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Chapter

Visibility-Based Technologies and
Methodologies for Autonomous
Driving
Said Easa, Yang Ma, Ashraf Elshorbagy, Ahmed Shaker,
Songnian Li and Shriniwas Arkatkar

Abstract

The three main elements of autonomous vehicles (AV) are orientation, visibility,
and decision. This chapter presents an overview of the implementation of visibility-
based technologies and methodologies. The chapter first presents two fundamental
aspects that are necessary for understanding the main contents. The first aspect is
highway geometric design as it relates to sight distance and highway alignment. The
second aspect is mathematical basics, including coordinate transformation and
visual space segmentation. Details on the Light Detection and Ranging (Lidar)
system, which represents the ‘eye’ of the AV are presented. In particular, a new
Lidar 3D mapping system, that can be operated on different platforms and modes
for a new mapping scheme is described. The visibility methodologies include two
types. Infrastructure visibility mainly addresses high-precision maps and sight
obstacle detection. Traffic visibility (vehicles, pedestrians, and cyclists) addresses
identification of critical positions and visibility estimation. Then, an overview of the
decision element (path planning and intelligent car-following) for the movement of
AV is presented. The chapter provides important information for researchers and
therefore should help to advance road safety for autonomous vehicles.

Keywords: Lidar, traffic visibility, infrastructure visibility, high-precision maps,
sight distance, highway design, technologies

1. Introduction

Autonomous vehicle (AV) will reduce human errors and is expected to lead to
significant benefits in safety, mobility, and sustainability [1–5]. The technical feasi-
bility of automated highways has been demonstrated in San Diego, California in
1997 [6, 7]. The technology is emerging around the world on both passenger and
freight sides. Autonomous vehicles have already started to appear on the roads
across the globe. Clearly, as the AV market expands, transportation professionals
and researchers must address an array of challenges before AV soon becomes a
reality. Several government and industry entities have deployed demonstrations
and field tests of the technology. Centres for testing and education, products, and
standards for AV have also been established. Currently, researchers, scientists, and
engineers are investing significant resources to develop supporting technologies.
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The self-driving system involves three main elements: orientation, visibility, and
decision, as shown in Figure 1. For each element, certain functions are performed
with the aid of one or a combination of technologies. For AV orientation, the
position of the vehicle is determined mainly using Global Navigation Satellite Sys-
tem (GNSS). To increase reliability and accuracy, this technology is supplemented
with other data gathered from specific perception technologies, such as cameras and
internal measurement devices (tachometers, altimeters, and gyroscopes).

The visibility of AV, sometimes referred to as perception, involves infrastruc-
ture detection (e.g. sight obstacles, road markings, and traffic control devices) and
traffic detection (other vehicles, pedestrians, and cyclists). High-precision (HP)
maps help the AV not only perceive the environment in its vicinity, but also plan for
the turns and intersection far beyond the sensors’ horizons. The other main tech-
nology that represents the ‘eye’ of the AV is the Light Detection and Ranging
(Lidar). Other technologies used for infrastructure visibility include video cameras
which can detect traffic signals, read road signs, keep track of other vehicles, and
record the presence of pedestrians and other obstacles. Radar sensors can determine
the positions of other nearby vehicles, while ultrasonic sensors (normally mounted
on wheels) can measure the position of close objects (e.g. curbs). Lidar sensors can
also be used to identify road features, like lane markings. Three primary sensors
(camera, radar, and Lidar) work together to provide AV with visuals of its 3D
environment and help detect the speed and distance of nearby objects. The visibility
information is essential for the safe operation of the AV. For example, the informa-
tion can be used to ensure that adequate sight distance (SD) is available and if not to
take appropriate actions.

The decision of AV is based on the data generated by the AV sensors and HP
maps. Examples of the decisions that are made by AV include routing, changing
lanes, overtaking vehicles, stopping at traffic lights, and turning at an intersection.
The decision is made by an on-board centralized artificial intelligence (AI) com-
puter that is linked with cloud data and include the needed algorithms and software.

For the AV to function effectively, it must communicate with the environment
as part of a continuously updating, dynamic urban map [3]. This involves vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. Internet of
Things (IoT) technology provides telematics data about the condition and

Figure 1.
Elements of autonomous vehicles and their functions and technologies.
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performance of AV, such as real-time location and speed, idling duration, fuel
consumption, and the condition of its drivetrain.

This chapter mainly focuses on the visibility of AV and briefly addresses the
decision element. Section 2 presents important visibility fundamentals related to
highway geometric design and mathematical tools. Section 3 presents details on the
Lidar system, which represents the ‘eye’ of the AV. This section also introduces a
new Lidar system that has great potential for high precision mapping for autono-
mous vehicles. Section 4 describes the methodologies related to infrastructure visi-
bility and traffic visibility. Section 5 presents some implementation aspects and
Section 6 presents the conclusions.

2. Visibility fundamentals

2.1 Highway sight distance

In the geometric design guides by American Association of State Highways and
Transportation Officials and Transportation Association of Canada [8–10], the
available sight distance for human-driven vehicles is measured from the driver’s
height above the pavement surface. For autonomous vehicles, the driver’s eye is the
Lidar. The ability of the AV to ‘see’ ahead is critical for the safe and efficient
operation. Sufficient sight distance must be provided to allow the AV to stop, avoid
obstacles on the roadway surface, overtake slow vehicles on two-lane highways, and
make safe turns/crossings at intersections. For human-driven vehicles, the required
sight distance is based on driver’s perception-reaction time (PRT), vehicle speed,
and other factors. A value of 2.5 s is used for human-driven vehicles and a value of
0.5 s has been assumed for AV in the literature [11]. This smaller reaction time will
result in shorter required sight distances for AV.

For autonomous vehicles, four basic types of SD are defined as follows:

• Stopping Sight Distance (SSD): This is the distance traveled by the AV during
system reaction time and the braking distance from the operating speed to stop.

• Passing Sight Distance (PSD): This is the distance, including system reaction
time, required by the AV on rural two-lane roads to allow the vehicle to pass a
slower vehicle by using the opposing lane.

• Decision Sight Distance (DSD): This is the distance that allows the AV to
maneuver or change its operating speed or stop to avoid an obstacle on the
roadway surface.

• Intersection Sight Distance (ISD): This is the distance along a cross road with a
right of way that must be clearly visible to the crossing AV so that it can decide
and complete the maneuver without conflicting with the cross-road vehicles.

Since the AV response time is less than the driver’s PRT, the required SD for
autonomous vehicles would be shorter than that for human-driven vehicles. The
impact of AV on highway geometric design has been explored in a preliminary
manner by making simple assumptions regarding system reaction time and Lidar
field of view [11]. The study focused on SSD, DSD, and vertical curves.

The required SD for autonomous vehicles, Lidar height, and object height influ-
ence the design and evaluation of highway vertical, horizontal, and 3D alignments,
as shown in Figure 2. The Lidar height above the pavement surface is critical in
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determining the available sight distance. For crest vertical curves (Figure 2a), since
the required SD for autonomous vehicles are shorter, the required Lidar height for
safe operation, hL, would be somewhat less than the design driver’s eye height, h1.
Thus, by placing the Lidar at or above hL, the AV can safely operate on existing
highways without the need for modifying their design. For a sag vertical curve with
an overpass (Figure 2b), where the truck driver’s eye height controls the traditional
curve design, the required Lidar height for safe operation would be somewhat larger
than the design driver’s eye height. Thus, by placing the Lidar at or below hL, the AV
can safely operate on existing highways. For horizontal curves (Figure 2c), the
Lidar height is not important for detecting horizontal obstacles, except when cut
slopes are present.

For human-driven vehicles, sag vertical curves (Figure 2d) are designed based on
the distance that the vehicle headlamp can illuminate ahead of the vehicle, where the
angle of light beam upward from the vehicle plane is considered equal to 1o. What is
interesting is that for AV the Lidar height is irrelevant to the operation on sag vertical
curves. The reason is that Lidar detection does not require light and therefore an obstacle
ahead of the autonomous vehicle can be detected under all light conditions. It is neces-
sary, however, to ensure that the effective Lidar range is greater than the required SD.

Note that the geometry of SD shown in Figure 2 represents individual horizontal
or vertical alignments. For 3D alignment (combined horizontal and vertical curves),
the AV can directly determine the available SD and compare it with the required
SD. The sight line in this case may be obstructed by the pavement surface or by
obstacles on the roadside, such as a building or a cut slope.

2.2 Mathematical tools

2.2.1 Overview of visibility modeling

Quantitative visibility estimation (VE) involves four basic components as shown
in Figure 3: (1) sight point, (2) target points (e.g. lane marking, traffic sign, and
stalled vehicle), (3) line of sight (LOS) which connects the sight point with target
points, and (4) obstacle data that obstruct LOS (e.g. vegetation, barrier, and build-
ing). The purpose of VE is to determine whether the obstacles affect the visibility of
the targets to the sight point in a mathematical manner.

Figure 2.
Effect of Lidar height and sight distance on the operation of AV on different highway alignments. Note:
A = algebraic difference in grade, C = lateral clearance, hL = Lidar height, h2 = object height, SL = effective
Lidar range, L = vertical curve length, R = radius of horizontal curve, S = sight distance. (a) Crest vertical curve
(b) sag vertical curve with overpass, (c) horizontal curve and (d) sag vertical curve.
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The accuracy of VE is closely associated with the precision of obstacle data. In
the past, due to a lack of effective and affordable technique to collect dense and
precise geospatial data, the obstacle data were conventionally represented by digital
surface and terrain models generated from sparse geospatial points. However, it was
proved that neither model could handle objects with complex shapes and may yield
inaccurate VE results in some cases [12–14].

Over the past five years, mobile laser scanning (MLS) data have been recognized
as a reliable data source for conducting visibility-related analyses [15–18]. MLS
point clouds enable a very accurate and precise representation of real-world envi-
ronment. In this case, a number of indoor computerized estimations on MLS point
clouds are viable to replace risky and time-consuming outdoor field measurements
[16]. In addition, MLS data are also the main data source for manufacturing HP
maps which are indispensable to AV. Therefore, the mathematical model for esti-
mating visibility in autonomous driving is built based on MLS data.

The general workflow of VE using MLS data is graphically presented in
Figure 4. For a given eye position, both the target points and obstacle points
undergo the same procedure (i.e. coordinate transformation and segmentation)
and two respective depth maps of the same size are generated. The visibility
estimation is achieved through comparing two 3D depth maps. The process of VE is
described in detail next.

2.2.2 Coordinate transformation

To illustrate, consider VE at a single position. Let S be the sight point. Let F
*

be
the forward direction. Let Φ and Ψ be the set of target points and obstacle points,
respectively. To reduce the computational complexity, a local coordinate frame is
established first as depicted in Figure 5a. Set S as the origin. Then, the Y’ and X’

axes are set along F

*

and the horizontal vector normal to F

*

, respectively. Finally, the
Z’-axis is set along the upward direction perpendicular to the X’SY’plane. The local
coordinates of points (S,Φ and Ψ) are obtained via:
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Figure 3.
Basic components of quantitative visibility estimation.

Figure 4.
Workflow of VE using MLS data.
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whereR = the rotation matrix, xs, ys, zs
� �T

= geodetic coordinates of the sight

point, x, y, zð ÞT and x0, y0, z0ð ÞT = geodetic and local coordinates of points (S,Φ and Ψ),
respectively, and α, β = rotation angles around the Z and X-axes, respectively.

To enable a more intuitive and efficient estimation of target visibility, the local
Cartesian coordinates are further converted into spherical coordinates as follows,

φ ¼ arctan
y0

x0

ϕ ¼ arctan
z0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x02 þ y02
q

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x02 þ y02 þ z02
q

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(2)

where φ,ϕ, dð ÞT= azimuth, elevation, and radius of the spherical coordinates
shown in Figure 5a.

Points in different coordinate frames are visualized in Figure 5b. The sight point
marked in figure corresponds to S in Figure 5a. In the φ-ϕ-d space, φ and ϕ refer to
the horizontal and vertical angles between a LOS and the forward direction,
respectively, while d measures the depth from the sight to the target point. Con-
ventionally, as shown in Figure 5a, a sight cone or sight pyramid is constructed
around a given LOS in a local frame to detect whether the obstacle points therein
touch that LOS [12, 17]. However, when the number of target points is very large,
the practice of building sight pyramids and then searching for points therein in
dense MLS point clouds is quite time-consuming. With the coordinate transforma-
tion, a sight pyramid in the x’-y’-z’ space is equivalent to a pillar in the φ-ϕ-d space.
In this case, it is reasonable to assume that when δφ and δϕ are small, only the point
with the minimum d can be seen by an observer in a pillar. This process is more
straightforward than detecting the closest point in a sight pyramid in the x’-y’-z’
coordinate system.

Figure 5.
Coordinate transformation: (a) different coordinate systems and (b) visualization of points in different frames
(generated with Matlab 2020b; the same for Figures 6, 7, and 8-10).
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2.2.3 Visual space segmentation

Based on the preceding assumption, the main task is to segment points in the
φ-ϕ-d space into different pillars. To reduce the computational complexity and thus
improve the efficiency, a linear index based segmentation procedure was developed
and applied to partition points. The procedure assigns a new one-dimensional (1D)
index to each point and can divide point cloud data into pillars or voxels. Taking the
voxel generation for illustration, the segmentation procedure compromises three
main steps as follows:

Step 1: Grid the original 3D data a, b, cð ÞT using the following formula:

ag ¼ ⟦
a
δa
⟧ � δa

bg ¼ ⟦
b
δb
⟧ � δb

cg ¼ ⟦
c
δc
⟧ � δc

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(3)

where ⟦:⟧ = a function that rounds the number to an integer, δa, δb, δc = user-
defined voxel dimensions along the a, b, and c axes, respectively. Figure 11a shows
the dense points that are converted to the gridded data.

Figure 6.
Comparison of two depth maps.

Figure 7.
Sight obstacle detection: (a) principle and (b) results.
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Step 2: Let Da,Db, and Dc be the distances along the a, b, and c axes from

min ag, min bg, max cg
� �T

to max ag, max bg, min cg
� �T

, respectively. Let da, db, and

dc be the distances along the a, b, and c axes from min ag, min bg, max cg
� �T

to a

certain grid point P, respectively. A null Db þ 1ð Þ � Da þ 1ð Þ � Dc þ 1ð Þ cell matrix
Θf g and the same-size numerical matrix Λ½ � are then constructed. The location of

the grid point P in Θf g or Λ½ � is db þ 1, da þ 1, dc þ 1ð ÞT. The location can be
converted to a linear index idx1D as follows

Figure 9.
VE results at a single node.

Figure 8.
Extraction of critical positions: (a) general process of identifying planar ground points and (b) critical positions
and driving lines.
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Figure 11.
Linear index-based segmentation: (a) process and (b) time performance.

Figure 10.
Visualization of VE results: (a) VE process, (b) cumulative times of invisibility, and (c) visibility ratio.
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idx1D ¼ dc � Db þ 1ð Þ � Da þ 1ð Þ þ da � Db þ 1ð Þ þ db þ 1 (4)

where da ≤Da, db ≤Db, dc ≤Dc and idx1D ≤ Db þ 1ð Þ � Da þ 1ð Þ � Dc þ 1ð Þ.
In a matrix, each element can be accessed through either its 3D location or the

linear index idx1D [19–21]. Using Eq. (4), a 1D index is obtained for each point.
Step 3: Sort the points by increasing idx1D, where the points falling inside a voxel

will share the same idx1D, as shown in Figure 11a. By computing the difference
∆idx1D between two consecutive idx1D, the points in a certain voxel is determined
by detecting the positions where ∆idx1D jumps. Suppose

I I1, I2 … I j … Imj j> 1,m≤ Db þ 1ð Þ � Da þ 1ð Þ � Dc þ 1ð Þ � 1
� �

is the set of indices of
∆idx1D >0. The I j-th to I jþ1-th points are placed in the idx1D,j-th element of Θf g. In
the meantime, set the idx1D,j-th element of Λ½ � equal to 1. Regarding the pillars
generation, the 1D index is written as

idx1D ¼ da � Db þ 1ð Þ þ db þ 1 (5)

Due to the high computational simplicity, detecting the jumps of ∆idx1D to
segment 3D data is faster than using the exhaustive searching or the kd-tree neigh-
bors searching algorithm. Besides, a corresponding binary matrix is generated in the
process of segmentation, which may aid in detecting either the indices of non-
empty pillars or the connected components (CC) when necessary.

Figure 11b shows the time performance of the linear index based segmentation
procedure on a computer with the processor of Intel®371 Core™ i5–6600, RAM
of 16 GB and GPU of Nvida®GTX-960. As δφ and δϕ are both set as 0:1°, the time
the segmentation procedure takes is linearly correlated with number of points.
Notably, it can process 2 million points within 1 seconds (s). Given the same
dataset, the processing time of the indexing operation is negatively and exponen-
tially correlated with the angular resolutions. However, the efficiency is still satis-
factory as it takes less than 1 s to handle 1.5 million points when both δφ and δϕ are
set as 0:05°.

Using the procedure shown in Figure 11a, the target pointsΦ and obstacle points
Ψ in the φ� ϕ� d space can be separately partitioned into numerous pillars and thus
two 3D depth maps are generated as shown in Figure 6. It is noteworthy that the
starting and the terminating points (see Figure 11) for calculating the linear indices
ofΦ andΨ are identical (i.e. the size of generated Λ½ � or Θf g is the same). As such,
there is a one-to-one correspondence between pillars of depth maps 1 and 2. The
binary matrix Λ½ � of depth map 2 can help determine the positions or indices of pillars
that have target points (i.e. Λ½ � ¼¼ 1). Then the obstacle points in the corresponding
pillar of depth map 1 can be retrieved via the linear index and compared with the
target points as noted in Figure 6. Let dmin bet the minimum distance of the closest
obstacle point to the sight point. As previously mentioned in Section 2.2.2, when δφ

and δϕ are small, the target points are invisible (marked in red in Figure) if their
d-values exceed dmin, otherwise they are visible (marked in green in Figure).

3. Visibility equipment

3.1 Overview

A growing number of diverse end users requires 3D data as many new outdoor
and indoor application domains benefits from three dimensional (3D) maps. The
new application domains include AV, smart cities, asset management, augmented
virtual reality, as-built drawings, and even gaming industry. Active and passive
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sensors are the main sensor types that can be used for scanning the surrounding
environment and generating 3D data. Lidar scanners are the main active sensors,
while optical cameras are the main passive sensors. The Lidar sensors are considered
the standard sensors used for 3D scanning and mapping. Unlike passive sensors,
Lidar scanners do not require an external source of light to illuminate the target.
Thus, it can scan day or night under all lighting conditions and with a higher
resiliency to scan in adverse weather conditions. The technological advances in
Lidar scanners and its miniaturization are rapidly growing and can be deployed for
several transportation application domains, such as AV, road furniture mapping,
road condition assessment, and 3D visualization.

3.2 Lidar operation

A Lidar scanner is an active Remote Sensing Sensor (RSS) that uses light as the
source of target illumination [22]. The Lidar unit emits a pulsed light beam or a
continuous light wave that hits the object and reflects back to the sensor. The
precise measurement of the range from the sensor to the target might follow one of
two methods. The first method involves the accurate measurement of the Time of
Flight, which is the time interval that has elapsed between the emission of a short
(but intense) light pulse by the sensor and its return after being reflected from an
object to the sensor. Then, the range is given by

R ¼ v t=2 (6)

where R = range (m), v = speed of light (m/s), and t = time interval measured
from the emission to reception of the light pulse (s), where v = �299,792,458 m/s.

The precision of the time measurement determines the precision of the range
measurement which is given by

∆R ¼ t∆v=2þ v∆t=2 (7)

where ∆R = range precision, ∆v = speed of light precision, and ∆t = time interval
precision. This method is commonly used in most Lidar systems.

The precision of the time measurement determines the precision of the range
measurement, with the high-end Lidar scanners (surveying scanners) capable of
measuring single pulse timing to a 3 picosecond (ps) accuracy and thus achieving a
1 mm range resolution. The range precision is given by

R ¼ Mλþ Δλð Þ=2 (8)

where M = integer number of wavelengths λð Þ, and Δλ = fractional part of the
wavelength.

Generally, laser scanners survey the surrounding environment by steering the
light beam through a mirror or a prism mechanism to cover one direction (e.g.
vertical direction). To provide a sequence of profiles around the vertical axis of the
laser unit and generate a 3D point cloud of the area around the laser unit, a
controlled and measured motion in another direction (e.g. azimuth direction in the
static terrestrial laser scanning case) is applied. Nevertheless, if the laser unit is
mounted on a moving platform, the controlled and measured motion in the azimuth
direction may be substituted by the platform movement.

Beam divergence is yet another factor that affects the 3D point cloud generation
[22]. The light beam is collimated when emitted from the laser unit, but as the light
beam propagates, the beam radius or diameter increases and the increase is related
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to the distance the beam travels. Beam divergence is an angular measure that relates
this increase to the distance it travels. The divergence affects the footprint that is
measured by the beam. Thus, the measured distance represents a wider area on the
target and, in turn, will decrease the specificity of the measured distance, as it will
miss any position variation within the footprint. The effect is further highlighted in
the case of long-range sensors, such as those used in Airborne Laser Scanning
(ALS). This explains the narrow beam divergence needed in the sensors used for
ALS, which is typically 0.5 mrad or less.

The Lidar sensor can be used in a mobile or static mode. In the mobile mode, the
sensor is mounted on a moving platform such as AV or included as part of a 3D
mapping system for mobile mapping and 3D map generation. In the static mode,
also known as roadside Lidar for traffic monitoring, the sensor is mounted at a fixed
location at an intersection to measure real-time traffic volume and speed. In the
static mode, the sensor can use power over Ethernet as a versatile way of providing
power to the sensor. The sensed data can then be classified using AI and big data
algorithms as pedestrian/cyclist/vehicles objects, where a unique ID is then assigned
to each classified object. The object can be continuously tracked using the position,
direction, and speed. A complete solution that empowers a smart traffic flow man-
agement can be designed by integrating the Lidar within a perception software and
IoT communications, thus improving mobility.

3.3 Types of Lidar scanners

Spinning multi-beam Lidar scanners, which are relatively recent, have been
introduced to meet AV industry requirements. Unlike 2D laser scanners that
depend on the platform movement which covers the third dimension, the sensors
have multiple beams with pairs of an emitter and a receiver for each beam. Each
beam is oriented at a fixed vertical angle from the sensor origin [23]. The multi-
beam mechanism spins mechanically around a spinning axis to cover 360° horizon-
tal field of view. The frequency of the spinning axis frequency of the Velodyne
Lidar sensors reaches 20 Hz, thus enabling a fast and rich 3D point cloud of the
vehicle’s environment and enhancing its 3D perception. Three examples of these
sensors are shown in Figure 12.

The solid-state flash Lidar is yet another Lidar technology. This technology
illuminates large areas simultaneously and measures the reflected energy on a
photonic phased array in an analogy of the digital camera complementary metal–
oxide–semiconductor sensor. Unlike the previously-discussed sensor data measure-
ment mechanisms, solid-state Lidar sensors do not have any moving parts and the
miniaturization allows on-chip lasers [23]. Three examples of these sensors are
shown in Figure 13.

It is worth noting that the current rapid increase in laser sensor technology is
being driven by the AV application domain. The solid-state Lidar sensors are very

Figure 12.
Examples of spinning multi-beam laser sensors: (a) Velodyne VLP-32c, (b) Hesai Pandar64, and
(c) Quanergy M8. Source: (a) www.velodyne.com (b) www.hesaitech.com, and (c) www.quanergy.com.
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promising as they are specifically designed for vehicle environment grid occupancy
detection and collision avoidance. As the technology advances, however, it is antic-
ipated that the solid-state Lidar technology will have a substantially positive effect
on the 3D mapping field. Two Livox Lidar sensors are available: Mid-70 which has
zero blind spot and Avia which has a detection range of up to 450 m along with the
multi-scanning modes (repetitive and non-repetitive). These sensors better meet
the needs for low-speed autonomous driving (Mid-70 sensor) and such applications
as topographic surveying and mapping and power line inspection (Avia sensor).
The sensors are shown in Figure 14.

3.4 New Lidar system

3D maps are a key infrastructure component needed for smart cities and smart
transportation applications. Mobile mapping allows the generation of 3D maps for
very large areas, which are considered cost-prohibitive to be mapped using con-
ventional mapping equipment. Active sensors are the primary RSS in a number of
mobile mapping systems. A mobile mapping system (MMS) is a moving platform
(typically a vehicle) where the Lidar-based system is mounted on. This setup allows
capturing data of large areas quickly, which is needed if conventional terrestrial
mapping is to be used. Mapping-grade MMS normally achieves sub-meter accuracy,
while survey-grade MMS achieves cm-level accuracy, where cost is typically US
$400 k and US$1 M, respectively.

Several factors hinder the current mobile mapping systems usage for many user
segments, including major investment, operational cost, unease of deployment, and
required level of expertise. The design, development, and implementation of a new
Lidar-based generic 3D mapping system has been carried out at the Department of
Civil Engineering, Ryerson University [24, 25]. The developed system uses the
relatively low-cost recently released RSS. The optimized selection of the sensors, the
smart integration of the 3D mapping system components on both the hardware and
software allow a higher level of versatility, ease of deployment, and substantial cost
reduction, compared to commercially systems, while maintaining a comparable
accuracy metrics. The system can be used on drones, cars, or as a stationary device.
The characteristics of the new system are shown in Table 1.

Figure 14.
Examples of the Livox Lidar sensors: (a) Livox Mid-70 and (b) Livox Avia. Source: www.livoxtech.com.

Figure 13.
Examples of solid state Lidar: (a) Velodyne Velarray: (b) Quanergy S3, and (c) Leddartech M16-LSR. Source:
(a) www.velodyne.com, (b) www.quanergy.com, and (c) www.leddartech.com.
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A sample of the 3D point cloud for a block at Ryerson University campus
collected by the new system and colorized by height is shown in Figure 15. The
figure clearly shows thin features such as overhead electricity wires, the traveled
way, sidewalk, pedestrian crosswalk, traffic lights, and other vehicles.

The new Lidar-based system holds great potential for implementation in 3D map
generation for AV. The drive behind the Lidar sensor technology advancement is to
build a very low-cost, miniaturized sensor that can provide the AV with the ability
of a robust 3D perception of the environment. A number of different competing
factors need to be optimized, including sensor characteristics, such as range, range
precision, horizontal and vertical fields of view, and size and power consumption.
The main objective is to allow obstacle detection in a fast and reliable manner even
at long ranges, thus ensuring safe vehicle operation.

3.5 Potential applications

The new Lidar sensors can benefit a multitude of application domains within the
transportation sector. Those sensors are used to create the 3D maps that serve as the

Figure 15.
3D point cloud of part of Ryerson University campus, showing street furniture (color-coded by height).

Feature Value

System accuracy 5 cm @ 50 m (1σ)

Weight (battery included)

Diameter

1.5 kg

10.3 cm

Height 15 cm

HFOV (VFOV) 360° (+15° to �15°)

Data 300,000 pts./sec (single return) 600,000 pts./sec (dual return)

Power consumption 19 W (Autonomy �1.2 hr)

Operating Temperature: -10°C to +60°C

Table 1.
Features of new Lidar 3D mapping system.
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infrastructure needed for smart cities and smart transportation applications.
Besides, Lidar sensors provide AV with its ability to perceive the 3D environment.

In addition, laser scanners can measure the amount of energy that has been
reflected from the target after being illuminated with the scanner emitted pulse.
The amount of reflected energy from each measured point constitutes the intensity
as measured by the sensor. This measurement can prove valuable in a number of
applications as asset management and lane marking extraction. The measured
intensity depends on the target reflectivity, which affects the amount of energy
reflected that can be detected by the sensor. As the target reflectivity decreases, the
amount of reflected energy diminishes, thus weakening the signal returned to the
sensor and deeming the target undetectable. The range and incidence angle to the
target also affect the measured intensity.

Pavement markings have a different reflectance than the asphalt, thus
allowing the automated extraction of the markings from the Lidar measured
object intensities. This enables lane mapping and also serves as a tool that can be
deployed for pavement marking assessment and evaluation. Street signs and furni-
ture can be automatically extracted from the Lidar measured 3D point cloud.
This is done using the fusion of the measured intensities, coupled with some
machine learning algorithms that uses features geometry which is also measured by
Lidar sensors.

A sample of a 3D point cloud intensity showing different features is depicted in
Figure 16. The numbers in the figure refer to objects as follows: lane markings (1),
vehicles (2), road surface arrows (3), zebra crossings (4), bike lane (5), a building
(6), and pedestrian (7). Some highlighted features from the Lidar 3D point cloud
intensity depicted in Figure 16a. As noted, the Lidar data intensity can be very
useful in the automated feature extraction of street furniture, pavement marking
assessment and evaluation which acts as an enabler for automated asset manage-
ment. Note that a true color 3D Lidar point cloud can be produced by the fusion of
the Lidar 3D point cloud and optical imagery, as shown in Figure 16b.

The fusion of Lidar 3D point cloud and optical imagery can prove very useful in
such applications as digital twin and 3D visualization with and enhanced visual
appeal. In addition, the different modality between Lidar data and optical
imagery improves automated 3D point cloud classification as the classification
process uses object geometry coupled with reflectance. The continued advances in
Lidar sensor technologies, IoT, AI, and big-data algorithms and with faster
wireless communications technologies that support cellular data networks 5G
(even the 6G networks expected in 2030s), with data transfer rate of speeds of

Figure 16.
Lidar 3D point cloud: (a) intensity and (b) true color.
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�95 Gb/s, the dream of mass deployment of an advanced driver assistance
system level 5 can become a reality.

4. Visibility methodologies

4.1 Infrastructure visibility

4.1.1 High-precision 3D maps

High-precision maps have been identified as one of the key technologies for
autonomous driving [26]. These maps need to be purpose-built and highly accurate,
with great level of details, and be updated in real-time. These maps, which are
particularly made for autonomous driving, provide true-ground-absolute accuracy,
normally at centimeter-level (5 cm or better), and contain details organized in
multiple map layers, such as base map, geometric map, semantic map, map priors
and real-time knowledge [27]. Technologies that can be leveraged for creating such
maps include aerial imagery, aerial Lidar data, mobile Lidar mapping, and
Unmanned Aerial Vehicles equipped with lightweight sensors. On the ground, HP
maps are mainly created using vehicles equipped with high-tech instruments [26].
Efforts on HP mapping in 3D include Civil Maps, HERE, DeepMap, TomTom HP
Maps, Mobileye, Uber Localization and Mapping, and Mapper, while most of them
follow crowdsourcing models.

In addition to supporting localization and navigation, HP 3D maps can be lever-
aged for lane network construction, dynamic object detection, prediction of motion
of vulnerable road users, and visibility analysis for the correlation between envi-
ronmental visibility and navigational comfort under autonomous driving [28, 29].
The so-called self-healing mapping systems allows a detailed inventory of road
features and objects, part of road infrastructure, on the side of the road for real-time
determination of infrastructure visibility.

To provide dynamic routing for any situation, Geographic Information System
(GIS) requires updated road network data, real-time traffic information, vehicle
current location, and destination. Real-time vehicle location is obtained using Radar
and Camera sensors using localization techniques such as simultaneous localization
and mapping (SLAM) that can localize vehicle with high precision and map its exact
location with respect to the surrounding environment. Localization can not only
determine vehicle location, but also map landmarks to update HP maps. Depending
on the use of sensors, the algorithm can be Lidar-based, Lidar and camera inte-
grated, or camera-based.

Building and maintaining detailed HP maps in advance presents a very appealing
solution for autonomous driving. However, exiting technologies may at the best
provide near real-time mapping, and may have missed critical information, such as
road markings and dynamic changes of road infrastructure. Real-time SLAM pro-
vides better solution to dynamic updating of HP maps for locating vehicles and
mapping the surrounding environment.

4.1.2 Sight obstacle detection

The technique for estimating visibility of target points described in Section 2.2
can be extended to detect sight obstacles that restrict infrastructure visibility (e.g.
traffic signs). Specifically, as shown in Figure 7a, the visibility of the target points
are determined by comparing their distances to the sight point with the minimum
distance (i.e. dmin) of the closest obstacle point to the sight point in each pillar.
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The sight obstacles can be detected in a similar way. The respective depth maps
of the obstacle points and target infrastructure points are first generated following
the steps presented in Section 2.2. Then, at the stage of comparing the depth maps,
another parameter is calculated, as shown in Figure 7a. Let dmax be the maximum
distance of the target points from the sight point. The obstacle points farther than
dmax will not affect the visibility of the target points. On the contrary, the obstacle
points whose d-values lie between dmin and dmax will obstruct the target infrastruc-
ture points whose d-values exceed dmin. The sight obstacle detection is completed
when all pillars are estimated. Figure 7b shows the detected sight obstacles that
affect the visibility of a traffic sign. In this case, when combined with the techniques
for automatically identifying traffic signs from MLS data, the visibility estimation
procedure can help understand the visibility of traffic signs to the AV along a road
corridor.

4.2 Traffic visibility

4.2.1 Overview

Guaranteeing adequate traffic visibility is crucial to the safe operation of AV. If
the sight lines to the conflicting objects (e.g. vehicles, pedestrians, and cyclists) are
obstructed by some obstacles (Figure 17a), the AV may not identify the objects at a
safe distance, which may lead to a collision. It is quite challenging for AV vehicles to
predict where pedestrians or cyclists may be present in a complex road scene in
real-time [30]. In this case, it is meaningful to identify the positions where road
users may exist in real-world using dense MLS points and investigate the visibility
of these locations to the AV in advance (see Figure 17a and b). Then the
georeferenced visibility information can be incorporated into HP maps, which may
help AV make some proactive measures to reduce the collision risk at locations with
unsatisfactory traffic visibility.

Figure 17.
Traffic visibility estimation for AV: (a) reasons for estimating traffic visibility, (b) critical positions, and (c)
general workflow of traffic visibility estimation.
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As shown in Figure 17c, the general process of traffic visibility analysis com-
prises two main components: (1) critical positions and (2) driving lines. The critical
positions correspond to the target points in the VE process (see Figure 4). The
driving lines in HP maps which aid in navigating AV can help derive sight points in
this case. Traffic visibility estimation in autonomous driving involves estimating the
visibility of some critical positions along the pre-defined driving lines to the AV and
generating the visibility map.

4.2.2 Critical position identification

In this example, the planar ground points are identified as the locations where
vehicles, pedestrians, or cyclists may exist. A common workflow shown in
Figure 8a is used to extract the critical positions. More specifically, MLS data are
first partitioned into a number of pillars with the linear-index based segmentation
technique illustrated in Figure 11. Next, a pillar-wise filtering is performed that the
points with δh (user–defined, e.g., 0.2 m) higher than the lowest point are removed.
The remaining points are considered as the rough ground points. Then, the kd-tree
data structure is applied to find k-nearest neighbors for each data point. The neigh-

boring points are used to derive the normal vector ξ
*

of each point [31]. Let γ be the

angle between ξ
*

and the vertical direction (i.e. 0, 0, 1ð ÞT). The points with γ≤ 5° are
considered as the horizontal and planar points.

Because we mainly focus on the locations where the road users may exist and
may conflict with the AV, a distance-based segmentation method is applied to
remove some isolated planar point clusters. The point cluster with the largest size is
determined as the ‘critical positions’. MLS data of a 500 m long urban road section is
used to illustrate the process of VE. The extracted critical positions using the
procedure shown in Figure 8a are marked in red in Figure 8b. The critical positions
covers pavement surface, sidewalks, and some planar surfaces connected to the
pavement. It is also recommended to use the semantic segmentation techniques
powered by deep learning to identify the critical positions more accurately.

4.2.3 Visibility estimation

The driving lines of AV are also plotted in Figure 8b. Each driving line is
composed of many consecutive nodes. At each node, suppose that the sight point
overlap with the node on the horizontal plane. However, the elevation of sight point
hs is adjustable to accommodate different height of Lidar sensors mounted on the
autonomous driving vehicles. Then, the VE procedure described previously is
applied to estimate the visibility of critical positions to the sight point. Figure 9
presents the VE results at a single node. The visible and invisible critical positions
are marked in green and red, respectively, while the potential obstacle points are
marked in gray. In Figure 9, the range of φ is �180°, 180°½ �, where both the front
and rear positions are estimated. Different limits can be set on the range of φ to
simulate varied horizontal viewing angles. The VE procedure at a single node can be
extended to estimate the locations where the sight triangle is clear at intersections
[16]. Specifically, if there are invisible (red) regions (see Figure 9) inside the sight
triangle, it means the sight triangle is not clear.

The VE procedure is executed along the driving lines node by node (see
Figure 10a) to gain a better understanding of traffic visibility for AV. In this phase,
the variables involved are hs = 1.6 m, dview = 100 m, φview = �60 to 60°, ϕview = � 30
to 30°, δφ = 0.1°, and δϕ = 0.1°. The users may also adjust dview, φview etc. to
investigate different situations.
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The VE results are visualized in Figure 10. In this example, two types of quanti-
tative information are derived based on VE results at each node. Figure 10bmaps the
cumulative times of invisibility Ninvis at a point level. The initial Ninvis of each target
point is zero. During the process of VE, Ninvis ¼ Ninvis þ 1 each time when the target
point is not seen by the ego vehicle. A largeNinvis means the target point is invisible to
the AV for many times. The magnitude of Ninvis is visualized with colors in
Figure 17bwhichmay help to identify the possible locations of the blind areas for the
ego vehicles. As marked with rectangles, the visibility of these locations are poorer,
which means that the AV may need to decelerate when approaching these locations
to avoid potential right-angle collisions. Also, the blind-area results can be estimated
in conjunction with collision data in future studies to better understand road safety.

Figure 10c shows the variation of the visibility ratio Vr along the driving lines.
The Vr measures the ratio of visible targets to all targets at a single position. A low
Vr may indicate that a majority of target points are invisible to the AV. Because Vr

can be integrated with the driving lines, the AV can know where the visibility ratio
is relatively low based on its location. In that case, the ego vehicle can decelerate in
advance at a location with very low Vr to reduce the probability of colliding with a
running pedestrian from a blind area.

5. Decision

5.1 Path planning

This chapter has addressed so far the visibility element of autonomous vehicles,
which is the main focus of the chapter. It is useful, however, to highlight the
decision element (see Figure 1), which involves path planning. This element is
considered to be the main challenge of autonomous vehicles. Path planning enables
the autonomous vehicle to find the safest, most convenient, and most economic
route between two points. One of the main modeling approaches to define such a
route is Model Predictive Control (MPC). There is a variety of MPC, but basically
the model solves a finite-time constrained optimal control problem in a receding
horizon using nonlinear optimization. An application of path planning and control
for overtaking on two-lane highways using nonlinear MPC can be found in [32].

There are two approaches for path planning (hierarchical and parallel) [33]. In
the hierarchical approach the autonomous vehicle completes long-term mission and
reduce the workload of motion planning. The input higher-level mission is
decomposed into sub-missions and then passed to the next level down. The hierar-
chical model helps to resolve many complicated problems, yet it might slow down
the work of a vehicle’s feedback control and complicate the performance of sophis-
ticated maneuvers. In the parallel approach, the tasks are more independent and can
proceed simultaneously. In this approach, each controller has dedicated sensors and
actuation mechanisms. The advantages of this approach: (1) the controllers are
running at high frequency, which makes them safe and stable, (2) a high level of
smoothness and performance is achieved by the controllers, and (3) the approach is
relatively inexpensive and does not require using complicated motion planning
devices. However, for some purposes, the hierarchical approach is more efficient.
Figure 18 illustrates the hierarchical approach, based on [33].

Extensive research has been conducted for path planning for automated parking,
which is now a reality in many cities [34–38]. Automated parking aims to eliminate
the influence of human factors, improve the quality and accuracy of control, and
reduce the maneuver time by optimizing vehicle path in restricted parking zones.
The vehicle to anything technology (V2X) allows communication between AV and
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a building through data exchange to find an unoccupied space and generate the
route to a destination. For large-sized trucks, the tasks involve predicting stable and
safe passing on road curves and forecasting precise control for docking. Numerous
approaches that consider different control strategies, sensory means, and prediction
algorithms (e.g. geometric, fuzzy, and neural) for predicting vehicle parking path
have been developed.

Recently, the bicycle kinematic models for vehicle motion have been used for
path planning of automated parking [39]. Three basic types of vehicles were con-
sidered: passenger car, long wheelbase truck, and articulated vehicles with and
without steered semitrailer axes. The authors presented a system of differential
equations in matrix form and expressions for linearizing the nonlinear motion
equations that increased the speed of finding the optimal solution. An original
algorithm that considered numerous constraints was developed for determining
vehicle permissible positions within the closed boundaries of the parking area using
nonlinear MPC that finds the best trajectories.

Figure 19 shows the kinematics of the curvilinear motion and the simulation
results that validated the proposed model. Note that in this study, kinematic vehicle
models were used instead of dynamic models. Kinematic models assume that no slip

Figure 19.
Modeling and simulation of autonomous docking of tractor-semitrailer vehicle with semitrailer’s steered axles:
(a) kinematics of curvilinear motion and (b) simulation results [39].

Figure 18.
Hierarchical approach for path planning.
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occurs between the wheels and the road. This assumption is reasonable for vehicles
moving at low speeds, which is the case for parking. However, dynamic models
should be used for path planning of autonomous vehicles on highways since they
are more accurate.

5.2 Intelligent car-following

Autonomous vehicles and connected automated vehicles (CAV) with advanced
embedded technology can deliver safe and effective traffic movements [40]. How-
ever, there will be a transition period when AV and human-driven vehicles would
share the common road space. Therefore, it would be extremely critical to organize
the interactions which will likely be generated from that vehicle mix. Due to the
anticipated asymmetric response of these two modes of vehicles, many possible
combinations of these vehicles are possible. These combinations may give rise to
interactions due to longitudinal and transverse movements.

To ensure safe interactions, the intelligent vehicles may include adaptive cruise
control (ACC) and cooperative adaptive cruise control (CACC) systems. These
systems mainly assist the acceleration control for the longitudinal movements. The
systems control the acceleration based on the distance gap and the speed difference
between the current vehicle and the vehicle ahead (leader), where the vehicle
accelerates and decelerates based on the speed changes of the leader. For the ACC
system, the distance and speed are obtained using radar, Lidar, or video cameras.
For the CACC system, V2V communications are used to share the acceleration,
deceleration, breaking capability, and vehicle positions [41]. This communication
significantly shortens the time headway (0.5 s) of the CACC vehicle compared to
the ACC vehicle (1.4 s).

To obtain deeper insights into car-following behavior, micro simulation studies
were conducted to estimate the impacts of AV and CAV using a variety of assump-
tions [41]. Car-following models involving intelligent vehicles were developed to
evaluate their traffic impacts on such aspects as capacity and level of service, traffic
stability, travel time, and vehicle speed. Several studies estimated the energy,
environmental, and safety impacts using surrogate safety measures, such as travel
speed, time-to-collision, and post-encroachment-time.

New car-following models for AV and CAV were developed by modifying avail-
able traditional car-following models to mimic the intelligent vehicle characteristics.
The Intelligent Driver Model (IDM) [42], a time-continuous car-following model
for the simulation of freeway and urban traffic, is the most commonly used model
for simulations of intelligent vehicles. The basic function of the model is given by

aIDM s, v,∆vð Þ ¼ dv
dt

¼ a 1� v
vo

� �δ

� s ∗ v,∆vð Þ
s

� �2
" #

(9)

s ∗ v,∆vð Þ ¼ so þ vT þ v∆v

2
ffiffiffiffiffi

ab
p (10)

where s = current distance gap to the leader (m), so = minimum distance gap
(m), v = current speed (m/s), vo = desired safety speed (m/s), Δv = speed difference
between the current vehicle and the leader (m/s), δ = parameter that determines the
magnitude of acceleration decrease (usually set equal to 4),T = desired safety gap
(s), a = maximum acceletation (m/s2), and b = comfortable deceleration rate (m/s2).
Note that s*(v, Δv) is the desired distance gap (m).

Another car-following model that is commonly used models for conducting
cooperative intelligent-vehicle simulations is the MICroscopic Model for Simulation
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of Intelligent Cruise Control (MIXIC) [43]. Both IDM and MIXIC have been used as
the benchmark models for combined AV and human-driven vehicles for various
market penetration rates ranging from 0 to 25% [44, 45]. However, detailed cali-
bration procedures of model parameters used in these models are not available due
to the limited or unavailability of empirical data.

On these lines, substantiating vehicle’s longitudinal motion in mixed traffic
conditions is even more critical using available car-following model parameters. In
the present context, the car-following models used in simulation packages need to
be suitably modified. Further, most of these models are straightforward in their
approach with a limited set of parameters. The simplification of available model
parameters might not affect the simulation results to the extent the intelligent
vehicles may impact the traffic streams in real-field experiments. For example,
most car-following models tend to have fixed parameters and will average out
driving characteristics. If such models are used for AV, they can reflect neither the
driving style of the vehicles’ actual drivers nor the contexts in which they drive.

In this direction, the intelligent car-following behavior models, which can con-
currently consider all necessary parameters and adapt to specific field actions must
successfully integrate possible mixed traffic scenarios. Hence, there is a strong need
to modify the existing conventional models to handle the higher order of
stochasticity due to mixed driving conditions. Alternatively, data-driven methodol-
ogies can be used to provide high-quality trajectory data for varying scenarios of
automation. These data may be generated from experiments by creating test beds or
even using driving simulators with human-machine interaction. For this purpose,
the trajectory data available from simulation models may also be useful. Consider-
ing the recent highlights of AI, even intelligent car-following models can benefit
from data learning methodologies. Clearly, the impact analysis of intelligent vehi-
cles should consider the many uncertainties due to mixed traffic conditions.
Although a few new models have been developed or modified to incorporate
car-following and lane-changing attributes of intelligent vehicles, empirical data are
warranted for model calibration.

6. Conclusions

This chapter has presented an overview of the visibility-based technologies and
methodologies for autonomous driving. Based on this overview, the following com-
ments are offered:

1.The Lidar height is a key parameter that affects the visibility of the road
ahead and in turn sight distance that influences the design of horizontal and
vertical alignment as well as intersections. To ensure safety of AV when
operating with human-driven vehicles on existing highways, the Lidar height
should generally be larger than the current design heights for passenger cars
and less than that for trucks.

2.The new Lidar system developed at Ryerson University holds great potential
for generating 3D maps for AV. The system is cheap, allows AV a robust 3D
perception of the environment, and allows obstacle detection in a fast and
reliable manner even at long ranges.

3.The infrastructure and traffic visibilities can be estimated for autonomous
vehicles based on a combination of MLS data and the driving lines of HP maps.
The generated visibility map can be incorporated into the HP maps and help
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the autonomous vehicle develop some proactive speed control strategies at
locations where the visibility is unsatisfactory.

4.The uncertainty of the input variables can substantially affect the reliability of
the design elements. Therefore, reliability analysis should be incorporated in
all the tasks related to SD determination to ensure safe operation of the
autonomous vehicles. Extensive uncertainty research has been conducted on
the required SD and similar research is lacking for the available SD determined
using the Lidar.

5.Geographic information systems provide support for route planning and real-
time and dynamic routing/navigation of AV using GNSS, localization
techniques, and HP maps. The GIS navigation helps to guide the autonomous
vehicle along the best route to its destination safely.

6.The intelligent car-following strategies are expected to show good
performance in simulation environments. However, in the calibration using
real-field conditions/experiments, the input to simulation models would not be
beneficial as it is limited to the available parameters that correspond to specific
conditions. The parameters should be based on the surrounding environmental
factors for all possible combinations of autonomous and human-driven
vehicles. This is a mammoth challenge due to the limited empirical data.

7.Another challenge of autonomous driving is related to the complexity of the
software algorithms needed to process the large amount of information
coming into the AV (estimated at 1 billion lines of code) which is then used to
make decisions about the proper action. The software complexity is
compounded by the fact that AV will operate on roads full of unpredictable
drivers of human-driven vehicles.
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List of acronyms

ACC adaptive cruise control
AI artificial intelligence
ALS airborne laser scanning
AV autonomous vehicles
CACC cooperative adaptive cruise control
CAV connected automated vehicles
DSD decision sight distance
GIS geographical information system
GNSS global navigation satellite system
HP high-precision
IDM intelligent driver model
IoT internet of things
ISD intersection sight distance
Lidar light detection and ranging
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LOS line of sight
MLS mobile laser scanning
MSS mobile mapping system
PSD passing sight distance
SD sight distance
SLAM simultaneous localization and mapping
SSD stopping sight distance
RSS remote sensing sensor
VE visibility estimation
V2I vehicle-to-infrastructure
V2V vehicle-to-vehicle
1D one dimensional
3D three dimensional
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