (d � d � 1) represented by the top left outer corner node (1,N) is
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subjected to convection on both sides and to conduction from the right and bottom
nodes, the energy balance relation above (Eq. (2)) becomes:

T iþ1
1,N ¼ T i

1,N 1� 4A1 � 4A1
hd

ks

� �

þ 2A1 T i
1,N�1 þ T i

2,N þ 2Ta
hd

ks

� �

(5)

where ρs = insulation material density; cps = specific heat of insulation material;
ks = thermal conductivity of insulation material; Ta is the ambient temperature; h is
the convection coefficient; and

A1 ¼
ksΔt

ρscpsd
2 (6)

The insulation volume element at the surface node (2,N) adjacent to the top left
outer corner node is subjected to convection at the top and conduction at the left,
right, and bottom surfaces. An energy balance on this element gives:

Figure 1.
FD mesh for heat conduction of concrete covered with insulation layer.

Figure 2.
FE plane triangular element.
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T iþ1
2,N ¼  T i

2,N 1�
2h dþ lð ÞA2

ks
� 2A2 � 2dlA2 �

2 dþ lð ÞA2

d

� �

þ 2A2 T i
1,N þ dlT i

3,N þ
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d
T i
2,N�1 þ

h dþ lð Þ

ks
Ta

� �

(7)

where

A2 ¼
ksΔt

ρscps dþ lð Þd
(8)

Similarly, the insulation volume element of half size at a surface node is
subjected to convection at the top and conduction at the left, right, and bottom
surfaces. An energy balance on this element gives:

T iþ1
m,n ¼ T i

m,n 1�
2d

l
A3 �

2l

d
A3 �

2hl

ks
A3

� �

þ A3
d

l
T i
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T i
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2l

d
T i
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2hl

ks
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� �

(9)

where

A3 ¼
ksΔt

ρscpsdl
(10)

The “mixed” volume element at the concrete’s corner node (2,N-1) is subjected
to conduction at the four sides. An energy balance on this element gives:

T iþ1
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d
�
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l
�
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þA4
2 lþ dð Þ

d
T i
1,N�1 þ

2 lþ dð Þ

d
T i
2,N þ 2

d

l
þ

k

ks

� �

T i
2,N�2 þ 2

d

l
þ

k

ks

� �

T i
3,N�1 þ _e2,N�1

l2
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where

A4 ¼
ksΔt

ρsd dþ 2lð Þcps þ ρcpl
2 (12)

The “mixed” volume element at a concrete’s top surface node is also subjected to
conduction at the four sides. An energy balance on this element gives:

T iþ1
m,N�1 ¼ T i

m,N�1 1�
2ksl

d
A5 �

2ksd

l
A5 � 4kA5

� �

þ

þA5
2ksl

d
T i
m,N þ

ksd

l
þ k

� �

T i
m�1,N�1 þ

ksd

l
þ k

� �

T i
mþ1,N�1 þ 2kT i
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2

� �

(13)

where

A5 ¼
Δt

ρsdlcps þ ρl2cp
� � (14)
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It is noted that the stability criterion of the explicit method requires all primary
coefficients to be positive or zero for all nodes:

1� 4τF ≥0
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2h dþ lð ÞA2
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l
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The maximum time step used to solve the problem must satisfy Eq. (15) above.
If an insulation layer is not used, the new corner temperature Ti

m,n+1 will be
simplified to:

T iþ1
m,n ¼ T i

m,n 1� 4τF � 4τF
hcl

k

� �

þ 2τF T i
mþ1,n þ T i

m,n�1 þ 2Ta
hcl

k
þ

_em,nl
2

2k

 !

(16)

and the next time step temperature of a top surface node will be simplified to:

T iþ1
m,n ¼ T i

m,n 1� 4τF � 2τF
hcl

k

� �

þ τF T i
m�1,n þ T i

mþ1,n þ 2T i
m,n�1 þ 2Ta

hcl

k
þ

_em,nl
2

k

 !

(17)

The maximum time step in this case is as follows:

Δt≤
l2ρcp

4k 1þ hcl
k

� � (18)

2.1 Rate of hydration heat

The rate of heat liberated from cement hydration depends on the temperature of
the concrete element itself. The heat rate can be experimentally determined using
isothermal [10, 15], adiabatic [16, 17], or semi-adiabatic calorimetry [4]. The
experimental adiabatic temperature rise (ATR) can be converted into a maturity-
based heat rate as presented by Ballim and Graham [18], in which the total heat (Q)
liberated at any time (t) is firstly computed from the ATR using the following
relationship:

Q ¼ cp Tt � T0ð Þ
ms

mc
(19)

where Tt = sample temperature at time t; T0 = initial sample temperature;
ms =mass of concrete sample; andmc =mass of the cementitious materials in themix.
The heat rate in the adiabatic condition is then calculated by differentiating Eq. (19):
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qt ¼
dQ

dt
(20)

The “maturity heat rate” (qte), as shown in Eq. (21), is used in a further thermal
analysis of concrete, which considers the maturity of concrete.

qte ¼
dQ

dte
(21)

where te is equivalent age (or maturity) [19]:

te ¼

ð

t

0

exp
Ea

R

1

Tr
�

1

Tc tð Þ

� �� �

dt (22)

where Ea is apparent activation energy (J/mol); R is the universal gas constant
(8.314 J/mol-K); Tc(t) is concrete temperature (K); and Tr is reference
temperature (K).

The activation energy (Ea) of a cement blend can be estimated from its chemical
compositions using the following relationship derived by Poole [20]:

Ea ¼ 41230þ 1416000 pC3A
þ pC4AF

� 	

pcempSO3
pcem � 347000pNa2Oeq

        � 19:8Blaineþ 29600pFApFA‐CaO þ 16200pslag � 51600pSF

(23)

where pFA = % fly ash in the cementing blend; pFA-CaO = % CaO in fly ash;
pslag = % slag in the cementing blend; pSF = percentage of silica fume in the
cementitious materials; Blaine = cement fineness (m2/kg); pi = percentage of i
component in the cement (C3A, C4AF, SO3, cem = cement); and pNa2Oeq = % Na2Oeq

in cement (= 0.658 � %K2O + %Na2O).
The actual heat rate, which will be used in a numerical model, can be

reconstructed from the maturity heat rate using the following equation:

qt ¼ qte
dte
dt

(24)

The maturity-based heat rate curve qte should be built from an isothermal or
adiabatic test, before the actual heat rate can be computed at each time step for the
analysis [18]. The drawback of this method is that the total time of the constructed
maturity-based heat rate is limited by the test duration.

There are several models to mathematically characterize the heat generation
from the cement hydration. The 3-parameter exponential degree of hydration
model show in Eq. (25) [21] has been widely used for predicting temperature
development in concrete since it includes the temperature effect through the
equivalent age:

α teð Þ ¼ αu exp �
τ

te

� �β
 !

(25)

where αu is ultimate degree of hydration; τ and β are hydration parameters.
The total cumulative heat Q(te) is proportional to the degree of hydration α(te)

as expressed in Eq. (26). The rate of heat generation with respect to equivalent age
and real age can be determined using Eqs. (27) and (28), respectively.

6

Finite Element Methods and Their Applications



Q teð Þ ¼ Q c:α teð Þ (26)

q teð Þ ¼
dQ

dte
¼ Q c:α teð Þ:

τ

te

� �β

:
β

te
(27)

q tð Þ ¼
dQ

dt
¼

dQ

dte
:
dte
dt

¼ Qc:α teð Þ:
τ

te

� �β

:
β

te
: exp

Ea

R

1

Tr
�

1

Tc tð Þ

� �� �

(28)

where Qc is the total available heat (J/m
3).

The hydration parameters (αu,τ and β) can be determined from the fitted curve,
Eq. (25), using the experimental ATR data. These parameters can also be calculated
from an experimental isothermal cumulative heat curve without converting the real
time into the equivalent age because in the isothermal condition (i.e., at a reference
temperature of 23°C), the test time is identical to the equivalent age.

3. FE method for solving thermal stresses

Since a common concrete structure has one dimension larger than the other two,
the middle cross section should be analyzed; hence, a FE plane strain problem is
selected for the stress computation. A triangular element is chosen with nodes i, j, m
numbered in a counterclockwise order as illustrated in Figure 2 [22]. The strain at
any point within the element is estimated by Eq. (29):

εf g ¼ B½ � aef g (29)

where ae = element displacement vector, and

B½ � ¼
1

2Δ

b i 0 b j 0 bm 0

0 c i 0 c j 0 cm

c i b i c j b j cm bm

2

6

4

3

7

5
(30)

in which a i ¼ x j ym � xmy j; b i ¼ y j � ym; c i ¼ xm � x jwith the other coefficients

obtained by a cycle permutation of the subscripts in the order i, j, m; and Δ is area of
the triangle.

The stress vector in the element can be calculated as:

σf g ¼ σx σy τxy

 �T

¼ D½ � εf g � ε0f gð Þ (31)

where

D½ � ¼
E

1þ νð Þ 1� 2νð Þ

1� ν ν 0

ν 1� ν 0

0 0 1� 2νð Þ=2

2

6

4

3

7

5
(32)

and the thermal strain is derived as [22]:

ε0f g ¼ 1þ νð Þαcθ
e 1 1 0½ �T (33)

in which ν = Poisson’s ratio, αc = coefficient of thermal expansion, and θ
e =

temperature change (from the previous time step to the current time step)
subjected to the element. The element stiffness matrix ijm is calculated using the
following equation:
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ke ¼

ð

BTDBttdxdy or ke ¼ BTDBttΔ (34)

where tt = element thickness.
The nodal forces due to thermal strain is computed as follows:

f T
� 


¼

ð

v

B½ �T D½ � ε0f gdv ¼
Eαcθ

e

2 1� 2νð Þ
b i c i b j c j bm cm

 �T

(35)

in which E = elastic modulus. The nodal displacement vector U is derived by
solving the global system of equations:

K½ � Uf g ¼ f T
� 


(36)

Computational Procedure

• FD thermal analysis:

1.Define geometry of the structure (including the nodal grid), initial
material properties, initial temperature and boundary conditions, and
time interval.

2.Compute the nodal degree of hydration and the rate of heat evolution.

3.Compute the new temperature at each node.

4.Iterate (2) & (3) and record the temperatures.

• FE stress analysis:

5.Divide the nodal grid into triangular elements (the vertices coincide with
the FD grid nodes).

6.At t = n (n = 1, 2,… ), calculate average temperature, equivalent age and
degree of hydration of each element.

7.Let i = 1, compute each element’s effective modulus.

8.Compute element stiffness matrix, global stiffness matrix, and
equivalent nodal forces; solve for nodal displacements and element
stresses.

9.Let i = i + 1 and iterate (7) and (8) till i = n. Sum all the stresses at step (8)
to get the total stress.

10.Let n = n + 1. Iterate (6) through (10) until the final time step is achieved.

4. Temperature analysis of bridge pier footing

A bridge pier footing constructed in Orlando, Florida was monitored for tem-
perature development within 7 days after casting (Figure 3). The concrete footing
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had dimensions of 6.71-m � 3.05-m � 1.75-m and was insulated with 25.4-mm thick
polystyrene foam boards at its bottom, top, and sides during 7 days.

The cementitious materials of Mix #1 was experimentally measured for the heat
of hydration using an isothermal calorimeter. The hydration parameters and calcu-
lated activation energy (Ea) for Mix #1 are presented in Table 1.

The concrete had a density of 2238 kg/m3, specific heat of 1045 J/kg-K, and
thermal conductivity of 1.87 W/m-K. The footing was insulated with Styrofoam
that has density, thermal conductivity, and specific heat of 16 kg/m3, 0.04 W/m-K,
and 1200 J/kg-K, respectively [14]. The boundary conditions consist of the initial

Figure 3.
Bridge footing for monitoring in Orlando, Florida.

Mix τ (h) β αu Qc (J/m
3) Ea (J/mol)

#1 16.73 0.8764 8.314 1.26 � 108 35,451

#2 14.0 0.94 0.703 1.67 � 108 41,800

Table 1.
Hydration parameters and activation energy.

Figure 4.
Predicted and measured temperature profiles in the footing.
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temperature and the external ambient temperature over time. The air convection
coefficient at the insulation surfaces was assumed to be 13.9 W/m2-K [5, 23].

Two temperature sensors were installed at the center and at the center top
surface of the footing to record temperatures within 7 days after placement. The
measured temperatures at the center and top, and the ambient temperature are
shown in Figure 4. A peak measured temperature of 74°C occurred in the middle
42 hours after concrete casting. Figure 5 shows the temperature distribution in the
footing at 40 h calculated by the FD model. The predicted FD temperatures at the
center and the top of the footing are also plotted in Figure 4. It is clear that the
temperature histories computed using the FD model show very close agreement
with those collected in the field.

5. Temperature and thermal stress predictions of cap beam

A bridge concrete cap beam (pier cap) was analyzed for temperatures and
thermal stresses due to the heat of cement hydration. The cross section of the pier
cap was 1.6-m by 2.1-m. The concrete used in the cap beam is Mix #2 with the
hydration parameters and activation energy listed in Table 1. The concrete coeffi-
cient of thermal expansion (CTE) of 8.5 � 10�6/°C, density of 2287 kg/m3, the

Figure 5.
FD temperature contour in the footing at 40 h (°C).

Figure 6.
Temperature profiles at different points in the cap beam.
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Figure 7.
Temperature distribution of the section at 30 h.

Figure 8.
FE mesh and stress distributions (MPa) in pier cap at 21 h.
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specific heat of 1028 J/kg-K, and thermal conductivity of 1.87W/m-K were assumed
in the analysis.

Figure 6 shows the calculated temperature profiles at the core, corner and side
of the section. The center temperature peaked at 70.7°C approximately 28 hours
after casting. The temperature contours are also depicted in Figure 7.

The thermal analysis was followed by a stress calculation using the FE model
with the element mesh shown in Figure 8a. The 1st principal stress and stress
component σyy contours are shown in Figure 8b and c, respectively. The figure
reveals that the maximum stress is σyy occurring at the mid-sides and having almost
the same magnitude as the 1st principal stress.

The calculated stresses over time at different locations of the pier cap are plotted
in Figure 9. Clearly, the maximum stress is σyy at the mid-sides, while σxx is the
maximum stress at the corner (compared to σyy), thus the middle sides have a
higher risk of cracking.

To assess the model’s accuracy, the computed stress-time histories are compared
with those obtained from the 3-D ABAQUS FE model developed by Lin and Chen
[12]. It is worth noting that the ABAQUS model was validated using measurements
on 2 concrete blocks. Figure 9b shows that the 2-D FE results reasonably match
with those of the 3-D ABAQUS model.

The 3-D ABAQUS results reveal that the maximum stress is the component σzz at
the corner. Nevertheless, the 2-D FE model cannot compute this stress component

Figure 9.
Calculated stresses in the pier cap.
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because it is out-of-plane. The plane element over-predicts σ xx at the corner
compared with that of the 3-D ABAQUS. The maximum stress σzz at the corner
predicted using the 3-D ABAQUS model is about the same magnitude as σyy at the
mid-sides, hence the critical stress magnitude as well as cracking risk can still be
forecast by the 2-D analysis.

6. Conclusions

In this study, FD and FE formulations were created for solving the transient heat
transfer equation and thermal stresses in a concrete element. The results of this
study show that the approach that combines the FD and FE methods can be a useful
and effective tool for predicting temperature evolution and thermally induced
stresses in early-age concrete members with simple geometries. The FD model can
analyze thermal behavior of a concrete placement covered with formwork or an
insulation layer, thus it can help engineers/contractors control concrete
temperature during construction.
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