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Chapter

Assessment and Analysis of
Offshore Wind Energy Potential
Radian Belu

Abstract

Wind energy usage is increasing at fast rates due to significant technical
advances, energy supply security and environmental concerns. Research is focusing
among others areas on the development of reliable and accurate wind energy
assessment methods. Offshore wind energy resources are usually larger than at
geographically nearby onshore sites, which may offset in part higher installation,
operation, and maintenance costs. Successful offshore wind energy development
relies on accurate analysis and assessment of wind energy resource potential. Off-
shore wind assessment challenges are related to the wind turbine size, offshore
installation challenges, lack of adequate and long-term wind and meteorological
measurements, etc. Wind, a highly intermittent phenomenon has large spatiotem-
poral variability, being subject to sub-hourly, hourly, diurnal, seasonal, yearly, and
climate variations in addition to their dependence on the geography and environ-
ment. Wind regime characteristics are critical to all aspect of a wind energy project,
e.g. potential site identification, economic viability, equipment design, operation,
management, or wind farm impacts on the electric grid. For a reliable wind energy
assessment, measurements at rotor heights are required at least for one year. If such
measurements are not available needs to be substituted by alternative approaches,
e.g. measure-correlate-predict or numerical methods. Chapter objectives are to
provide the reader with comprehensive reviews of the wind energy assessment and
analysis methods.

Keywords: wind regime, offshore resource assessment, wind characteristics, wind
profiles, turbulence intensity, wind statistics, measure-correlate-predict techniques

1. Introduction

Wind power is viewed as one of the most techno-economically viable renewable
energy sources for electricity generation. In resource-ideal locations, the wind gen-
erated electricity costs are competitive with conventional power generation. Accu-
rate estimates of the energy production together with good estimates of the
uncertainties associated with any project are required to secure funds and hedge
wind project risks. Wind energy resource assessment enters into the several project
development phases: (1) suitable wind energy site prospecting, (2) site mapping
and wind farm design, (3) wind turbine micro-siting, (4) risk assessment and
performance analysis, (5) permitting and tower certification, and (6) wind farm
operation and management [1–21]. Better knowledge, the smaller are the safety
margins, therefore, the higher investment potential returns. An accurate prediction
of the potential wind farm performance is therefore vital for the project success.
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Electricity generation from wind can be economically achieved only where a sig-
nificant wind resource exists. To maximize the wind form power output, the
resource assessment at any prospective site is critical. Wind is highly variable,
geographically and temporally, its variability persisting over a very wide range of
spatiotemporal scales. Due to the cubic relationship between wind speed and energy
output, sites with small differences in wind speeds can have substantial differences
in available wind energy [2–10]. A wind power assessment is accurate, only if the
wind speeds and directions are measured at the wind turbine hub height and for a
significant time-period. Knowledge of the local wind regime is vital to the industry,
yet commercially viable products that meet the wind industry needs are often
questionable. Three main phase involved with project planning and operation,
requiring accurate wind characterization are: (1) prospecting and siting, by using
historical data, retrospective forecasts, and statistical methods to identify potential
wind energy sites; (2) specific micro-siting assessment to determine the optimum
wind energy project layout; and (3) operation using the wind prediction to deter-
mine available power output for specific time horizons. However, the most critical
factor is the wind energy resource identification and characterization. Wind energy
resources depend on the wind regime, varying in time and space due to large- and
small-scale atmospheric circulations, surface energy fluxes, and geography. Ulti-
mately, wind energy production is governed by factors such as: large-scale genera-
tion potential, grid supplied power predictability, and the expected investment
returns. The various wind energy uncertainties impact the reliable determination of
these viability factors.

Offshore wind power relates to the installation of wind turbines in large water
bodies. On average, winds blow faster and more uniformly over the sea than on
land, and a faster and steadier wind means less wear on the turbine components and
more electricity generated per turbine [12–20]. Due to cubic relationship of the
potential energy produced from wind and the wind speed, any wind speed marginal
increase results in larger generated electricity. Notice that the offshore wind energy
is also the most developed form of marine renewable energy in terms of technology,
policy frameworks, and installed capacity. The offshore wind industry needs
detailed wind regime information for proper structural design, e.g. wind shear and
veer, across the rotor plane as well as between the water surface and hub height,
turbulence, ideally at hub height, wind speed profile, wind velocity probability
distributions, and extreme weather conditions. In addition to detailed wind
information, other environmental data are also important during the design and
operation, e.g. air and water temperature and gradients, tidal, storm surge, extreme
waves, marine currents, atmospheric humidity, pressure, density, icing character-
istics, hail and lightning frequency and severity, and seismic conditions [2–4, 9–22].

The most important activity in a site selection is to determine the wind energy
resource potential, consisting in the estimated local wind velocity probability den-
sity function. Other important aspects in this context are estimating the turbulence
levels and the resulting wind turbine loads at the concerned site, promoting better
decision making, in selecting the most suitable site wind turbines and the project
life cycle cost prediction. Higher wind loads result in higher maintenance and
operation costs [1–27]. Other site selection criteria are: (1) local geography, (2)
electric grid proximity, (3) permitting and land acquisition, and (4) site accessibil-
ity for transportation and maintenance. A planning strategy accounting for key
engineering design factors and addressing the uncertainties in the wind energy
project offers to the wind energy industry a powerful impetus. However, the wind
energy resource itself is highly uncertain, while the wind conditions (wind speed
and direction), turbulence intensity and air density are showing large temporal
variations, varying significantly from season to season or from year to year.
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Inaccuracies in wind velocity distributions can introduce significant errors in the
estimated wind resource potential or in the wind farm performance prediction. Key
measures of wind power plant performance include annual energy production, cost
of energy, and payback period. Both parametric and nonparametric uncertainty
models are formulated, which can be leveraged in conjunction with a wide variety
of wind velocity distribution models [2–14].

Wind energy measurement campaigns have traditionally been conducted with
mast-based instrumentation consisting of cup anemometers and wind vanes.
Almost all field campaigns are also using temperature, pressure, and humidity
sensors, besides the wind velocity sensors [2–16]. However, many wind energy
developers and manufacturers stick to the standard mast configuration for long-
term measurement campaigns. Notice that sonic anemometers and wind remote
sensing instruments are still far from being standard instruments in wind energy
assessment although they are being used more and more for detailed measurement
campaigns or performance testing. Given the field campaign limited time span, it is
often needed to extrapolate wind time series to periods of at least 5 years to better
predict the long-term average energy yield. For this purpose, the measure-correlate-
predict (MCP) methods are still the most used methods. Numerical models are
especially used in wind resource assessment to spatially extrapolate the wind mea-
surements to obtain wind maps, and vertically to estimate hub-height wind fields.
Additionally, numerical weather prediction models are used to construct simulated
historical time series that can be used to extend limited wind measurement time
series to longer time spans in a similar way to the MCP methods. Usually
measurement techniques are available for on-site measurement ranging from point
measurements performed at different heights using anemometers or ultrasonic
sensors to profiling techniques like sonic detection and ranging (SODAR) or light
detection and ranging (LIDAR) systems. However, many measurement campaigns
for commercial wind projects or even for wind energy research projects rely on cup
anemometry and ultrasonic sensors, the latter being preferred in research projects.
However, remote-sensing techniques (SODARs and LIDARs) are increasingly used
as complementary techniques, providing high quality wind vertical profiles at
higher sampling rates [1–20]. In wind projects the profiling instruments can be
conveniently relocated within the project area for specific wind measurements.
Remote sensed wind speed measurements are needed to supplement mast mea-
surements, especially in off-shore, campaign to evaluate wind flow models for
resource assessments, power curve measurements, or uncertainty evaluation.

The primary objectives of robust, accurate and optimal wind farm planning
include: optimal site selection, based on the quality of the wind energy resource,
maximization of the annual energy production, energy cost minimization, and
reliability wind farm energy production maximization. Major activities in a site
selection are accurately determining the wind energy potential at the candidate site,
turbulence levels and the resulting wind loads at the wind farm site. Such activities
are critical for selecting site optimum wind turbines and to predicting the life cycle
cost of the project, higher wind loads usually implying higher costs. Other wind
energy site selection criteria include, but not limited local geography, distance to
electric grid connections, permitting, and site accessibility.

1.1 Issues and challenges of the offshore wind resource assessment

Developing any offshore wind energy project presents unique and specific chal-
lenges, different from the onshore wind energy counterparts. Offshore wind farms
are subject to specific atmospheric conditions, the see atmosphere boundary layer
dynamics are significantly different from the land ones, and in many regards, not
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fully understood [2–14]. Moreover, the atmospheric observations over the ocean or
see are sparse compared to land, requiring an increasing reliance on numerical or
MCP models to assess wind energy potential [2–4, 9–18]. Good wind energy poten-
tial is by far the most important factor, in any offshore wind energy project,
considering relative merits of the potential sites. Wind energy resource assessment,
covering a wide range of spatiotemporal scales, is playing a critical role in deter-
mining the wind energy project economic viability, described as a two-phase pro-
cess: (a) regional wind energy resource assessment, and (b) site specific analyses of
the energy resource quality. Successful offshore wind energy projects are relying on
accurate estimate of the wind regime. However, since installing and operating
offshore measurement equipment and meteorological masts are expensive and dif-
ficult to operate; prospective sites must be carefully evaluated through remote
sensing, numerical model data or measure-correlate-predict approaches [2–4, 9,
14–18]. Relative paucity of comprehensive offshore wind velocity observations,
with proper spatio-temporal resolution makes the offshore wind energy assessment
more challenging than for the onshore sites. Notice also that the floating offshore
wind technology is constrained by some practical installation depths (up to 1300 m
depth), limiting the offshore wind energy availability and areas. The depth limits up
to 1300 m are based on economic criteria, safety and installation issues for the
electrical undersea power cables.

There are main issues regarding the offshore wind energy resources, e.g. atmo-
spheric stability conditions, wind dynamics, the extrapolation of the wind speed at
turbine hub heights due to the lack of adequate observations. For example, the
influence of thermal stratification on vertical profiles of wind speed is believed to be
larger than over land due to lower mechanically generated turbulence [9, 14]. Other
issues affecting offshore wind energy resources are that many of the offshore wind
farms are located in the coastal areas, the region extending from the coastline,
where the wind velocity and turbulence profiles are not in equilibrium with the
underlying sea surface, significantly affecting the wind shear, wind profiles and
turbulence. Research works are suggesting that the distance from the coastline over
which wind speed vertical profiles are not at equilibrium with the sea surface
extends for about 20 km and possibly larger distance from the coastline [9, 12–14].
Several studies have demonstrated that careful area meteorology and climatology
considerations, when determining the layout of an offshore wind farm can increase
its power production, improving wind farm viability [9, 12–16]. It was shown by
using a mesoscale model, incorporating a wind farm parameterization can improve
wind energy resource assessment [9, 13–16]. Offshore wind energy assessments
should also take into consideration the experience, technology advancements, and
trends of the offshore wind industry over the past few decades to establish physical
parameters for array power density and wind turbine height that are needed to
accurate evaluate the power capacity and energy production [2–4, 9–19]. Notice
that the assessment of availability for good offshore wind energy sites is dependent
on meteorological see conditions, the service equipment availability, electric grid
proximity and the land-based infrastructure.

2. Factors affecting wind power computation

Wind shear, turbulence intensity, and atmospheric stability effects on wind tur-
bine production are not fully understood, and can introduce large uncertainties on
wind energy assessment. The estimation of these uncertainties is related to empirical
considerations rather than theoretical calculations. Several studies are suggesting that
the natural variability of wind energy resources should include air density, surface
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roughness, associated probability distributions, and error for prediction of long-term
wind velocity. Depending on atmospheric conditions, waking by upstream wind
turbines and roughness interactions, wind turbines often operate far from the ideal
conditions, field-deployed power curves being quite different from certified ones
[2–12]. Better predictions of power output or loads require representative wind
measurements and power estimates over the rotor-swept area for individual wind
turbines. Depending on the flow properties and motion scales, the flow can become
turbulent [2–4]. There are three approaches that can reduce the wind energy inter-
mittency: spatial distribution of wind power facilities, accurate forecasting, and
energy storage systems. Although wind generation is subject to large wind variations,
if the facilities are spatially distributed, an overall output at any time is more uniform
and reliable. The wind speed increases with height, higher elevation sites offering
greater wind energy resources. However, the air density decrease with height reduces
wind turbine power output. However, it is advantageous to locate turbines at higher
elevations to take advantage of higher wind speeds. Power curves for various air
density values must be accounted for better power output estimate accuracy. Air
density is usually calculated from temperature and pressure measurements [2–4].
Depending on the wind turbine, either the wind velocity is normalized for power
calculations. The wind speed is normalized with the reference air density ρ0, as:

vnorm ¼ v
ρ

ρ0

� �1=3

(1)

The usual hub-heights of 80 m or higher of the modern, the rotors may encoun-
ter large vertical gradients of wind speed and boundary layer turbulence. Wind
turbine rotors are susceptible to turbulence fatigue damages. Understanding of the
turbulence impact on the blades can help in better designing the operational and
maintenance schedules for wind farms. Consequently, the full understanding can
lead to advanced and improved control and management schemes and methods.
Quantification of the turbulence effects on wind turbine is usually done by com-
puting an equivalent fatigue load parameter, as a function of wind fluctuation
amplitudes within the averaging period, blade material properties, and the size of
measurement samples. It is found that the highest blade root flap bending moment
equivalent fatigue load does not correspond to the greatest wind speeds, but to the
class of wind speeds that has the highest amplitude of the fluctuations [2–4, 18–27].
Turbulent fluctuations are found to be the main source of the blade fatigue. The
turbulence intensity (TI), a measure of the overall level of turbulence, is defined as:

TI ¼ σv

v
(2)

where σv is the wind speed standard deviation (m/s) at the nacelle height over a
specified averaging period (usually 10 min). In [21] was found that, from the power
curves for different turbulence intensity classes and for low to moderate wind
speeds (4 to 12 m/s), the high TIs are yielding the higher turbine power output. TI
index is affected by the atmospheric stability, so the theoretical wind turbine power
curves [2–4, 13–21]. A correction factor, common used, for the effect of turbulence
intensity is given by:

vcorr ¼ vnorm 1þ 3 TIð Þ2
� �1=3

(3)

Vertical wind shear effects are important as the wind turbines become larger and
larger. It is therefore quite questionable whether the hub height wind speed is
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representative. Various methods exist concerning the extrapolation of wind speed
to the hub height of a wind turbine. The wind velocity varies as a disproportionate
function of height. At low height levels surface friction and low level obstacles
introduce turbulence and reduce the observed wind velocity. The velocity u(z) at
low height levels over consistent terrain or see surfaces is conventionally approxi-
mated by the logarithmic function, of u* is the scaling velocity, k is the Von
Karman’s constant, usually equal to 0.4, z is the desired height level and z0 the
roughness length, values lower than 0.01, while the roughness length or surface
friction is the parameter of most influence in equation, defined as:

u zð Þ ¼ u ∗

k
ln

z

z0

� �

(4)

There are several theoretical expressions used for determining the wind speed
profile. However, the increase of wind speed with height should be considered for
the installation of large wind turbines. Thus, the surveys must rely to simpler
expressions and secure satisfactory results even when they are not theoretically
accurate. For h0 = 10 m and z0 = 0.01 m, the parameter α = 1/7, which is consistent
with the value of 0.147 used in the wind turbine design standards (IEC standard,
61400-3, 2005) to represent the change of wind speeds in the lowest levels of the
atmosphere. Wind speed is usually recorded at the standard meteorological height
of 10 m, while wind turbines usually have hub heights near 80 m. In cases which
lack of elevated measurements, the hub-height wind velocity is estimated by
applying a vertical extrapolation to the surface or reference measurements. How-
ever, the vertical extrapolation coefficient may contain errors and uncertainties due
to terrain complexity, ground or see conditions, atmospheric stability, and turbu-
lence [2–4, 17–36]. The wind speed v(z) at a height z can be calculated directly from
the wind speed v(zref) at height zref (usually the standard measurement level) by
using the logarithmic law (the so-called Hellmann exponential law) expressed by:

v zð Þ
v0

¼ z

zref

 !α

(5)

where, v(z) is the wind speed at height z, v0 is the speed at zref (usually 10 m
height, the standard meteorological wind measurement level), and α is the power
law index. This coefficient is a function of the site surface roughness and the
thermal stability, frequently assumed to be 1/7 for open land. However, this
parameter can vary diurnally, seasonally and spatially. It was found that a single
power law is insufficient to adequately estimate the wind power at a given site,
especially during nighttime and in presence of the low-level jets. Another formula,
the logarithmic wind profile law, widely used in Europe, is:

v

v0
¼ ln z=z0ð Þ

ln zref=z0
� � (6)

Here, z0 is again the roughness length, expressed in meters, depending basically
on the surface type, ranging from 0.0002 up to 1.6 or higher. In addition to the
roughness, these values can vary during the day and at night, and even during the
year. Once wind speeds have been calculated at other heights, Eq. (6) can be used
for calculating the useful wind energy potential. Notice that the wind shear over the
rotor area can also be significant. The standard procedure for power curve mea-
surements is given by the IEC Standard, 6-1400-12-1, 2005 [19], where the wind
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speed at hub height is considered representative of the wind over the rotor area.
This assumption can lead to large wind power estimate inaccuracies since inflow is
often non-uniform and unsteady over the rotor-swept area. By integrating the wind
profile over the rotor span, a corrected wind speed is obtained:

Uavrg ¼
1

D

ð

HþD
2

H�D
2

v zð Þdz ¼ v Hð Þ � 1

αþ 1
� 3

2

� �αþ1

� 1

2

� �αþ1
 !

(7)

where H is the nacelle height and D is the rotor diameter. It is observed these
corrections have less significant effects. For wind speeds in the range 4 m/s to 20 m/s
(the useful wind speed regime) the corrected power differs less than 5% from the
uncorrected power. However, the corrected power is larger than the uncorrected
turbine power.

An additional wind velocity property that can make the impact on wind turbine
operations is the wind gustiness. Proper wind turbine design and operation requires
knowledge of wind extremes and gustiness, defined by the wind gust factor. This is
important in areas where wind climate shows strong gusty winds, e.g. downslope
windstorms [3, 50, 51]. In sites with higher turbulent intensity and gusty winds,
turbines are subject to extreme structural loading and fatigue. The gust factor (G) is
defined as:

G ¼ ug
U

� 1 (8)

where ug is the gust speed and U is the mean daily wind speed. Higher gusts are
usually associated with higher mean wind speeds; however, it also is expected that
normalized gust speed ug/U and, consequently, the gust factor, G, decreases with
the increasing mean speed. The following equation relates the gust factor to the
mean daily wind speed:

G ¼ AUn (9)

where the parameters A and n are obtained by using a least-square fit of the
logarithm of G vs. the logarithm of the mean daily wind speed. While gusts gener-
ally decrease as wind speed increases, in extreme cases the wind gusts can easily
reach over twice the strongest wind speeds (v > 20 ms�1) and damage a wind
turbine. However, wind gusts over 25 m/s, the upper wind speed limit of a large
wind turbine, are quite unlikely in many areas, occurring only about 2% of time
[2–4, 23–25]. Gusts associated with stronger winds may cause considerable losses by
reducing the energy production of the wind turbine which would otherwise operate
at nominal output power. Another effect of wind gust is the additional stress on the
wind turbine structure, which may reduce its lifespan.

The low-level jet, observed worldwide is a mesoscale phenomenon associated
with the nighttime very stable boundary layer that can have a width of hundreds of
kilometers and a length of a thousand kilometers. During nighttime and over land,
ground surface cools at a faster rate than the adjacent air and stable stratification
forms near the surface and propagates upward. Downward mixing of the winds is
reduced, and winds aloft become decoupled from the surface and accelerate. The
maximum wind speeds are usually 10 m/s to 20 m/s or even higher at elevations
100 m to 300 m. Consequently, it is not possible to accurately estimate winds aloft
at hub and blade tip heights from routine surface measurements [4]. Additionally, a
strong wind shear and associated turbulence are developing at the bottom and top
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of the jet layer. After the wind velocity field data are collected and transferred to the
computing environment, the next steps are to validate and process data, and gen-
erate reports. Data validation is defined as the inspection of all the collected data for
completeness and reasonableness, and the elimination of erroneous values. Data
validation transforms raw data into validated data. The validated data are then
processed to produce the summary reports required for analysis, step crucial in
maintaining high rates of data completeness. Therefore, data must be validated as
soon as possible, after they are transferred. The sooner the site operator is notified
of a potential measurement problem, the lower the risk of data loss. Data can be
validated either manually or by using computer-based data analysis [2–4]. The
latter is preferred to take advantage of the computer power and speed, although
some manual reviews are always required. Data validation implies visual inspection,
editing, missing data interpolation, outliers and questionable data rejection, and
finally saving data in appropriate format.

3. Wind energy statistical analysis

The wind is characterized by its speed and direction which is affected by several
factors, including: geographic location, climate characteristics, height above
ground, vegetation and surface topography. Wind turbines interact with the wind
capturing part of its kinetic energy and converting it into usable energy. Wind
availability, the influence of the turbine height installation above ground, the wind
gusting effect and the wind turbine micro-sitting are the main influences of the
annual energy output and are the theoretical basis for the wind energy assessment
[2–9, 14, 32–60]. There main aspects of the wind resource assessment are the wind
power potential estimate, and the prediction of the wind plant energy production.
The measured wind velocity data were usually available at 10 m standard meteoro-
logical height. However, sometimes the anemometers are installed on top of build-
ings or airport control towers, or at meteorological masts. The wind energy classes
were developed for 10 m height because that was the standard for meteorological
data, and then the wind power potential is extrapolated at 50 m, assuming that the
wind shear exponent was 1/7 for all locations. Global wind patterns, upper air wind
data, and boundary layer meteorology were routinely used to obtain estimates of
the wind energy resource [2–4]. The knowledge of the quasi-steady mean wind
speeds that can be expected at a potential site is critical to determine the wind
economic viability of a wind energy project. Such information is essential in the
wind turbine selection in order to maximize efficiency and durability. The wind
frequency distributions, used in wind energy assessment are predicted from wind
measurements collected during several years. If such information is not available,
wind speed probability distributions, constructed from limited field campaigns, e.g.
Weibull or Rayleigh probability distributions are used to estimate the wind power
potential. The highly dependent nature of energy production on wind speed needs
accurate predictions of the distribution of wind speeds for a prospecting wind farm
location and for accurate energy production calculations.

The wind probability distribution (PDF) functions have been investigated,
employed and explained by many researchers and engineers involved in the wind
energy [2–12, 42–68]. In wind power studies such probability distributions are used
for assessment and analysis of wind energy resources, wind power plant operation,
as well as for turbine design. Both analytical and numerical methods can be carried
out. However, a planning from a different point of view can be performed, while
similar distribution functions can be used for wind power, if wind velocity distri-
bution functions are taken into account, together with WT features, provided by
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the manufacturers. Usually the wind velocity time series are rather large, differ-
ences among parameter estimation methods is not as important as differences
among distributions. There are several estimators of PDF parameters, such as
Method of Moment (MOM), Maximum Likelihood Estimators (MLE), Least-Square
(LS), and Percentile Estimators Methods [2–72]. These estimators are unbiased, so
there is no reason to give preference to any of them. The choice of specific estima-
tors is based on the existing wind speed data, computing availability and user
preference. The rule-of-thumb is to select a number of estimators of the PDF
parameters, while the parameters are usually computed by taking the averages of
the estimates found by these methods. We preferentially use MLE, MOM and LS
estimators for the large samples, and the averages are the PDF parameters [45–70].
However, when using MOM, we calculate the sample mean standard deviation (s),
and skewness (G) as:

v ¼ 1

N

X

N

i¼1

vi (10)

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

XN

i¼1
vi � vð Þ2

r

(11)

and

G ¼ 1

N
�
PN

i¼1 vi � vð Þ3

S3
(12)

where N is the number of observations in v, the wind speed. Once the wind
power distribution function is obtained, the mean power available is deduced. So as
not to depend on the type of wind turbine, this will be shown per unit of surface
(mean power density). This process is performed in four different ways: (1)
obtaining of the wind power; (2) Betz’ law considerations; (3) consideration of
realistic values, remembering that Betz’ law is an upper limit; and (4) consideration
of WT parameters such as Cut-In and Cut-Out wind speed, rated speed, and rated
power. The goal of any wind energy assessment and analysis is to give response to
questions about statistical distribution of the maximum power obtainable from the
wind, regardless of the WT chosen, and also taking into account its features, when
the only input value is the mean wind speed.

3.1 Weibull probability distribution

TheWeibull density distribution is a commonly applied statistical distribution to
model wind speed regime. The use of probability distribution functions in order to
define and to characterize the field data has a long history of use. It has been
established, in the literature [2–4, 41–70] that the Weibull probability distribution
is very well fitted to characterize wind speed regimes, being commonly used to
estimate and to assess wind energy potential. However, efforts have been made over
the years to fit the wind data to other distributions, e.g. exponential distribution,
gamma distribution, or logistic distribution. The Weibull probability distribution is
given by:

fWB ¼ k
vk�1

ck
exp � v

c

� �k
� �

(13)
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The Weibull distribution is a function of two parameters: k, the shape parame-
ter, and c, the scale factor. These parameters are defining the shape or steepness of
the curve and the mean value of the distribution. These coefficients are adjusted to
match the wind data at a particular site. For wind modeling, typical k values range
from 1 to 2.5 and can vary drastically form site to site, as well as during years and/or
seasons. The scale parameter, c, corresponds to the average wind speed for the site.
The main inaccuracy of the Weibull distribution is that it always has a zero proba-
bility of zero wind speed, which is not the case since there are frequently times in
which no wind is blowing. The higher the k value, the sharper the increasing part of
the curve is. The higher c values correspond to a shorter and fatter distribution,
with a higher mean value. Ideally the mean value would correlate with the rated
wind speed of the turbine: producing rated power for the extended time annually.
The cumulative probability function for Weibull distribution is given by:

F vð Þ ¼ 1� exp � v

c

� �k
	 


(14)

The availability of high quality wind speed distributions is crucial to accurate
forecasts of annual energy production for a wind turbine. Statistical distributions
suffice for early estimations, while the actual wind speed measurements are neces-
sary for accurate predictions. The factors k and c featuring in Eq. (13) are deter-
mined for each measurement site. There are several estimators of Weibull
parameters, such as the Moment (MOM), Maximum Likelihood (MLE), Least-
Square, and Percentile Estimators. These estimators are unbiased, although some of
them, such as the Method of Moments, may have large variances, so there is no
reason to prefer any of them. The choice of specific estimators is based on the
existing wind speed observations, computing availability and user preference. The
rule-of-thumb is to select estimators of the Weibull parameters, such as: standard
least-square, maximum likelihood or MLE variants, while the shape and scale
parameters are computed taking the averages [2–4]. If sufficient wind speed obser-
vations are available, one of the most used is the MOM methods or its variants. It is
based on the numerical iteration of the following two equations while the mean (v)
and standard deviation (s) of the wind speeds are determined from:

v ¼ c � Γ 1þ 1

k

� �

(15)

and

s ¼ c Γ 1þ 2

k

� �

� Γ2 1þ 1

k

� �	 
1=2

(16)

where v is the wind speed data set (sample) mean, as defined in Eq. (11), s is the
wind speed data set (sample) standard deviation, and Γ() is the Gamma function:

Γ xð Þ ¼
ð

∞

0

tx�1 exp �tð Þdt (17)

A special case of the moment method is the so-called empirical method, where
the Weibull shape parameter k is estimated by following relationship:

k ¼ s

v

� ��1:086
(18)
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Then the scale parameter, c is computed by using the following relationship:

c ¼ v

Γ 1þ 1=kð Þ (19)

Both, the moment and empirical method require a reasonable wind speed
observations data set to be available. Another Weibull parameter estimator, based
on the least squares, is the graphical method. In which a straight line is fitted to the
wind speed data using lease squares, where the time-series data must be sorted into
bins. Taking a double logarithmic transformation, the cumulative distribution
function is rewritten as:

ln � ln 1� F vð Þ½ �f g ¼ kln vð Þ � kln cð Þ

Plotting ln(v) against ln{�ln[1 - F(v)]}, the slope of the best fitted line to data
pairs is the shape parameter, and the scale parameter is then obtained by the
intercept with y-axis. The graphical method requires that the wind speed data be in
cumulative frequency distribution format. Time-series data must therefore first sort
into bins. In essence the graphical method is a variant of the moment method,
consisting of the calculation from the time series of the observations of statistical
estimators, such as wind speed means and of the square wind speeds. Then the
Weibull parameters are calculated as:

v ¼ c

k
Γ

1

k

� �

(20)

and

v2 ¼ 2c2

k
Γ

2

k

� �

(21)

Then computing the means from the wind observations (Eq. (20) and Eq. (21)),
the Weibull parameters are estimated. The Weibull distribution can also be fitted to
time-series wind data using the maximum likelihood method. The shape factor k
and the scale factor c are estimated, numerically using the following two equations:

k ¼
PN

i¼1v
k
i ln við Þ

PN
i¼1v

k
i

�
PN

i¼1 ln við Þ
N

 !�1

(22)

c ¼ 1

N

X

N

i¼1

vki P við Þ
 !1=k

(23)

where vi is the wind speed in the bin i and N is the number of nonzero wind
speeds (the actual wind speed observations). Eq. (22) is solved numerical, usually
through iterative methods, with k equal to 2 as initial guess, and then Eq. (23) is
solved explicitly. When wind speed data are available in frequency distribution
format, a MLE variant can be applied. In this cans, the Weibull parameters are then
estimated through:

k ¼
PN

i¼1v
k
i ln við ÞP við Þ

PN
i¼1v

k
i P við Þ

�
PN

i¼1 ln við ÞP við Þ
P v≥0ð Þ

 !�1

(24)

11

Assessment and Analysis of Offshore Wind Energy Potential
DOI: http://dx.doi.org/10.5772/intechopen.95346



c ¼ 1

P v≥0ð Þ
X

N

i¼1

vki P við Þ
 !1=k

(25)

where, P(vi) is the frequency with which the wind speed falls within bin i,
P(v ≥ 0) is the probability that the wind speed equals or exceeds zero. Eq. (23) must
be solved iteratively, after which Eq. (25) is solved explicitly to determine the
Weibull parameters. One of the parameter estimator not very often used is the
energy pattern factor method. In this approach, the energy pattern factor for a
given wind speed data is defined as:

Epf ¼
v3

v3
(26)

here (v3) is the mean of the cubes of the wind speed. Notice that the factors in
Eq. (26) are related to the wind energy estimates. Weibull shape parameter can be
estimated with the following equation:

k ¼ 1þ 3:69

Epf
(27)

Scale parameter is estimated by using Eq. (19), for example. Often isw necessary
to estimate the Weibull parameters in the absence of suitable information about the
distribution of wind speeds. For example, if only annual or monthly averages may
be available, the value of k must be estimated by Eq. (27). The value of k is usually
from 1.5 and 3, depending on the wind variability. Smaller k values correspond to
variable winds.

To analyze the accuracy of the aforementionedmethods, the following tests are
used, RMSE (rootmean square error), χ2 (chi-square), R2 (variance analysis or method
efficiency) and the Kolmogorov–Smirnov test. These tests are examining whether a
PDF is suitable to describe the wind speed data or not. The RMSE test is defined by:

RMSE ¼ 1

N

X

N

i¼1

yi � xi
� �2

" #1=2

(28)

where yi is the actual values at time stage i, xi is the value computed from
correlation for the same stage, and N is the number of data. The next two tests are
defined by:

χ2 ¼
PN

i¼1 yi � xi
� �2

N � n
(29)

and

R2 ¼
PN

i¼1 yi � zi
� �2 �

PN
i¼1 yi � xi
� �2

PN
i¼1 yi � zi
� �2 (30)

where N is the number of observations, yi is the frequency of observations, xi is
the Weibull frequency, and zi is the mean wind speed. The Kolmogorov–Smirnov
test is defined as the max-error between two cumulative distribution functions:

Q ¼ max FT vð Þ � FO vð Þj j (31)
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where FT(v) and FO(v) are the cumulative distributions functions for wind
speed not exceeding v computed by using estimated Weibull parameters and by
observed (or randomly generated) time-series, respectively. The critical value for
the Kolmogorov–Smirnov test at 95% confident level is given by:

Q95 ¼
1:36
ffiffiffiffi

N
p (32)

If Q value exceeds the critical value, then there is significant difference between
the theoretical and the time-series data under the given confident level. Figure 1
shows the fitted Weibull probability distributions with long-term observations, for
two locations [4, 51, 52], exhibiting a good agreement between fitted PDF and
actual data. The energy that a wind turbine generates depends on both on its power
curve, a nonlinear relationship between the wind speed and turbine power output
and the wind speed frequency distribution. If derived from long-term
(multi-annual) wind speed data sets the histograms shape of the PDFs that are
characterizing the wind speed at a specific site or for a region.

3.2 Other probability distribution function used in wind energy

Another used probability distribution is the Rayleigh distribution, which
is a special case of the Weibull distribution where k = 2. The Rayleigh
distribution is simpler because it depends only on the mean wind speed, and is
given by:

f RL vð Þ ¼ π

2

v

c2
exp � π

4

v

c

� �2
	 


(33)

These two probability distribution functions, Weibull and Rayleigh [2–4, 9,
41–72] are the most commonly used for wind energy analysis and assessment. The
Rayleigh PDF is a special case of the Weibull distribution with k = 2. Notice that for
both distributions, Vmin = 0 and Vmax = ∞. The cumulative Rayleigh distribution is
expressed as:

F vð Þ ¼ 1� e� v=cð Þ2 (34)

Figure 1.
Experimental wind speed probability density functions, at 50 m level, using the composite 2003–2008 data sets,
for two 50 m instrumented towers [4, 51, 52].
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For the Rayleigh distribution the single parameter, c, relates the following three
properties:

c ¼ Vmp

ffiffiffi

2
p

¼ 2μ
ffiffiffi

π
p ¼ σ

ffiffiffiffiffiffiffiffiffiffiffi

4

8� π

r

(35)

The Rayleigh distribution can be written using Vmp or the mean velocity, μ.
Determination of the mean and standard deviation from experimental data for the
normal distribution are well known. The MLE estimate of the normal distribution
en is the arithmetic mean. The parameter c in the Rayleigh distribution can be
evaluated from N wind velocities, Vi. If experimental data are used to determine
distribution parameters, the computed result is called an estimate of the true
parameter. Here, the symbol used to indicate that the equation gives only an esti-
mate of the true distribution parameter, c.

ĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2N

XN

i¼1
V2

i

r

(36)

The 3-parameter Weibull (W3) is a generalization of the 2-paramter Weibull
distribution, where the location parameter s establishes a lower bound (assumed to
be zero in the case of 2-parameter Weibull distribution). It was found that for some
areas the W3 fits wind speed data better than the 2-parameter Weibull model
[4, 40–72]. The W3 probability distribution and cumulative distribution functions
are expressed as:

f v, k, c, τð Þ ¼ kvk�1

ck
exp � v� τ

c

� �k
	 


(37)

and

F v, k, c, τð Þ ¼ 1� exp � v� τ

c

� �k
	 


(38)

Respectively, for v≥ τ, and τ is the location parameter, locating the probability
distribution along the abscissa (v axis). Changing the value of τ has the effect of
sliding the distribution and its associated function either to the right (if τ > 0)
or to the left (if τ < 0). The MLE estimators for the W3 PDF parameter
calculation are:

PN
i¼1 vi � τ

_ð Þk
_

ln v� τ
_ð Þ

PN
i¼1 vi � τ

_ð Þk
_ � 1

k
_ � 1

N

X

N

i¼1

ln vi � τ
_ð Þ ¼ 0 (39)

and

c
_ ¼ 1

N

X

N

i¼1

vi � τ
_ð Þk

_
 !

(40)

τ
_ þ c

_

N1=k
_ Γ 1þ 1

k
_

� �

¼ Umin (41)
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where N is the number of observations in the sample v, and Umin indicates the
minimum values in the v time series. Parameters of the W3 distributions are then
found iteratively.

Another PDF used in wind energy assessment, especially in offshore
applications is the lognormal distribution [4, 66–68]. The 2-parameter lognormal
PDF is given by:

τ
_ þ c

_

N1=k
_ Γ 1þ 1

k
_

� �

¼ Umin (42)

And its cumulative distribution function is expressed as:

F v, μ, σð Þ ¼ 1

2
þ 1

2
erf

ln vð Þ � μ

σ
ffiffiffi

2
p

	 


(43)

where erf xð Þ ¼ 2
ffiffi

π
p
Ð x
0 exp �t2ð Þ � dt is the error function from the Normal distri-

bution, and the parameters μ and σ are the mean and standard deviation of the
natural logarithm of v. The parameter estimators are given by:

μ
_ ¼ ln

v
ffiffiffiffiffiffiffiffiffiffiffi

1þ s2

v2

q

0

B

@

1

C

A

σ
_ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
s2

v2

� �

s

The truncated normal distribution is the probability distribution function of a
normally distributed random variable whose values are either bounded at lower
end, higher end or at both. Since the wind speed is only positive, the most common
is the single truncated normal distribution, suitable for nonnegative case:

n v, μ, σð Þ ¼ 1

I μ, σð Þσ
ffiffiffiffiffi

2π
p exp � v� μð Þ2

2σ2

" #

, for v>0 (44)

where μ and σ are the date mean and standard deviation, and I(μ, σ) is the
normalized factor, making the integral of this distribution equal to one, the cumu-
lative distribution function is evaluated in its domain de definition. The normalized
factor is given by:

I μ, σð Þ ¼ 1

σ
ffiffiffiffiffi

2π
p

ð

∞

0

exp � v� μð Þ2
2σ2

" #

dv (45)

The distribution function parameters can be determine using graphical, moment
or maximum likelihood methods or a combination of them. The maximum entropy
probability (MEP) concept has commonly been applied in many engineering and
science areas. The entropy of PDF, f(x) is defined [54–72] by:

S xð Þ ¼ �
ð

f xð Þ ln f xð Þð Þdx
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Maximizing the entropy subject to specific constrains enables to find the most
likely probability distribution function if the information available is provided by
moment functions. The classical MEP solution applied to wind distribution case is
given by:

f vð Þ ¼ exp �
X

N

k¼0

akv
k

" #

(46)

and solution, Lagrange multipliers are given by the following nonlinear system
of equations:

Zn að Þ ¼
ð

vn exp �
X

n

k¼0

akv
k

" #

dv ¼ λn for n ¼ 1, 2, … ,N

The λn, n = 0,1, … , N, with λ0 = 1, are the distribution moments, representing
the mean values of n wind speed powers, calculated from observations. MEP
probability density functions of third or fourth order with three or four moment
constrains.

Gamma PDF can be expressed with the following function:

g v; x; βð Þ ¼ vx�1

β2Γ xð Þ
exp � v

β

	 


, for v, x, β>0 (47)

where x and β are the shape and scale parameter, respectively. The parameters of
the Gamma distribution can be estimated using graphical, moment or maximum
likelihood methods, similar to one presented above in the Weibull case. However,
the Gamma PDF is usually employed in a mixture of distributions in connection
with Weibull PDF.

In recent years, in order to improve the accuracy of wind statistics, mixtures of
PDFs were employed [4, 50–72]. Distribution function mixed with Gamma,
Weibull, or Normal distribution functions can be used to describe the wind statis-
tics. For example, Gamma and Weibull mixture applied to wind energy assessment
is given by:

h v;w; x, β, k, cð Þ ¼ wg v, x, βð Þ þ 1�wð Þf v, k, cð Þ (48)

where 0≤w≤ 1 is the weight parameter indicating the mixed proportion of each
probability distribution included in the PDF mixture relationship. Again, the five
parameters, in the Eq. (48) can be estimated using graphical, moment, maximum
likelihood methods or any combination them, as discussed in the Weibull case.

3.3 Wind turbine power and energy estimates

The average power of a wind turbine, over a specific time period (e.g. one
month) is determined by multiplying the wind speed probability density function
fPDF(v) and the power curve of the turbine, CP(v). The power curve represents the
wind turbine output power vs. wind speed diagram [2–4, 68–72]. The power curve
depends on the wind speed, air density and turbulence intensity, being usually
provided by the manufacturers or can be constructed from the field measurements.
However, the manufacturers do not usually are providing the information on the
power curves of their wind turbines in a continuous (analytic) form, but rather in a
discrete form with N nodes (PWT-i, vi). Wind power density, a measure of the
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energy flux through an area perpendicular to the direction of motion, it is exten-
sively used in wind energy assessment. It is also varying not only with the cube of
wind speed, but also with the air density and turbulence. The monthly average
energy produced by a wind turbine is obtained from the monthly average output
power by multiplying it with the hours of that month. The prediction of the wind
speed variation with height, the variation in wind speed over the wind farm area, air
density and the wake interaction between the wind turbines are usually calculated
by using a computer programs, specifically designed to facilitate accurate predic-
tions of wind farm energy production. Such computing applications allow fast
computations of the energy production for different layouts, turbine type and hub
height to determine the optimum setting. In the statistic approaches, based on an
estimate of the wind velocity probability distribution function, for the location
wind regime, fPDF(v), extrapolated at the hub height and a known WT power curve
PWT(v), the mean power output of a wind turbine (assuming 100% of its availabil-
ity) is given in the following equation:

PWT ¼
ð

Vco

Vci

f PDF vð Þ � CP vð Þ � dv (49)

Generally, the integral of Eq. (49) has no analytic solution and must be resolved
numerically. For example, if the Weibull probability distribution is determined the
wind power density, WPD is estimated, function of the Weibull parameters by:

WPD ¼ 0:5 � ρc3 1þ 3

k

� �

The relationship between the power output of a turbine and the incoming wind
speed is usually simplified by a generic power curve model, as expressed in practical
application by the following relationship:

PWTG vð Þ ¼

0, v≤Vci or Vco ≤ v

PWT�Rated
v
VR

� �3
, Vci ≤ v≤VR

PWT‐Rated, VR ≤ v≤Vco

8

>

>

<

>

>

:

(50)

Here, PWT-Rated is the wind turbine rated power, Vci, VR, and Vco are the wind
turbine cut-in, rated, and cut-off speeds. These values are also provided by the
manufacturer. The total power yield of the wind farm is the sum of the power
output of each wind farm turbine. For a number of wind turbines taking into
consideration of the generator efficiency, the total output power can be extracted as
follows:

PWT�tot ¼ NWT � ηWTG � PWT (51)

Where: ηWTG and NWT are the wind generator efficiency and number of wind
turbine generators in the wind farm, respectively. Wind turbine output power is
estimated, as adapted from the Eq. (49), by a relationship such as:

PWT vð Þ ¼
0, v≤Vci or Vco ≤ v

0:5 � ρ � A � CP λ, βð Þv3, Vci ≤ v≤VR

PWT‐Rated, VR ≤ v≤Vco

8

>

<

>

:

(52)
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The wind generator power output is best estimated through interpolation of the
values of the data provided by the manufacturers with wind velocity observations.
As the power curves are quite smooth, they can be approximated using a cubic
spline interpolation. The fitting equation of the output characteristic of wind gen-
erator can be expressed as:

PWTG vð Þ ¼

0 v≤Vci or v≥Vco

a1 v3 þ b1 v2 þ c1 vþ d1 Vci < v<V1

a2 v3 þ b2 v2 þ c2 vþ d2 V1 < v<V2

::… … … … … … … … … … … … …

an v3 þ bn v2 þ cn vþ dn Vn�1 < v<Vr

Prated Vr ≤ v<Vco

0

B

B

B

B

B

B

B

B

B

B

@

(53)

Where PWTG is the output power of wind generator at wind speed v, is the wind
turbine rated power; v is the wind speed at the hub height, n is the number of cubic
spline interpolation functions corresponding to n + 1 values, couples of the wind
speed and the wind turbine output power. These data are provided by the manu-
facturers, a, b, c and d are the polynomial coefficients of the cubic spline interpola-
tion functions, depending on the wind turbine type and are estimated from
measurements. Simplified versions of the wind turbine power output calculations,
usually used in practice and design are:

PWT ¼

PWT�Rated
v tð Þ � Vcið Þ
Vr � Vcið Þ , for Vci ≤ v tð Þ<VR

PWT�Rated, for VR ≤ v tð Þ≤Vco

0, for v tð Þ<Vci, or v tð Þ>Vco

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Or

PWT ¼

a � v tð Þð Þ3 � b � PWT�Rated, for Vci ≤ v tð Þ<VR

PWT�Rated, for VR ≤ v tð Þ≤Vco

0, for v tð Þ<Vci, or v tð Þ>Vco

8

>

>

>

<

>

>

>

:

where PWT(v) is the output power of WT units with an ambient wind speed v,
PWT-Rated is the rated power of the WT, Vci, Vco and VR are the cut-in wind speed,
cut-out wind speed, and rated wind speed, respectively. Based on the wind speed
data, the output power of WT units is calculated according to one of these relation-
ships. The parameters a, and b, of the last WT power output relationship are
calculated by these expressions:

a ¼ PWT�rated

V3
r � V3

ci

, and b ¼ V3
ci

V3
r � V3

ci

Calculation of energy output requires knowledge of the wind speed probability
distribution and the wind turbine power curve. Once, the wind speed probability
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distribution and turbine power curve are determined, the output energy of a wind
turbine or for a wind farm can be easy determined. The wind energy (EWT) that can
be extracted by a wind turbine, over a T time period is defined by this relationship:

EWTG ¼
ð

∞

0

CP vð Þ � f PDF vð Þ � dv (54)

3.4 Wind direction

To ensure the most effective use of a wind turbine it should be exposed to the
most energetic wind. Though the wind may blow more frequently from the west
more wind energy may come from a different direction if those winds are stronger.
It is important to find out which directions have the best winds for electricity
production. The distribution of wind direction is crucially important for the evalu-
ation of the possibilities of utilizing wind power. The distributions of wind speed
and direction are conventionally given by wind roses. A wind rose, generated from
your wind resource assessment, is a helpful tool to determine wind direction and
distribution. Traditionally, wind direction changes are illustrated by a graph, which
indicates percent of winds from that direction, or the wind rose diagram [2, 4,
52, 61, 62, 66–70]. The wind rose diagrams and wind direction frequency histo-
grams provide useful information on the prevailing wind direction and availability
in different wind speed bin. A vane points toward the wind source. Wind direction
is reported as the direction from which the wind blows, not the direction toward
which the wind blows, e.g. a North wind blows from the North toward the South.
The wind direction varies from station to station due to different local features
(topography, altitude, distance from the shore, vegetation, etc.). There are usually
changes in the wind directions on diurnal, seasonal or annual basis. The wind
direction can also be analyzed using continuous probability models to represent
distributions of directional winds, e.g. von Mises circular statistics, usually com-
prised of a mixture of von Mises distributions.

The wind rose diagrams and wind direction frequency histograms provide useful
information on the prevailing wind direction and availability of directional wind
speed in different wind speed bins. The wind roses were constructed using the
composite data sets of measurements of wind velocities. The wind direction is
analyzed using a continuous variable probability model to represent distributions of
directional winds, comprising of a finite mixture of the von Mises distributions (vM
– PDF) [2–4, 52, 61, 62, 60–66]. The model parameters are estimated using the least
square method. The range of integration to compute the mean angle and standard
deviation of the wind direction is adjusted to minimum variance requirements. For
example, the proposed probability model mvM(θ) is comprised of a sum of N von
Mises probability density functions, vMj(θ), as:

mvM θð Þ ¼
X

N

j¼1

w jvM j θð Þ (55)

where wj are non-negative weighting factors that sum to one [2–4, 52, 61, 62, 66]:

0≤w j ≤ 1, for j ¼ 1, … ,N, and
X

N

j¼1

w j ¼ 1
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A von Mises distribution vM-PDF if its probability is defined by the equation:

vM j θ; k j, μ j

� �

¼ 1

2πI0 k j

� � exp k j cos θ � μ j

� �h i

, and 0≤ θ≤ 2π (56)

where kj ≥ 0 and 0 ≤ μj ≤ 2π are the concentration and mean direction parame-
ters. The angle corresponding to the northerly direction is taken as 0o. Note that in
meteorology, the angle is measured clockwise from North. Here, I0(kj) is a modified
Bessel function of the first kind and order zero and is given by:

I0 k j

� �

¼ 1

2
ffiffiffi

π
p

ð

2π

0

exp k j cos θ
� �

dθ≈
X

∞

p¼0

1

p!ð Þ2
k j

2

� �2p

(57)

The distribution lawmvM(θ), given by Eq. (49) is numerically integrated between
two given values of θ to obtain the probability that wind direction is within a particu-
lar angle sector. Various methods are employed to compute the 3 N parameters on of
the mixture of von Mises distribution. Figure 2 is showing fitted von Mise distribu-
tions to two long-term wind direction time series for two locations [4, 52, 53, 66].

4. Measure-correlate-predict methods

Measure-correlate-predict (MCP) algorithms are used to predict the wind energy
resource at target sites, by using relatively long-term measurements at reference
locations. MCP methods model the relationship between wind velocity data mea-
sured at the target site, usually over a short period, up to a year, and concurrent data
at a nearby reference site. The model is then used with long-term data from the
reference site to predict the long-term wind speed and direction distributions at the
target sites [4, 73–76]. Typical wind energy assessments last anywhere from one to
three years, with important decisions to be taken often after only few months, there

Figure 2.
Frequency histograms of wind directions and the fitted von Mises distribution functions at (a) Kingston 14SW
tower and 50 m level, and (b) Tonopah 24NW and 50 m level using the composite 2003–2008 data sets
[4, 51, 52].
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is an obvious need for a prediction of the performance of a planned wind energy
project for expected life time (20 years or more). Such an assessment is an important
part of the financing process. While the measurement campaign may correspond to
an untypically high or low period, correlations with nearby reference stations help to
detect such trends and provide accurate long-term estimate of the wind velocity at
the development site and its inter-annual variations. Moreover, since the wind
turbine power output depends on the wind speed in a non-linear way, the distribu-
tion of the wind speeds should be predicted accurately. MCP methods proceed by
measuring the winds at a target site, correlating with winds from reference sites,
then by applying these correlations to historical data from the reference site, to
predict the long term wind resource of the target site [2–4, 72–77].

Several MCP algorithms have been studied using wind data from potential wind
energy sites. Some of the algorithms and methods have been improved using prob-
abilistic methods, and have then been implemented into software packages, such as
the WindPRO or WAsP for planning and projecting of wind power plants. MCP
process methods [72–77] consist of: (1) collect wind data at the predictor site for
extended possible time period; (2) identify reference sites, for which high quality,
long term records exist, ideally located in the predictor site proximity, with similar
climate; (3) obtain reference site wind data for the same time period as for the
predictor site, the concurrent period; (4) determine the relationship between the
reference and predictor site wind data for the concurrent period; (5) obtain wind
data from the reference site for a historic period of over 10 years duration or the
longest possible, the historic period; and (6) apply the relationship determined in
step (4) to the historic data from the reference site to “predict” what the winds
would have been at the predictor site over that period. These are the wind pre-
dictions that would have been observed and the measurements were made at the
predictor site for the same period as the historic data, rather than a wind velocity
prediction. The MCP key factor is the algorithm or relationship used in step (4).
Most MCP techniques use direction sectored regression analysis to establish rela-
tionships of the wind speed and direction at the reference site and the ones at the
potential wind farm site. The long-term wind data may be taken from nearby
meteorological stations or data from the NCEP/NCAR reanalysis dataset. The gen-
eral approach is to look for a relationship between the wind speed variables vsite
and vmet of the site under development and a suitable reference station:

vsite ¼ f vmetð Þ (58)

Often, it may be suitable to consider several reference stations with concurrent
data sets for a given development site; Eq. (57) can be then generalized to:

vsite ¼ g v1met, v
2
met, … , vNmet

� �

(59)

Currently different MCP variants are implemented in the WindPRO, WAsP or
other wind energy software packages. However, many researchers developed own
MCP applications. Notice that the wind speed time series can be analyzed
irrespective of wind direction, while usually, the wind direction is binned into a
certain number of sectors and the wind speed subsets for each direction bin are
analyzed separately for their MCP correlations. Since wind direction observations
may not always coincide, binning may be based either on the wind direction mea-
sured at the reference station (usually) or at the prospect site. When a systematic
veer occurs (e.g., in response to the topography), the relationship between the site
and the meteorological station direction may be fitted, and the fit curve may be
used to predict the long-term site wind direction. A deeper objective, requiring a
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more insightful analysis of the statistical behavior is to achieve an estimation of the
probability density function fY,long (vsim, vmet, α), which best describes the long-term
wind speed distribution at a given location and height above ground level based on
the knowledge of the density in the reference site. Here α is a vector of parameters
for each one of the distributions; the number and type of parameters here depend
on the particular distributions. The knowledge of fY,long (vsim, vmet, α), allows to
calculate the average wind speed and power density and, most importantly, the
average energy yield of a given wind turbine [4, 72–77]. Additionally, intra- or
inter-annual fluctuations of the wind resource at the prospective site need to be
studied, although the present study does not consider such variations. The models
employed in practical applications fall into two classes, linear and non-linear and
can be described mathematically, adapting previous equations, as:

vpred ¼ f vref , θref
� �

(60)

θpred ¼ g vref , θref
� �

(61)

Here, f and g are the functional relationships between two concurrent data,
target and reference sites. Subscripts denote the data set, the reference as ref., or
predictor as pred. There are several variants of these models, each with advantages
and disadvantages.

4.1 Linear and regression models

The regression MCP method holds the traditional linear regression MCP analysis
as a specialized subset of regression models using polynomials of other orders.
Polynomial fitting methods are included, as suggested in literature [73–77]. In the
simplest linear models the wind speed and direction at the target/predictor site is
expressed as:

vh,pred ¼ f vh,ref
� �

(62)

and

f vh,ref
� �

¼ vc,pred
vc,pred

vh,ref (63)

Here the over bar refers to average, while c and h to the concurrent and historic data.
Regression, with one independent (x) and one dependent (Y) variable is expressed as:

Y ¼ f xð Þ þ e (64)

Here, Y is the dependent variable, x is the independent variable, f(x) is the
regression model, and e is a random error (residual). The regression model could be
polynomials of any order or other models, but traditionally a linear model is
assumed, as this model has been found to give reasonable fits for wind energy
estimation. In the case of a regression MCP analysis, the independent variable could
be the wind speed measured at the reference site. The dependent variable, Y is then
the wind speed at the local WT site. The regression parameters are estimated
through a least square algorithm. The distributions of the random errors may,
reasonably be assumed to follow a zero mean Gaussian distribution, e � N(0,σ).
However, the distribution of the residuals should be visually checked, so that the
assumption is verified as reasonable. This is needed, as the random variable model
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for the residuals is included in the MCP model to give the right energy levels in the
new MCP-corrected time series. Note, that currently the distribution of residuals is
conditioned on the reference wind direction only. Thus, conditioned on the refer-
ence wind direction, the residuals are independent on the reference wind speed.

4.2 Matrix method

In the matrix methods the changes in the wind speed and direction (wind veer)
are modelled through joint distributions fitted on the ‘matrix’ of wind speed bins and
wind direction bins. The concurrent periods of the measured wind data are used to
calculate the set of non-linear transfer functions, used for estimating wind speeds and
directions from the reference site to the prospect site. Since real measurements suffer
from data missing in bins in the dataset, this method needs a way to substitute the
missing input bins. A basic assumption of the matrix method is that the long-term site
data (wind speed and direction) can be expressed through the simultaneous mea-
surements of on-site data and reference site data. How this joint distribution is
modelled should actually depend on the data in question, suggesting that a combina-
tion of binned sample distributions and modelled joint Gaussian distributions are
working well [73–77]. The transfer model, given as a conditional distribution, is
actually the key distribution in the matrix method. When applying the matrix
method this conditional distribution is stipulated to hold regardless of the time frame
considered. Thus, for each measured sample it is necessary to calculate/measure pairs
of the two quantities (a pair is data with identical timestamps):

Δv ¼ vsite � vref (65)

Δθ ¼ θsite � θref (66)

These parameters refer to the wind speeds and directions at the wind project site
and the meteorological site, respectively. The joint distribution of f(Δu, Δθ) is
modelled conditioned on the wind speed and the wind direction on the reference site.
The joint distributions are represented as either through the samples (bootstrap
model) or often through a joint Gaussian distribution. When the data has been
measured and a match between the short-term data and the short-term reference data
has been established, then the samples are sorted into bins with specific resolutions,
such as 1 m/s and 10 degrees. The result from this binning is a set of joint sample
distributions of wind veer and wind speeds. Since the data is binned with wind speed
and wind direction, these sample distributions are conditioned on the mean wind
speed at the reference position and the wind direction on the reference position. The
calculated distributions are used directly in a bootstrapping technique when doing
matrix MCP calculations. Based on the sample distributions, the statistics, calculated
for the wind veer are the mean, the standard deviation, and the correlation coeffi-
cients. To enable interpolations and extrapolations into bins where no data is present,
a spline is fitted to the sample distributions. This parametric distribution is
represented by the two moments and the correlation, assuming that a joint Gaussian
distribution. Note, that even if the Gaussian distribution assumption may seem a bit
crude, then the parametric model can be applied in cases where limited or no sample
data is available. Thus, the influence of this assumption is limited, as most long-term
corrected samples are typically based on the resampling approach. The mean, stan-
dard deviation and correlation are now modelled as ‘slices’ of polynomial surfaces:

P v, θð Þ ¼
X

N

i¼0

ai vi, θið Þv1ref (67)
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where P denotes the sample statistical moment (or correlation) considered, N is
the order of the polynomial is the polynomial coefficients, depending on the wind
velocities. As in the case of regression MCP, the long-term corrected meteorological
data is calculated using Bootstrap and Monte-Carlo techniques, i.e. probabilistic
methods enabling generation of the long-term corrected wind distribution through
an artificial time series.

4.3 Hybrid MCP and the wind index MCP methods

The hybrid MCP method [72–77] correlates the wind data at the targeted wind
plant site with that at multiple reference stations. The strategy accounts for the local
climate and the topography information. In the original hybrid MCP method, all
component MCP estimations between the targeted wind plant site and each refer-
ence station use a single MCP method (e.g., linear regression, variance ratio,
Weibull scale, or neural networks). The weight of each reference station in the
hybrid strategy is determined based on: (i) the distance and (ii) the elevation
differences between the target wind plant site and each reference station. The
hypothesis here is that the weight of a reference station is larger when the reference
station is closer (shorter distance and smaller elevation difference) to the target
wind plant site. The weight of each reference station, wi, is determined by:

w j ¼ F nref ,Δd j,Δh j

� �

(68)

where nref is the number of reference stations; and Δdj and Δℎj represent the
distance and the elevation difference between the target site and jtℎ reference
station, respectively. Each wind data point is allocated to a bin according to the
wind direction sector at the target wind plant site. Within each sector, the long-
term wind speed is predicted by a hybrid MCP strategy based on the concurrent
short-term wind speed data within that specific sector. By setting the wind speed
data in each sector together, the long-term wind data at the target wind plant site
can be obtained. The predicted long-term wind data quality is usually evaluated
using the performance metrics. ANNs are used to correlate and predict wind con-
ditions because of their ability to recognize patterns in noisy or complex data. A
neural network contains an input layer, one or more hidden layers, and an output
layer, being defined the following parameters: input and output connections, num-
ber of neuron layers, the weights, and transfer functions, the interconnection pat-
tern between different neuron layers, the learning process for updating the weights
of the interconnections, and the activation function that converts the input into
outputs. The Levenberg–Marquardt algorithm is usually used for neural network
training.

The index correlation method is a method creating the MCP analysis by means
of monthly averages of the energy yield, disregarding the wind directional distri-
butions [72–77]. Even though this method may seem rather crude and primitive
when comparing to other more advanced MCP methods, which takes the wind veer
into account; this method has the advantages in stability and performance as it may
even succeed in the cases where other MCP methods may fail. This is due to the
fact, that the wind indexes are related directly to WTG energy yield and that the
method allows the production calculation to be completed using actual measured
data before applying the correction. The Wind Index MCP method offers the
opportunity to calculate the wind indexes using real power curves of the wind
turbines. A generic power curve based on a truncated squared wind speed approach
may be chosen. When the wind indexes are calculated, the MCP correction is done
on the estimated WTG energy yield, i.e. by multiplying the production estimated
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with a correction factor based on the difference in the wind index from the short-
term site data to the long-term site estimated data. However, since the power curve
of a WTG is a non-linear function of the wind speed the wind index is typically
modelled using power curve common models. For the power output, calculated for
the target site and the reference to be comparable they must be based on a similar
mean wind speed. This is done by assuming a sector uniform shear that can be
applied so that both concurrent mean wind speeds are set to a fixed user-inferred
wind speed, typically the expected mean wind speed at hub height. The individual
wind speed measurements are thus multiplied with the relevant factor. Full time
series wind speeds are adjusted with the same ratio as the one applied to the
respective concurrent time series. The argument for this operation is that the vari-
ations in wind speed will only be interpreted correctly in terms of wind energy if a
comparable section of the power curve is considered.

As discussed in [4, 9, 14, 72–77], once a regression equation has been condi-
tioned based on the measurement overlap period, the regression parameters can
then be used to derive an extended data record for the site of interest. MCP methods
are generally applied using some sort of regression analysis for each wind direction
sector. An issue of using MCP methods based on wind velocity data from the land
sites, due to the scarcity of offshore wind velocity observations is that most appli-
cations use linear regression which cannot account for observed differences in the
wind speed distribution between the land site and the offshore sites. In [9, 14] was
proposed in such cases to apply wind velocity corrections of the probability distri-
bution functions, e.g. Weibull parameter corrections. In this method, the Weibull
parameters of the short-term data series are modified to characterize longer data
sampling periods. It compares sector-based wind speed distributions at the onshore
and the off-shore sites considering the on-shore long-term time series as represen-
tative of the area of interests. Weibull scale (c) and shape (k) factors are deter-
mined for each of several wind sectors and for the mean values in each point of the
grid, for data sets from overlapping periods. The differences between the two
datasets are expressed in terms of the ratios of Eq. (69). These correction factors are
applied to the Weibull factors estimated for the short-term data sets.

CorrScale ¼
c off‐shoreð Þ
c on‐shoreð Þ , and CorrShape ¼

k off‐shoreð Þ
k on‐shoreð Þ (69)

TheWeibull correction method, as discussed in [9, 14] gave better wind velocity
estimated for both onshore and offshore flow where the wind speeds were
overestimated.

5. Wind energy resources in climate projections

Just as with the other aspects of climate, wind statistics are subject to natural
variability on a wide range of time scales. Like other meteorological parameters,
such as temperature, rainfall, or other climate variables, wind speeds and directions
change on time scales of minutes, hours, months, years, and decades. Future cli-
mate change is expected to alter the spatio-temporal distribution of surface wind
speeds and directions, with impacts on wind-based electricity generation. Long
term trends in wind speeds are difficult to quantify and large historical data sets are
required to accurately capture and describe such variations. This is a more evident
in the case of the offshore wind energy resources. Wind energy resources at any
location vary on a range of time scales, and hence any resource assessment should
address issues of climate variability and change. However, due to scarcity of
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complete datasets offshore, comparisons have generally been performed with the
hypothesis that local wind regimes have not changed during the last 10–20 years.
The assumption validity is questionable, being likely to be regionally variable
[78–81]. Even in the absence of climate non-stationarity, wind energy measurement
sites typically have data periods up to 3 years and hence are not representative of
wind climates over the 20–30 year lifetime of the wind farms. A further
confounding influence is that homogeneous wind speed time series are rarely avail-
able for long periods because many monitoring locations have undergone change in
land use and instrumentation. Accordingly, one can conceptualize the wind
resource assessment as a two-step process: (1) an evaluation of wind resources at
the regional scale to locate promising wind farm sites and (2) a site specific evalu-
ation of wind climatology and vertical profiles of wind and atmospheric turbulence,
in addition to an assessment of historical and possibly future changes due to climate
variability.

In the context of wind energy generation, even small changes in the wind speed
magnitude can have major impacts on the productivity of wind power plants, as the
wind power relationship is directly proportional to the cube of the wind speed.
However, the predictions for the direction and magnitude of these changes hinge
critically on the assessment methods used. Decadal and multi-decadal variability in
wind speed statistics currently introduce an element of risk into the decision pro-
cess for siting new wind power generation facilities. Recent findings from the
atmospheric science community suggest that climate change may introduce an
added risk to this process. Many climate change impact analyses, including those
focused on wind energy, use individual climate models and/or statistical downscal-
ing methods rooted in historical observations. Wind speed and direction vary on
small scales and respond in complex ways to changes in large-scale circulation,
surface energy fluxes, and topography. Thus, whereas multiple climate models
often agree qualitatively on temperature projections, wind estimates are less robust.
The spatial variability of wind and its sensitivity to model structure suggest that
higher resolution models and multi-model comparisons are particularly valuable for
wind energy projections. For long-term planning of wind resources, it is imperative
to analyze historical datasets and establish monitoring at hub-height using meteo-
rological towers and remote sensing. A comprehensive review of climate change
impacts on wind energy is shown in [78–81], discussing the main changes in the
wind resources due to climate evolution, focused on northern Europe, with signif-
icant wind energy installations.

According to the analysis, until the middle of the current century natural
variability will exceed the effect of climate change in the wind energy resources
[78–81]. They conclude that there is no detectable trend in the wind resources that
would impact future planning and development of wind industry in northern
Europe. Pryor et al. (2006) down-scaled winds from ten global climate models at
locations in northern Europe and found no evidence of significant changes in the
21st century wind regime compared to the 20th century. Predicted changes are
found to be small and comparable to the variability associated with different global
climate models. Using another approach, Ren [79] proposed a power-law relation-
ship between global warming and the usable wind energy. The power-law exponent
was calibrated using results from eight global climate models. He found that reduc-
tion of wind power scales with the degree of warming according to method and
estimated that about 4 Celsius degrees increase in the temperatures in mid to high
latitudes would result in up to 12% decrease in wind speeds in northern latitudes.
Ren [79] suggested that an early maximized harvesting is beneficial and should be
carried out. However, more studies are needed to solve all uncertainties in climate
projections of wind resources under various future climate scenarios [4].
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6. Chapter summary

Several factors are influencing the accurate assessment and prediction of wind
energy production. A primary issue is adequate understanding of the effects of wind
variability, atmospheric stability, turbulence and air density variability on the wind
turbine energy production. Non-negligible and quite often significant error is
incurred when the effects of shear, TI, and atmospheric stability on the wind
turbine power performance are ignored, as in the IEC standard, 61400-12-1 (2005).
The standard procedures are valid only for ideal neutral conditions and a small wind
turbine. Besides the dominant cubic dependence of the wind speed on the wind
power density, there are smaller but still important corrections to the air density
that are important to harvesting wind energy at high-elevation sites. Corrections
that account for these factors must be included in the power output estimates, and
more accurate predictions will help alleviate production-consumption imbalances.
These imbalances can also be ameliorated through the use of storage devices. The
field of wind resource assessment is evolving rapidly, responding to the increasingly
stringent requirements of large-scale wind farm projects often involving invest-
ments of several hundred million dollars. Traditional cup anemometry is being
complemented with ultrasonic sensors providing information on all three compo-
nents of the wind velocity vector and enabling a better assessment of turbulence.
Remote sensing devices like sodar and lidar are becoming more popular as turbine
hub heights and rotor diameters increase, often placing the upper edge of the swept
rotor area at heights of 130 m or more. While the traditional, conventional
approaches of measuring the wind speed and direction at a few heights below hub
height and extrapolating based on a logarithmic profile is still very common, the use
of both vertical profiling devices and more accurate modeling tools considering the
full terrain complexity and atmospheric stability is quickly moving into the main-
stream. Measure-correlate-predict (MCP) methods are used to estimate wind
speeds and directions at a target site where wind power is assessed for development.
These methods use two sets of in-data. To begin with a series of measured speeds
and directions from the target site during a period of time (usually one year) is
needed. In addition to this, a reference series from a much longer period needs to be
obtained. On the other hand, the advanced hybrid MCP method uses the recorded
data of multiple reference stations to estimate the long-term wind condition at a
target plant site. Because each reference station has the flexibility to use any of the
available MCP techniques, the multiple reference weather stations were combined
into the hybrid MCP strategy with the best suitable MCP algorithm for each refer-
ence station. Climate projections of wind resources in changing climate are a topic
of a debate in the literature, requiring a thorough investigation of uncertainties and
understanding the complex interaction of atmospheric dynamics. This will contrib-
ute to understanding the extent to which some of the predicted trends are the result
of the weather and climate variability or the result of inadequate physical
parameterizations in global and regional climate models.
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