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Abstract

Proton therapy is an efficient high-precision radiotherapy technique. The number
of installed proton units and the available medical evidence has grown exponentially
over the last 10 years. As a technology driven cancer treatment modality, specific sub-
analysis based on proton beam characteristics and proton beam generators is feasible
and of academic interest. International synchrotron technology-based institutions have
been particularly active in evidence generating actions including the design of pro-
spective trials, data registration projects and retrospective analysis of early clinical
results. Reported evidence after 2010 of proton therapy from synchrotron based
clinical results are reviewed. Physics, molecular, cellular, animal investigation and
other non-clinical topics were excluded from the present analysis. The actual literature
search (up to January 2020) found 192 publications, including description of results in
over 29.000 patients (10 cancer sites and histological subtypes), together with some
editorials, reviews or expert updated recommendations. Institutions with synchrotron-
based proton therapy technology have shown consistent and reproducible results along
the past decade. Bibliometrics of reported clinical experiences from 2008 to early 2020
includes 58% of publications in first quartile (1q) scientific journals classification and
13% in 2q (7% 3q, 5% 4q and 17% not specified). The distribution of reports by cancer
sites and histological subtypes shown as dominant areas of clinical research and publi-
cation: lung cancer (23%), pediatric (18%), head and neck (17%), central nervous
system (7%), gastrointestinal (9%), prostate (8%) and a miscellanea of neplasms
including hepatocarcinoma, sarcomas and breast cancer. Over 50% of lung, pediatric,
head and neck and gastrointestinal publications were 1q.

Keywords: cancer, proton therapy, synchrotron, oncology, radiotherapy

1. Introduction

1.1 Cancer medicine: precision, interdisciplinary and personalization

Proton beam therapy (PBT) is developing in the context of a substantial increase
in the incidence of cancer, the enormous advances made in our understanding of
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the biological basis and clinical implications of the disease, and the need to improve
the therapeutic index: tumor control promotion and minimal clinically relevant
toxicity. PBT is an accessible precision high-energy particle radiation technology,
adapted to the therapeutic demands tendencies in health care and health budget of
modern clinical practice [1]. Other radiotherapy (RT) solutions using hadron beams
(hadron therapy) are too costly in the medium term in most clinical settings [2].

PBT is now firmly established the era of precision medicine [3]. In oncology, the
principles of medicine must be well defined: Interdisciplinarity and molecular indi-
viduation. Technological excellence will only be achieved when it encompasses the
different medical specialties involved in treating each individual patient. Multidis-
ciplinary Tumor Boards (MTD) are an essential part of an efficient approach to
cancer management [4]. Personalized cancer treatment is characterized by a
detailed analysis of the molecular configuration and evolution of each patient’s
tumor (gene expression profile and nanobiology) [5]. The latest evidence suggests
that tumors are probably unique to each patient, and that each tumor within the
same patient (metastasis, primary site or recurrence) has its own biological pattern
of progression and host adaptation pathway [6].

1.2 Vectors in radiation oncology: individualized, functional, accurate and
precise therapy

RT currently helps to achieve cure over half of all patients that require this treat-
ment; it relieves symptoms in 2 out of every 3 patients, and in general terms is a crucial
therapeutic component in 3 out of every 4 cancer patients [7]. Furthermore, RT pre-
serves organs and tissue structures (in contrast to the status resulting from radical
extended surgery) and can be used in the context of radical treatment for
oligometastatic and oligo-recurrent disease [8, 9]. Forecasts in healthcare systems in
countries like the US suggest that by 2020, indications for RT in all types of cancer will
have increased by 25%, and by 35% in the case of gastrointestinal malignancies [10].

The foregoing estimations are based on the enormous technological advances
made in RT in the last 30 years. If medical advances in clinical oncology have
ushered in the era of precision medicine, interdisciplinary approach in recent
decades in oncological RT (which specifically uses ionizing radiation to treat can-
cer) have ushered in the era of accurate precise RT.

Precision RT is very efficient in promoting the local control (LC) of macroscop-
ically identifiable cancer lesions (targeted by image-guided RT), and has an excel-
lent therapeutic index, in other words, minimal, toxicity in normal radiation-
sensitive tissue [11]. Because accurate precise RT has minimum effect on the func-
tion of the organs, systems (blood, liver, lungs, etc.) and tissues where the tumor is
located, it has allowed clinicians to explore the radiobiological effects of hypofrac-
tionation, heterogeneous dose distribution within target volumes (adjusted for bio-
heterogeneity), and of immunomodulatory, radiation-enhancing, radiation-
sensitive and radiation-protective drug interactions [12]. Finally, one of the most
promising aspects of accurate precise RT is the potencial of radiation-induced
immunogenicity induced by hypofractionated (>8 Gy) RT [13]. Checkpoint inhib-
itors and other inmunomodulators allow clinicians to explore the potential of com-
bining systemic immunotherapy effects with precision local and atoxic RT [14].

2. Developing proton beam therapy clinical evidence

In the next decade, technological advances in PBT will bring further technolog-
ical developments in precision RT into mainstream clinical practice. The dosimetric
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precision of PBT compares favorably with photon therapy and, guided by beam
homogeneity in the delivery and imaging systems for precision control (4D and
quasi-real-time control), its results in clinical practice will be equivalent and
reproducible (Figure 1).

The value of a treatment is defined as the outcomes obtained divided by the cost,
measured over the entire cycle of care [15]. The clinical potential of proton cancer
therapy requires sophisticated and realistic assessment of integral cost of care esti-
mations including “costicity” (the cost of toxicity and general health-related sup-
portive care). A collaborative effort between clinicians, patients, and policy makers
is needed to design clinical trials with meaningful patient engagement. In particular,
patients may help to identify and refine approaches that will lead to improved
enrollment and retention in clinical trials as evidence generators sources. One cru-
cial element in arriving at meaningful conclusions from such analyses is the need to
account for the costs of managing not only acute RT toxicity but also long-term
morbidities that can occur years to decades after RT is completed.

In 2016, Mishra et al. reviewed the context of developing evidence in cancer
proton therapy [16]. PBT clinical trials identified from clinicaltrials.gov and the

Figure 1.
Clinical practice-based example of dose distribution in a craneospinal irradiation represented in 2D and 3D
images. Treatment planning implementation in PBT enhances the perception of clinical benefit expected by
protecting normal anatomy from unnecessary irradiation.
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World Health Organization International Clinical Trials Platform Registry showed a
total of 122 active PBT clinical trials, with target enrollment of >42,000 patients
worldwide. Ninety-six trials (79%) were interventional and 21% were observational
studies. The most common PBT clinical trials focus on gastrointestinal tract tumors
(21%), tumors of the central nervous system (15%), and prostate cancer (12%).
Five active studies (lung, esophagus, head and neck, prostate, breast) randomize
patients between protons and photons, and 3 between protons and carbon ion
therapy.

The medical vision in 2020 and ahead, confirms that PBT clinical trial portfolio
expands rapidly. Results of PBT studies, generated with synchrotron technology,
need additional evaluation in terms of comparative effectiveness, as well as incre-
mental effectiveness and health value offered by PBT in comparison with conven-
tional radiation modalities among other topics of clinical relevance.

Aside from future technological improvements, PBT has already been well
received in the international medical community, and is now available in more than
57 centers worldwide [17].

As in other precision RT techniques, phase III randomized clinical trials (RCTs)
are not the best research setting, as they have intrinsic limitations in design and data
analysis that prevent the positive findings of randomized trials investigating phar-
maceuticals agents to be extrapolated to phase III studies with medical technologies.
New availability of pencil-beam scanning and the consideration of new biological
rationales such as avoidance of bone marrow and circulating blood radiation expo-
sure, may be especially relevant to patients due to the central role of the immune
system in cancer therapy.

3. Evolutive and consolidated clinical outcomes

Clinical results based on novel treatments need both time to mature, and a
method of comparison that can define the best indications in the context of cur-
rently available accurate precise RT. Mature results from some studies recommend
PBT for extreme indications in radioresistant, indolent yet highly infiltrative and
extensive cancer lesions, and in patients requiring re-irradiation due to symptom-
atic oligo-recurrence.

The following is a summary of the clinical results of a selective review of the
latest, most influential, clinical studies analyzing synchrotron-based PBT institu-
tional outcomes. The data available generally relates to established and develop-
mental indications, together with some comparative analysis with other RT
technologies. The information was obtained from a specific literature search and
systematic reviews spanning 2010–2020.

3.1 Pediatric tumors

In 2020 PBT is the radiation therapy technology of election for pediatric oncol-
ogy patients. The evolution towards this practice status has been fast. A survey
conducted between July 2017 and June 2018 in all proton centers treating pediatric
patients in 2016 worldwide identified a total of 54 centers operating in 11 countries
(Particle Therapy Co-Operative Group, PTCOG website). Among the 40 partici-
pating centers (74%), a total of 1860 patients were treated in 2016 (North America:
1205, Europe: 432, Asia: 223.

More than 30 pediatric tumor types were identified, mainly treated with cura-
tive intent. About half of the patients were treated with pencil beam scanning [18].
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Pediatric cancer patients referred to proton therapy centers do benefit from
expert dedicated highly specialized care both in terms of normal tissue protection to
radiation exposure during treatment delivery and from early access to medical
integral care and radiotherapy process (5 weeks median starting time) [19].

A critical milestone to facilitate long-term clinical outcomes research in the
modern era has been achieved. The Pediatric Proton Consortium Registry (PPCR)
has reported a total of 1854 patients enrolled from October 2012 until September
2017. The cohort is 55% male, 70% Caucasian, and comprised of 79% United States
residents. Central nervous system (CNS) tumors were the most frequent group of
diseases (61%). The most common non-CNS tumors diagnoses were: rhabdomyo-
sarcoma (n = 191), Ewing sarcoma (n = 105), Hodgkin lymphoma (n = 66), and
neuroblastoma (n = 55) (Table 1) [20].

3.2 Central nervous system

Radiotherapy confers survival advantages to patients with glioblastoma, medul-
loblastoma, germ cell, ependymoma and other intracranial neoplasms. This cost-
effective and accessible treatment modality has proven efficacy in the adjuvant and
definitive setting, as a first-line treatment or after prior lines of therapy. Neuro-
radiation oncology has witnessed a burgeoning of new techniques, technologies and
strategies that will better optimize the therapeutic ratio. Proton beam therapy
(PBT) offers the potential to minimize late-onset toxicities while preserving
disease-related outcomes. Multidisciplinary efforts explore synergies between the
effects of radiotherapy and novel systemic therapies to tailor the delivery by
molecular profile (Table 2) [41].

3.3 Head and neck cancer

PBT has emerged as a novel means to reduce toxicity and potentially further
improve tumor control in head and neck cancer patients. The unique physical
properties of charged particles allow a steep dose gradient with a reduced integral
dose delivered to the patient in a proportion that can meaningfully reduce dose-
related toxicity.

For the National Comprehensive Cancer Network guidelines, proton therapy is a
standard of care for base of skull tumors and is an optimized option for periorbital
tumors. The use of proton therapy is expanding for other cancer sites. Novel forms
of proton therapy such as IMPT, and technical improvements in dose modeling,
patient setup, image guidance and radiobiology, will help further enhance the
benefits of proton therapy. The present cost of delivering PBT is approximately 2–3
times higher than for delivering IMRT photons in the head and neck (H&N) cancer
model of health care. However, the cost difference is reduced when costs are
considered over the entire cycle of care. Predictive models using comorbidity scales
could defined a subpopulation of patients for whom proton therapy is likely to
reduce side effects and subsequent use of health care resources (Table 3) [52].

3.4 Lung cancer

The call for designing and conducting “smart” proton therapy trials for lung
cancer patients requires establishing clinical evidence and patient selection criteria
to make proton therapy a truly personalized form of treatment. Comparative trials
could focus on endpoints such as cardiac toxicity, low-dose radiation bath, and
lymphopenia. The enhancement of dosimetric and biological advantages of PBT to
improve clinical outcomes requires further developments in image-guided
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N° fractions Proton

technique

Observations

Haas-

Kogan [21]

2018 671 Posterior fossa tumors: 57%

medulloblastoma, 29%

ependymoma, 14% gliomas and AT/

RT*

Evaluation of brainstem toxicity 54–59.4 Gy PB Average rate of symptomatic

brainstem toxicity 2.38%.

Mizumoto,

[22]

2017 62 Head and neck (24), brain (22),

body trunk (9), others (7)

Evaluation of late toxicity 10.8 to 81.2 Gy

(median:50.4Gy).

Standard fractionation

PB 5-, 10-, 20-year rates for grade ≥ 2

late toxicities: 18%, 35%, 45%.

No tumors within irradiated field

Mizumoto,

[23]

2016 343 Brain tumor (79),

rhabdomyosarcoma(71),

neuroblastoma(46), Ewing sarcoma

(30), head and neck carcinoma(27),

chordoma(14), brain stem tumor

(17), cerebral arteriovenous

malformation(8), others(51).

Reirradiation � surgery�

concurrent chemotherapy

Evaluation of efficacy and late

toxicity

10.8 to 100 Gy

(median:50.4Gy).

Combination PBT and

photon: 24

PB � Photon Survival rates 1-, 3-, 5-, 10-year:

82.7%, 67.4%, 61.4%, 58.7%.

Toxicity: 52 events grade ≥ 2 in 43

pts. Grade 4 in 5pts.

Buszek,

[24]

2019 19 Rhabdomyosarcoma: Bladder (14)

and prostate (5).

Chemotherapy � surgical resection 36.0–50.51 Gy(RBE)

(median 50.4)/1.8

PB 5-year OS and PFS: 76%. 5-year LC

for tumor >5 cm 43% vs. 100% for

≤5 cm (p = 0.006). Acute grade 2

toxicity in 2 pts. (11% proctitis).

Merchant,

[25]

2008 40 Optic pathway glioma (10),

craniopharyngioma (10),

infratentorial ependymoma (10),

medulloblastoma (10).

Not reported Not specified

Comparison of toxicity

between PB and photons.

PB vs.

Photon

PB lower the distribution of low and

intermediate (0–20, 20–40 Gy).

Large difference in overall dose

distribution.

Antonini,

[26]

2017 39 Glioma (10), medulloblastoma (14),

germ cel tumor (9),

craniopharyngioma (4), other(2)

Not reported

Evaluation of neurocognitive effect

of PB in attention, processing speed,

and executive functioning

Median, range(Gy):

Focal: 50.40 (45.00–

60.00)

CSI: 55.80 (45.00–55.80);

PB Focal: normal limits.

CSI: difficulties in underlying

component skills (i.e, processing

speed)

Kahalley,

[27]

2016 150 XRT: Glioma(8), medulloblastoma /

PNET(28), ependymoma (13), germ

cell tumor (3), other (8).

PBRT: Glioma (20),

Comparison Intelligence Quotient

(IQ) change after PBRT vs. XRT

(60 XRT, 90 PBRT)

Median, range(Gy):

Photon: 54.0 (30.6–59.4).

PBRT: 54.0 (30.0–60.0)

PB vs.

Photon

PBRT: no change in IQ over time.

XRT: IQ declined by 1.1 points per

year (P = .004).
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N° fractions Proton

technique

Observations

medulloblastoma/ PNET (34),

ependymoma (4), germ cell tumor

(17), other (15)

IQ slopes did not differ between

groups (P = .509

Taddei,

[28]

2018 9 Medulloblastoma Estimate reductions in projected

lifetime SMN incidence and

mortality if treated with proton CSI

vs. photon CSI

CSI 23.4 Gy-RBE in

1.8 Gy-RBE fractions

PB vs.

Photon

Ratio SMN incidence PB CSI to

photon CSI: 0.56 (95% CI, 0.37 to

0.75)

Ratio SMN mortality PB CSI to

photon CSI: 0.64 (95% CI, 0.45 to

0.82)

Peeler, [29] 2016 34 Ependymoma (supratentorial 10,

infratentorial 24)

After surgery

To determine if areas of normal

tissue damage were associated with

increased biological dose

effectiveness.

54–59.4 Gy PB Image changes dependence on

increasing LET and dose. TD50

decreased with increasing

LET = increase in biological dose

effectiveness

Gunther

[30]

2015 72 Ependymoma:

IMRT: 21 infratentorial

PBRT: 26 infratentorial

Postoperative RT � chemotherapy

before RT � chemotherapy after RT

Median, range(Gy):

IMRT 54.0 (50.4–59.4)

PB 59.4 (53.0–59.4)

PB and

IMRT

PBRT was associated with more

frequent imaging changes(OR: 3.89,

P < .024).

Sato, [31] 2017 79 Ependymoma (54 infratentorial) Postoperative RT � chemotherapy

after RT

(IMRT 38, PRT 41)

Median, range (cGy):

IMRT: 5400 (5040–

5940)

PB: 5580 (5040–5940)

PBT and

IMRT

3-year PFS rates were 60% and 82%

with IMRT and PRT, respectively

(P = .031)

Adesina,

[32]

2019 83 Low grade glioma: Brainstem (19),

cerebral hemispheres (6), thalamus

(13), optic pathway/hypothalamus

(29), other (16).

Surgery � chemotherapy

(IMRT 32, PBT 51)

Median, range (Gy):

IMRT: 50.4 (45–59.4)

PBT: 50.4 (45–54)

PB Post-RT enlargement rates PBT vs.

IMRT: HR 2.15, 95% CI 1.06–4.38,

p = 0.04). RT dose >50.4Gy

(RBE) > rates of PsP (HR 2.61, 95%

CI 1.20–5.68, p = 0.016)

Zhang [33] 2014 17 Medulloblastoma Surgery + chemotherapy CSI 23.4 or 23.4 Gy

(RBE) to the age specific

target volume at 1.8 Gy/

fraction

PB Proton superior outcomes (<

predicted risks of 2nd cancer and

cardiac mortality than photon).
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N° fractions Proton

technique

Observations

Bagley,

[34]

2018 18 High risk neuroblastoma:

retroperitoneum/abdomen (16),

thorax/mediastinum (2)

Chemotherapy + resection +

autologous stem cell transplant +

cis-retinoic acid � immunotherapy

PT to primary + up to 3

MIBG-avid metastasis:

- Primary sites: 21–36 Gy

- Metastatic sites: 21–

24 Gy

PB (1 IMPT) 2 and 5-year local control rates at

primary site: 94% and 87%. 5-year

overall survival (OS) 94%

McGovern,

[35]

2014 31 AR/RT Tumor CNS Surgery + Chemotherapy Focal: 50.4GyRBE (9–

54).

CSI: 24–30.6 GyRBE.

Tumor dose: 54 Gy

(43.2–55.8)

PB Median follow-up 24 months

(3–53).

PFS 20.8 months.

OS 34.3 months.

16% symptoms and brainstem

image changes

Grant, [36] 2015 24 Salivary gland tumor: parotid (20),

submandibular (4).

Surgery � concurrent

chemotherapy

(11 photons, 13 PRT)

X/E RT: 60 (54–66)

PRT: 60 (56.4–66)

30 sessions

PB vs.

Photons

PRT lower doses to surrounding and

contralateral structures.Favorable

acute toxicity and dosimetric

profile.

Mizumoto,

[37]

2018 55 Rhabdomyosarcoma. Histology: 18

alveolar.

Localization: Head and neck (37),

parameningeal (3), prostate (8),

others (7).

Surgical resection � chemotherapy 36–60 GyE (median:

50.4 GyE). Fractions: 1.8

PB 2-year OS 84.8% (95%CI 75.2–

94.3%). 100%, 90.1%, 42.9% for

COG low-, intermediate- and high-

risk. Not specific toxicity.

Ladra, [38] 2014 54 Rhabdomyosarcoma: Orbital (12),

head and neck(3), perineal/ perianal

(2), biliary (1), parameningeal (24),

bladder/prostate (7), extremities

(3), chest/abdomen (2)

Surgical resection � chemotherapy

Dosimetric comparison of PB and

IMRT

36–50.4 Gy (median

50.4 Gy)

PB vs. IMRT Mean integral dose was 1.8 times

higher for IMRT

Ladra, [39] 2014 57 Rhabdomyosarcoma: Orbital (13),

head and neck (4), perineal (1),

biliary (1), parameningeal (27),

bladder/prostate (5), extremities

(3), chest/abdomen 2, perianal 1.

Surgical resection � chemotherapy Radiation dose GyRBE:

Median 50.4: Range

36.0–50.4

5-year EFS, OS, LC: 69%, 78%, 81%,

respectively.

Toxicity: Acute:13 pts. grade 3; Late:

3 pts. grade 3. No toxicities >

grade 3.
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N° fractions Proton

technique

Observations

Tamura,

[40]

2017 26 A. Brain

B. Chest

C. Abdomen

D. Whole CNS(medulloblastoma)

Surgery � chemotherapy

Comparison PBT to IMXT in

lifetime attributable risk of

radiation-induced

secondary cancer (LAR)

A: 30.6–57.6 Gy/ 1.8 Gy.

B: 25.2–60 Gy. /1.8–

2.5Gy

C: 25.2–72.6 Gy/ 1.8–

3.3 Gy.

D: 18–23.4 Gy/ 1.8 Gy

PB In pts. undergone PBT LAR was

lower than IMXT estimated

LAR useful marker of secondary

cancer induced by radiotherapy

Table 1.
Clinical experiences with synchrotron PBT in pediatric tumors (AT/RT: atypical teratoid rhabdoid tumors; OS: overall survival; PFS: progression-free survival; LC: Local control; SMN: secondary
malignant neoplasms; LET: linear energy transfer; TD50; dose at which 50% of patients would experience toxicity; PsP: Pseudoprogression; EFS: event-free survival; PB: passive beam; IMRT:
intensity modulated radiotherapy; IMPT: intensity modulated proton therapy; CSI craniospinal irradiation).
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N°

fractions

Proton

technique

Observations

Bronk [42] 2018 99 Grade II-III

oligodendroglioma or

astrocitoma

IDH mut 52%

PB(34) vs. IMRT(65) in

development of

pseudoprogression

50–54 RBE

standard

fractionation

PB No difference in pseudoprogression rate 6 months after

proton or photon therapy.

Wilkinson

[43]

2016 58 Low-grade gliomas

Oligodendroglioma 33%

Astrocitoma 38%

Mixed 29%

Evaluation of acute toxicity 50–54 RBE

standard

fractionation

PB No G3 toxicity

78% G1–2 dermitis, 81% alopecia, 47% fatigue.

Amsbaugh

[44]

2012 8 Primary spinal

ependymomas

n = 6 Grade I; n = 2 grade II.

Surgery before RT 45–54 RBE/25 fx PB mFT 26 months.

Local control, event-free survival, and overall survival

rates were all 100%

Jaramillo

[45]

2019 7 Embryonal tumors with

multilayered rosettes

(ETMRs)

Surgery 52–56 RBE/30 fx PB mFT 40 months.

mOS 16 months

3 pts. survived ≥36 m

5 pts. had LRF

Vatner [46] 2018 189 Medulloblastoma: 130

Ependymoma: 26

Low grade glioma: 14

CSI � surgery � systemic ChT 23.4 Gy/

1.8 GyRBE

PB -mFT 4.4y

�4-y actuarial rate hormone deficency, GH, TH, ACTH

and FSH/LH were 48.8%, 37.4%, 20.5%, 6.9%, and

4.1%, respectively.

-Age at start of RT, time interval since treatment, and

median dose to the combined hypothalamus and

pituitary were correlated with increased incidence of

deficiency.

Stoker [47] 2014 10 CNS tumors. 5 adults, 5

pediatric.

Compare field junction robustness

and OARs in CSI IMPT vs. PSPT

N/E IMPT IMPT vs. PSPT (PB) lowered maximum spinal cord

dose, improved spinal dose homogeneity, and reduced

exposure to other OARs.

Barney [48] 2014 50 CNS tumors. 38%

medulloblastoma.

Surgery + Systemic ChT CSI 30.6 RBE

+

Boost 54 RBE

PB Nausea/vomiting G2 20%

Anorexia G2 10%

G3 cytopenia 8%
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N°

fractions

Proton

technique

Observations

Brown [49] 2013 40 Medulloblastoma in adults Surgery.

EP: Acute toxicity

n = 19 PBT; n = 21 photon CSI

CSI 30.6 RBE

+

Boost 54 RBE

PB PBT pts. lost significantly less weight than photon pts.,

less nausea/vomiting, less cytopenia.

Esophagitis 57% vs. 5%

Zhang [50] 2012 1 Medulloblastoma Risk of second cancer: 3-field

6MV photon vs. 4-field PBT

CSI 23.4 RBE PB Lifetime risk second cancer 7.7 vs. 92%. Proton therapy

confers lower predicted risk of second cancer for the

pediatric medulloblastoma patient compared with

photon therapy.

Bielamowicz

[51]

2018 95 Medulloblastoma

PBT n = 41

MRF surgery + CSI

Photons vs. PBI hypothiroidism

23.4 RBE

standard CSI

36–39 RBE in HR

pts.

PB Hypothiroidism:

mFT PBT 3y 19%

mFT photons 9y 46.3%

Table 2.
Clinical experiences in CNS tumors treated with synchrotron technology (2012–2019). OARs: organs at risk; RBE: radiobiological equivalence; CNS: central nervous system; ChT: Chemotherapy).
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Authors Year N° patients Stage histology Multidisciplinar Dose/N°

fractions

Proton

technique

Observations

Blanchard

[53]

2016 50 IMPT

100 IMRT

Locally advanced

oropharynx cancer

IMRT vs. IMPT

Neck disSection 23%

66–70

RBE/35 fx

IMPT IMPT is associated with reduced rates of feeding tube

dependency

and severe weight loss

Frank

[54]

2014 15 10 pts. SCC

5 pts. adenoid cystic

carcinoma.

Locally advanced.

NR 66–70

RBE/35 fx

IMPT mFT: 28 m

cCR: 93.3%

Xerostomía G3: 1 patient

Mucositis G3: 6 pts.

Bagley

[55]

2020 69 Oropharingeal carcinoma

stage III-IV

Xerostomia-Related QoL 70 RBE/35

fx

PB greatest xerostomia-related QoL impairment at

6 weeks. 49% improvement after 10 wks.

Jensen

[56]

2017 50 IMPT

100 IMRT

Oropharingeal carcinoma

stage III-IV

Prognostic impact of

leukocyte counts before and

during radiotherapy. IMRT

vs. IMPT

70 RBE/35

fx

IMPT The radiotherapy type (IMRT vs. IMPT) was not associated

with lymphopenia.

Poor progression-free survival was associated with

pretreatment leukocytosis and T status in univariate

analysis, and pretreatment neutrophilia and advanced age on

multivariate analysis.

Zhang

[57]

2017 50

IMPT

534 IMRT

Locally advanced

oropharynx cancer

IMRT vs. IMPT 66–70

RBE/35 fx

IMPT mFT: 33.8 m

Osteoradionecrosis rates: 2% IMPT, 7.7% IMRT.

Sio [58] 2016 35

IMPT

46 IMRT

Oropharyngeal Cancer

Stage III-IVa.

IMRT vs. IMPT 70 RBE/35

fx

IMPT Symptom burden was lower among the

IMPT patients than among the IMRT patients during the

subacute recovery phase after

treatment

Gunn

[59]

2016 50 Oropharingeal SCC

stage III-IV

Concurrent chemo-IMPT

32%

IC concurrent chemo-IMPT

30%

66–70

RBE/35 fx

IMPT mFT: 29 m

2- year actuarial: OS 94.5%; PFS 88.6%.

N = 5 recurrence.

G3 toxicities: mucositis 58%; dysphagia 12%.

Ludmir

[60]

2019 46 H&N alveolar

rhabdomyosarcoma in

children

Systemic ChT 50.4 RBE/

25 fx.

PB mFT: 3.9y

5-y: OS 76%

PFS 57%
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Authors Year N° patients Stage histology Multidisciplinar Dose/N°

fractions

Proton

technique

Observations

LC: 84%

Tumor size >5 cm, delayed RT after ChT and ICE increased

risk.

Ludmir

[61]

2018 14 H&N alveolar

rhabdomyosarcoma in

children

57% localized

43% N+

Systemic ChT 50.4 RBE/

25 fx.

PB mFT: 4.3 y

5-y: OS 45%

DFS 25%

71% relapsed

Phan [62] 2016 60 SCC 40 pts.

Non-SCC 20 pts.

Reirradiation

58% upfront surgery

73% ChT

66 RBE/30

fx

25% IMPT

75% PB

mFT: 13.6 m

1-y: LC 68.4%

OS 83.8%

PFS 60%

DMFS 75%

30% toxicity G3.

Table 3.
Clinical experiences in head and neck cancer treated with synchrotron technology (2014–2019). (mFT: median follow up time).
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hypofractionated intensity modulated proton therapy (IMPT) and combinations of
hypofractionated proton therapy with immunotherapy [63].

For early-stage non-small cell lung cancer (NSCLC), the optimal clinical context
for proton beam therapy (PBT) is challenging due to the increasing evidence dem-
onstrating high rates of local control and good tolerance of stereotactic ablative
body radiation (SABR). The potential advantage may be significant in treating
larger tumors, multiple tumors, or central tumors. Most of the published studies are
based on passive scattering PBT. Dosimetric benefits are likely to increase whith
pencil beam scanning/intensity-modulated proton therapy (IMPT) [64]. A pro-
spective longitudinal observational study of 82 patients with unresectable primary
or recurrent NSCLC treated with 3-dimensional conformal radiation therapy
(3DCRT), IMRT, or proton therapy included patient-reported symptom burden,
assessed weekly for up to 12 weeks with the validated MD Anderson Symptom
Inventory. Despite the fact that the proton group received significantly higher
target radiation doses (P < 0.001), patients receiving proton therapy reported
significantly less severe symptoms than did patients receiving IMRT or 3DCRT
[63]. (Table 4).

3.5 Esophageal cancer

Radiation therapy (RT) has become an important component in the curative
management of esophageal cancer (EC). Since most of the ECs seen in the Western
hemisphere (i.e., Europe and the United States) are located in the mid- to distal-
esophageal locations, heart and lungs invariably receive significant radiation doses.
Proton beam therapy (PBT) provides the ability to further reduce normal tissue
exposure because of its lack of exit dose, which is expected to provide clinically
meaningful benefit for at least some EC patients [90].

Investigators at MD Anderson Cancer Center have reported a phase IIb ran-
domized trial comparing PBT and IMRT for patients with EC (NCT01512589). The
primary endpoints are progression-free survival and total toxicity burden, which is
a composite endpoint including serious adverse events and postoperative complica-
tions. Among the 145 patients randomized, total toxicity burden was 2.3 times
higher for photon IMRT and the postoperative complications (50% of patients were
operated) was 7.6 times higher in photon IMRT cohort. The 3-year overall survival
was similar in both groups (44%) [91]. Results from prospective clinical trials will
greatly improve our knowledge regarding the role and benefits expected from
proton therapy for EC. (Table 5).

3.6 Hepatocellular cancer

Proton beam therapy has the unique dosimetric performance, particularly valu-
able for the treatment of hepatocellular carcinoma (HCC). Clinical data is available
in a limited number of patients, especially from Japan. In a systematic review from
1983 to June 2016 to identify clinical studies on charged particle therapy for HCC, a
total of 13 cohorts from 11 papers. The reported actuarial local control rates ranged
from 71 to 95% at 3 years, and the overall survival rates ranged from 25–42% at
5 years. Late severe radiation morbidities were uncommon, and a total of 18 patients
with grade ≥ 3 late adverse events were reported among the 787 patients included in
the analysis.

The American Society for Radiation Oncology (ASTRO) issued a Model Policy
on PBT in 2014 and PBT for HCC is covered by medical insurance in the United
States. The Japanese Clinical Study Group of Particle Therapy (JCPT), the Japanese
Society for Radiation Oncology (JASTRO), the Japanese Radiation Oncology Study
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N° fractions Proton

technique

Observations

Lin [65] 2016 11 II-III NSCLC 4D versus 3D Robust Optimization 66 RBE/33 fx PB 4D robust optimization improved dosimetry in

comparable targets.

Welsh [66] 2013 260 Primary NSCLC SBRT photon vs. SBRT proton

dosimetric comparison

50 Gy/4 fx PB SBRT protons: Same coverage, significant reduction

dose in chest wall and lung.

Matney [67] 2013 20 NSCLC IIB-III Randomized IMRT vs. PSPT.

4D-3D dose variables

60–70 Gy/ 30–35

fx

PB -Target coverage maintained up to 17 mm in both.

�2/11 pts. less susceptible to respiratory motion

PSPT

Nguyen [68] 2015 134 NSCLC II-III inoperable Concurrent CT

�21 stage II

�113 stage III

60–70 Gy/30–35 fx PB �4.7 y follow-up

-mOS stage II: 40 months

Stage III: 30 months.

OS, DFS, LC no difference by stage.

Niedzielski

[69]

2017 134 NSCLC stage III. IMRT(85 pts) vs. PSPT(49 pts)

Esophageal toxicity (clinical and image)

60–70 Gy/30–35 fx PB No significant difference in esophageal toxicity

found between proton and photon-based radiation

therapy for the study cohort, based on imaging

biomarker or CTCAE grade

Ohnishi [70] 2019 669 NSCLS stage I

38% T1a; 31% T1b; 29%

T2a.

Efficacy and safety PBT 74–113 Gy PB 3-y OS 79,5%.

>100 GyE improved outcomes

Elhammali

[71]

2019 51 Advanced inoperable

NSCLC

Concurrent Cht 67.3 Gy IMPT 3-y LC 78%.

mOS 33 months,DFS 12 months.

G3 toxicity 18%

Nakajima

[72]

2018 55 Stage I NSCLC

IA 33 pts.

IB 22 pts

Image-guided fiducials (71%) 66 Gy/10fx

72 Gy/ 22 fx

PB 3-y OS 87%; 74% DFS; 96% LC

No G3 toxicities.

Nantavithya

[73]

2018 19 Inoperable stage

NSCLC with HR

features.

SBRT vs. SBPT 50 Gy/4 fx PB 3-y OS 27%

LC 90%
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N° fractions Proton

technique

Observations

McAvoy

[74]

2013 33 Recurrent after RT

63 Gy/33fx. III 20 pts.

Area of failure after initial RT: 19 pts.

“in field”.

31 pts. concurrent ChT.

63 Gy/33 fx PB 1-y OS 47%

DFS 28%

LC 54%

Toxicity≥3G pulmonary 21%

Gomez [75] 2013 25 NSCLC, thymic,

carcinoid tumors.

Phase I. Dose-escalation

hypofractionated PBT

45–52.5-60 Gy/15

fx.

PB Dose-limiting toxicity: 2 pts. experienced fistula

(52,5Gy).

60 Gy pneumonitis G4

Xiang [76] 2012 84 Stage III NSCLC Concurrent Cht

FDG uptake correlate (SUV1 pre, SUV2

post)

74 RBE/35 fx PB KPS and SUV2 were independently prognostic for

LRFS, DMFS, PFS and OS.

Gomez [77] 2012 108 Stage III NSCLC (50–

70% pts)

Esophagitis

Concurrent ChT

405 3DCRT

139 IMRT

108 PBT

≥50 Gy/25–30 fx PB Esophagitis ≥ G3

-3DCRT 28%

-IMRT 8%

-PBT 6%

Koay [78] 2012 44 Stage III NSCLC Concurrent ChT

Analyze dosimetric variables and

outcomes after adaptive replanning

74 RBE/37 fx PB -Adaptative planning more often performed in large

tumors.

�107.1 cm 3 adaptive VS 86.4 cm 3nonadaptive.

- Median n° fx: 13

-Improvement in esophagus and SC.

Register [79] 2011 15 Stage I NSCLC Central or superior tumors.

Photon SBRT vs. PSPT vs. IMPT

50 Gy/4 fx PB/IMPT When the PTV was within 2 cm of the critical

structures, the PSPT and IMPT plans significantly

reduced the mean maximal dose to the aorta,

brachial plexus, heart, pulmonary vessels, and spinal

cord.

Chang [80] 2011 44 Stage III NSCLC Phase II study

Concurrent ChT

74 RBE/35 fx PB 1-y OS 86%; PFS 63%

Non-haematological G3 toxicity: 5 dermatitis, 5

esophagitis, 1 pneumonitis.

n = 9 local recurrence.
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N° fractions Proton

technique

Observations

Shusharina

[81]

2018 83 Inoperable II-III stage.

Oligo-mtx NSCLC

Compare lung injury IMRT vs. PBT

revealed by 18F-FDG post-treatment

uptake

74 RBE/ 37fx PB The slope of linear 18F-FDG-uptake – dose response

did not differ significantly between the two

modalities

Jeter [82] 2018 15 Stage II-III NSCLC Phase I study.

Integrated simultaneous boost for dose-

escalation IMRT (6) vs. IMPT (9).

72 Gy IMRT

78 RBE IMPT

IMPT Grade ≥ 3 pneumonitis developed in 2 of the 6

patients treated to 78 Gy(CGE) IMPT SIB

Chang [83] 2017 64 Unresectable stage III

NSCLC

-IIIA 47%

-IIIB 53%

Phase II study

Concurrent ChT

74 RBE/37fx PB mOS 26 months

5y PFS 22%; LRR 28%

Late pneumonitis G2 16%

G3 12%

3% bronchial stricture.

Chang [84] 2017 35 Early stage (IA-II).

12 T1N0

23 T2–3 N0

Phase I-II prospective inoperable dose-

escalated PBT

87 RBE/35fx PB -Median follow up: 83 months.

�5-y OS 28%

LC 54%

Pneumonitis G2 11%; G3 3%

Heart G2 5,7%; Chest wall 2,9%.

Chao [85] 2017 52 IIIA 51%.

Recurrent NSCLC

Re-irradiation

67% concurrent ChT

66 Gy

30–74 RBE

PB 42% ≥ G3 toxicity.

The 1-year rates of overall and progression-free

survival were 59% and 58%, respectively.

Giaddui [86] 2016 52 Inoperable stage II-IIIB Compliance criteria RTOG 1308: Phase

III

26 IMRT vs. 26 PBT

70 RBE/35fx PB RTOG 1308 dosimetric compliance criteria are

feasible and achievable

Wang [87] 2016 82 Locally advanced

NSCLC.

3DCRT (22) vs. IMRT(34)vs. PBT(26)

Patient-reported symptom burden

Higher radiation

target dose used

PBT

PB Patients reported significantly less severe symptoms

(pain, fatigue, lack of appetite, sleep and

drowsiness).

McAvoy

[88]

2014 99 Reirradiation for

intrathoracic recurrent

NSCLC

Concurrent ChT 60 EQD2

Reirradiation dose.

70 Gy median

inital dose.

IMPT Toxicity ≥ G3 7% esophageal and 10% pulmonary.

Median LC,DMFS, and OS times were 11.43 months,

11.43 months, and 14.71, respectively.
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N° fractions Proton

technique

Observations

Lopez

Guerra [89]

2012 60 �80% stage III-IV.

�40% squamous cell

�35% adenocarcinoma

-Change in pulmonary function over

time with PBT

-Concurrent ChT.

-PBT (60) vs. 3DCRT (93) vs. IMRT

(97)

74 RBE PB Lung diffusing capacity for carbon monoxide is

reduced in the majority of patients after

radiotherapy with modern techniques. Multiple

factors, including gross tumor volume, preradiation

lung function, and dosimetric parameters, are

associated with the DLCO decline.

Table 4.
Clinical experiences in lung cancer treated with synchrotron technology (2011–2019).
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N°

fractions

Proton

technique

Observations

Ono [92] 2019 202 100 patients

stage III/IV

90 inoperable patients. 87,2 median

BED

4 PB centers 5y OS 56,3%

5Y LC 64,4%

Fang [93] 2017 448 IA-IVA

III 56%

IMRT vs. PBT

Lymphopenia

50.4 Gy/28 fx PB Significant less lymphopenia in lower esophagus

Xi [94] 2017 343 I-III

III 65%

CRT definitive

IMRT vs. PBT

≤50,4 Gy/28 fx

87%

Only 7 IMPT

(5,3%)

PBT significant better OS,PFS,DMFS,LRFFS

Shiraishi

[95]

2017 272 IIA-IVA

III 59%

94% lower third

94% adenoca.

Neoadyuvant CRT

IMRT vs. PBT

lymphopenia

50,4 Gy/28 fx PB G4 lymphopenia 40% vs. 17% during nCRT

Prayongrat

[96]

2017 19 IIB + III 80%

63% Distal third

CRT (4 surgery) 50,4 Gy/28 fx IMPT single

field

13

84% complete response. 4% surgery.

G3 esophagitis (3 pts)

1-y OS 100%

Mean heart dose 7.5 Gy

Shiraishi

[97]

2017 727 I-IVA

III 60%

89% Distal third

477 IMRT

250 PB

DVH comparisons//Cardiac dose//

Surgery 50%

50,4 Gy/28 fx IMPT 13 Significant lower radiation exposure, MHD (chambers and

coronary arteries).

Lin [98] 2017 580 I-IV

III 63%

37% 3D

44% IMRT

19% PB

Postop morbidity+outcome lenght in

hospital. Stay LOS

50,4 Gy/28 fx 3 institutions

(1/3 PB)

LOS: 3D 13.2d

IMRT 11.6 d

PB 9.3 d

Pulmonary+cardiac+wound complications

Yu [99] 2016 11 100% Distal and

GEJ

4D robust CT calculations Dosimetric

comparison

IMPT Changes of water equivalent thickness ΔWET inspirations

and espiration

Echeverria

[100]

2012 100 I-IV

III 51%

82% Distal third

Pneumonitis CTCAEv4

Re-staging PET-CT FDG 100%

50,4 Gy/28 fx PB Linear dose–response on FDG PET-CT. Symptomatic pts. had

higher dose response slope.
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N°

fractions

Proton

technique

Observations

Lin [101] 2012 62 I-IV

II-III 84%

CRT + surgery (46%)

Stage II + III (84%)

Adenocarcinomas (76%)

50,4 Gy/28 fx PB Esophagitis 46%

ypT0N0 28%

5y OS 37%

Mean CR 50%

Zhang

[102]

2008 15 I-IV 4DCT scan VS IMRT 50,4 Gy/28 fx PB 3D vs. 4D plans % Gy sparing spinal cord MaxD.

2 fields vs. 3 fields: Better lung sparing, less conformality

target.

Lin [103] 2020 145 II-III Induction ChT

IMRT vs. PBT randomized

50,4 Gy/28 fx PB

IMPT (20%)

Total toxicity burden and postoperative complications

significantly lower in PBT cohort.

3-y OS 44%.

Table 5.
Clinical experiences in esophageal cancer treated with synchrotron technology (2012–2019).
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Group (JROSG) and other groups are conducting multi-institutional prospective
clinical trials in order to obtain approval for national health insurance for HCC and
other cancers. The NCCN guidelines recommend that PBT may be appropriate in
specific situations. In the Japanese guidelines, can be considered for HCCs that are
difficult to treat with other local therapies, such as those with portal vein or inferior
vena cava tumor thrombus and large lesions. The Korean Liver Cancer Study Group
also mentioned the efficacy of PBT in their guidelines [104]. Guidelines from expert
hepatologists evaluating the of data available for HCC patients will influence on the
pattern of clinical practice considering the option of PBT as upfront therapy in the
decision-making process (Table 6) [105].

3.7 Lymphoma

In adult lymphoma survivors, radiation treatment with increase excess of radia-
tion dose to organs at risk (OARs) does increase the risk for side effects, especially
late toxicities. Minimizing radiation to organs at risk (OARs) in adult patients with
Hodgkin and non-Hodgkin lymphomas involving the mediastinum is the decisive
factor to select the treatment modality.

Proton therapy reduces the unnecessary radiation to the OARs and reduces
toxicities, especially the risks for cardiac morbidity and second cancers. In modern
guidelines for adult lymphoma patients, the benefit from proton therapy and the
advantages and disadvantages of proton treatment are considered. The dosimetric
advantage of reducing the unnecessary dose to lung, breast, heart, spinal cord,
vessels, vertebrae, thyroid and other structures in certain lymphoma involvements
can be significant and highly desirable for patients that will be extreme long-term
survivors at risk for severe chronic conditions and second malignancies [112]
(Table 7).

3.8 Prostate

PBT for prostate cancer patients has been a continuously growing option due to
its promising characteristics of high precision dose distribution in the target and a
sharp distal fall-off. Considering the large number of proton beam facilities in
Japan, the further increase of patients undergoing this treatment will be related to
the policies of the Japanese National Health Insurance (NHI) together with the
development of medical equipment and technology. A review conducted review to
identify and discuss research studies of proton beam therapy for prostate cancer in
Japan (up to June 2018) included 23 articles (14 observational, focused on the
adverse effects), and 7 interventional on treatment planning, equipment parts, as
well as target positioning. Favorable clinical results of PBT were consistent and
future research should focus on longer follow-up clinical data. PBT is a suitable
treatment option for localized prostate cancer [116].

At present, as particle beam therapy for prostate cancer is covered by the
Japanese national health insurance system (since April 2018), and the number of
facilities practicing particle beam therapy has increased recently, the number of
prostate cancer patients treated with particle beam therapy in Japan is expected to
increase drastically [117]. (Table 8).

3.9 Miscellaneous neoplasms and oncological clinical conditions

PBT has been explored in a variety of cancer sites, histological subtypes and
disease stages, including localized breast cancer, seminoma, pancreatic cancer,
oligo-recurrences and other cancer conditions. (Table 9).
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N° fractions Proton

technique

Observations

Takahashi

[106]

2019 31 HCC recurrent after PBT.

Child-Pugh class A (90%)

Angiography+TACE or

TA in previous PB

77 RBE/35 fx

72 RBE/ 22 fx

66 RBE/ 10 fx

PB Abnormal staining of the irradiated liver parenchyma was

observed in 22 patients

Chadha

[107]

2019 46 Unresectable HCC

Child-Pugh class A-B

1–3 tumors.

22% multiple

28% vascular

57% recurrent

97 RBE/ 15 fx

BED ≥90 GyE

BED <90 GyE

PB 2-y LC 81%

OS 62%

13% G3 toxicity

Hsieh [108] 2019 136 85%Posthepatectomy

No RT

Stage I-II: 49%

Stage III: 39%

BCLC-C 60%

RILD 66 RBE/10 fx

72 RBE/22 fx

67 RBE/15 fx

PB Unirradiated tumor volumen/gross tumor volumen and

Child-Pugh independently predicts RILD in patients with

HCC undergoing PBT

Sanford

[109]

2019 133 Unresectable HCC

PB 37%.

Child-Pugh class A 83%

Child-Pugh class B-C 17%.

Protons vs. photons

ablative

45 Gy/15fx

30 Gy/5–6 fx

Liver GTV: 24 Gy/

15 mean dose

PB Improved 2y OS 59 vs. 28%.

Decrease RILD

Less liver descompensations

Hong [110] 2016 92 Unresectable or locally

recurrent HCC or ICC

47 HCC

37 ICC

No prior RT

29% vascular thrombosis.

27.3% mutiple tumors

67.2 RBE / 15 fx PB 2-y LC 94%

OS 63%; 46%

Grassberger

[111]

2018 43 22 HCC

21 ICC

Flow citometry

lymphocite populations.

CTLs NK prior/during/

after.

67.5 RBE / 15 fx PB •mOS 0.6 months for HCC and 14.5 months for ICC patients.

• Longer OS significantly correlated with CTLs.

• 42 months follow-up.

Table 6.
Clinical experiences in liver cancer treated with synchrotron technology (2016–2019); RILD: radiation induced liver disease; mOS: median overall survival.
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A special challenge for defining PBT health value are geriatric cancer patients.
Aging and chronic comorbidity is a medical reality in the present and future of
oncology practice. It is projected that 1 of 5 Americans will be aged ≥65 years in
2050 and that 60% of cancers will occur in this group. As PBT resources are limited,
centers have designed decision-making systems for prioritization. Elderly cancer
patients are as fragile as pediatric oncology patients in terms of “normal” tissues
protection importance, their tissues are not that “normal” at all but link to comorbid
and biological senescence. A small pilot survey of international academic radiation
oncologists with particular experience in geriatric care recommended a preference
for irradiation with PBT, due to the age condition and cancer stage. Although this
finding may sound provocative, it shows that, while currently inclined toward
pediatrics, many practitioners see strong indications in the elderly population.

The Eurocare showed that the age-standardized death rate for cancer was ≥12
times higher among elderly persons than among younger persons, in part, because
treatments most commonly associated with cancer cure are less commonly given to
elderly patients. The use of PBT will, through reducing morbidity, make the deliv-
ery of curative therapy more possible, merits a serious thought. Older patients are
more likely to be admitted for cancer treatment as a result of an emergency or at an
advanced stage. These factors may be associated with increased costs. The societal
cost of delayed or inadequate treatment will require formal measurement against
the cost of these advanced radiation technologies. PT should now be regarded as a
relevant method to limit the short- and long-term toxicity of irradiation and reduce
the need for costly supportive care.

While research protocols no longer exclude patients based solely on age, many
currently do so because of these patients’ comorbidities. It is time to consider the
inclusion of comprehensively assessed elderly men and women in clinical trials of
PBT. It is among these patients that some of the greatest benefits may yet be
revealed. Until specific trials report their findings, a proactive guidance for the

Authors Year N°

patients

Stage

histology

Multidisciplinar Dose/N°

fractions

Proton

technique

Observations

Ricardi

[113]

2017 138 I-II 73%

III-IV 27%

Mediastinal

involvement

96%

Bulky 57%.

No-relapse;

No-

refractory

Consolidation

ChT

21 RBE

pediatric

30.6 RBE

adults

PB 3-y DFS 92%

No G3 radiation

toxicities

Rechner

[114]

2017 22 Early-stage

HL:

Mediastinal

-Dosimetric

comparisons.

-IMRT vs. PBT

-DIBH vs. free

breathing.

30.6

RBE/17

fx

PB DIBH with PBT

significantly

reduced life of

year lost

compared to

IMRT in FB

Zeng

[115]

2016 10 Early-stage

HL:

Mediastinal

Dosimetric

comparison

IMRT vs. 3DCRT

vs. IMPT

30.6

RBE/17

fx

IMPT IMPT

significantly

reduced lung

and cardiac

doses.

Table 7.
Clinical experiences in malignant lymphoma treated with synchrotron technology (2016–2017).
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Authors Year N°

patients

Stage histology Multidisciplinar Dose/N°

fractions

Proton

technique

Observations

Deville [118] 2018 100 Risk organ-confined. Post-

prostatectomy.

34% ADT

70.2 RBE 86% IMPT • Favorable GU-GI toxicity.

• Acute max toxicity: G0 14%, G1 71%, G2 15%, G3

0%.

Pan [119] 2018 693 3465 IMRT

312 SBRT

Radical RT PB 2y:

• Erectile dysfunction 21 vs. 28%

• Urinary toxicity 33 vs. 42%

• Bowel toxicity 20 vs. 15%

Iwata [120] 2018 520 7 institutions. Organ confined. 21% ADT 63–66 RBE/ 22fx PB 5y bRFS: LR 97%

IR 91%

HR 83%

Toxicity ≥G2 GI-GU 4%

Nakajima

[121]

2018 526 Urinary toxicity

Organ confined

NR 74 RBE/ 37 fx

78 RBE/ 39 fx

60 RBE/ 20 fx

PB No G3 toxicity.

G2 hypofractionation 5,9%.

Takagi [122] 2018 1375 Long- term.

Organ confined

56% ADT 74 RBE/37 fx PB Toxicities GU 2% GI 3%

5y bRFS: LR 99%

IR 91%

HR 86%

VHR 66%

Rana [123] 2016 10 Dosimetric comparisons: IMP vs.

IMRT

Rectum

Bladder

Femoral Head

79.2 RBE IMPT Better dosimetric results with IMPT

Pugh [124] 2013 226 Passive scattered VS IMPT QoL

Sexual function

GU-GI toxicity

76 RBE/ 38 fx 22 PB

65 IMPT

No toxicity or QoL differences between PB and

IMPT.

Table 8.
Clinical experiences in prostate cancer treated with synchrotron technology (2013–2018); GU: genitourologic; GI: gastrointestinal; QoL: Quality of life; ADT: androgen deprivation.
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Authors year N°

patients

Stage histology Multidisciplinar Dose/N°

fractions

Proton

technique

Observations

Guttmann

[125]

2017 23 Reirradiation for recurrent and

secondary soft tissue sarcoma

Reirradation.

1°: Acute toxicities.

68.4 RBE/

30–35 fx.

PB 78%. mFT 36 months

mOS 44 m

3-y LF 41%

Extremity-spared amputation 70%.

Hashimoto

[126]

2016 10 Cervix

Locally advanced (IIB/IIIA)

WPRT: 3DCRT vs. IMRT

vs. PBT

50.4 RBE/

25 fx

IMPT IMPT spared the small intestine, colon, bilateral femoral heads,

skin and pelvic bone to a greater extent than the other

modalities.

Haque

[127]

2015 1 Seminoma.Initial stage IA. Salvage

radiation

IMRT vs. PBT 30 RBE/15

fx

PB Complete response with no radiation-related side effects at the 3-

month follow-up.

Pan [128] 2015 7 Mesothelioma

IMRT n = 3

IMPT = 4

Pleurectomy n = 6 60RBE/

25fx

Integrated

boost

IMPT Dosimetric benefit shown in OARs. Lower mean doses to the

contralateral lung, heart, esophagus, liver, and ipsilateral kidney,

with increased contralateral lung sparing when mediastinal boost

was required for nodal disease.

Demizu

[129]

2017 96 Skull base n = 68

Cervical spine n = 8

Lumbar spine = 5

Sacral spine = 15

Surgery performed in 68

pts

<70Gy

RBE

(50pts)

>70 Gy

RBE

(46pts)

PB 5-y OS 75%

PFS 50%

LC 71%

Smith

[130]

2019 51 Reconstructed + � nodes Post-mastectomy

inmediate reconstruction

50 Gy/25 fx

(73%)

40 Gy/15 fx

(27%)

IMPT Low rates of acute toxicity.

More complications with hypofractionation.

Max dermatitis G1 63%.

Mutter

[131]

2016 12 I-III Post-mastectomy

inmediate reconstruction

50 Gy/25 fx

(73%)

IMPT Skin radiodermitis G3 in 1 patient.

Table 9.
Clinical experiences in miscellaneous neoplasms and cancer conditions treated with synchrotron technology (2015–2017); LC: Local Control.

25 P
roton

C
a
n
cer

T
h
era

p
y:Syn

ch
rotron

-B
a
sed

C
lin

ica
l
E
x
p
erien

ces
2
0
2
0
U
p
d
a
te

D
O
I:h

ttp
://d

x
.d
oi.org/10

.5772
/in

tech
op
en
.94937



allocation of geriatric patients to PBT in the non-study situation is needed
urgently [132].

4. Clinica Universidad de Navarra Proton Unit: early clinical experience

In March 2020, after a 28 months installation period, the first cancer patient was
treated. This is the first synchrotron equipment for PBT operating in Europe
(Figure 2) and the third 360° gantry available for clinical use worldwide.
(Figure 3). It is important to emphasize that the initiation of clinical activities was
coincident with COVID pandemic, in one of the cities in the world (Madrid, Spain)
with the more devastating epidemiologic and medical compromise. Under the
strict institutional protective policy, none of the professionals involved in PBT

Figure 2.
Characteristics of the Proton Beam Therapy Unit structure at the Cancer Center Universidad de Navarra,
CCUN (Madrid Campus, Spain).
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intra-hospital process have had a positive test for COVID infection (up to the
moment of writing the present manuscript October 2020), but several patients
(11%) under treatment were detected to be infected along the treatment period
(Table 10).

Figure 3.
Distribution of exclusive synchrotron technology for PBT in the world. Institutions with active 360° gantry
equipment available.

Patient characteristics

# %

N° patients

55 100

Age, years

Median (range) 42 (3–86)

<30 20 36.3%

>30 35 63.6%

Gender

Female 29 52.7%

Male 26 47.3%

Reirradiation

Yes 19 34.5%

No 36 65.4%

COVID-19

Positive 6 11%

TUMOR

Site

Brain 17 30.9%

Skull base 4 7.3%

Head & Neck 7 12.7%

Thorax 5 9%

Spine 8 14.5%

Upper abdomen 2 3.6%
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5. Conclusions

In principle, PBT offers a substantial clinical advantage over conventional pho-
ton therapy. This is because of the unique dose-deposition characteristics of pro-
tons, which can be exploited to achieve significant reductions in normal tissue doses
proximal and distal to the target volume. These may allow escalation of tumor doses
and greater sparing of normal tissues from unnecessary irradiation exposure, thus

Patient characteristics

# %

Pelvis 12 21.8%

Histology

Chordoma/chondrosarcoma 9 16.3%

Rhabdomyosarcoma/Soft Tissue Sarcoma 3 5.4%

Medulloblastoma 5 9%

Ependimoma 3 5.4%

Craneopharingioma 2 3.6%

Malignant glioma 7 12.7%

Lymphoma 2 3.6%

Adenocarcinoma 11 20%

Squamous Cell 6 10.9%

Others 7 12.7%

TREATMENT

Previous surgery

Previous radiotherapy

Concomitant ChT

33

19

10

60%

34.5%

18.1%

Proton Beam technique

IMPT MFO synchrotron 55 100%

N° incidences (median, range) 3 (1–4)

1

2

3

>3

1

15

27

12

1.8%

27.3%

49%

21.8%

Total doses

<30 Gy RBE

>30 Gy RBE

2

53

3.7%

96.3%

Fractionation (median, range) 24 (5–37)

<10

10–20

>20

2

20

33

3.6%

36.3%

60%

Volume

-Focal

-Extended

32

23

58.2%

41.8%

Table 10.
Early clinical demographic data in patients treated in the Clinica Universidad de Navarra synchrotron PBT
system: 6 months period (March–October 2020).
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potentially improving local control and survival while at the same time reducing
toxicity, carcinogenesis and improving quality of life. Synchrotron technology
matches these benefits with proven reproducibility of its dosimetric properties and
clinical observations.

Despite the high potential of PBT, the clinical evidence supporting the broad use
of protons is still under consolidation. The clinical data generated in institutions
with synchrotron technology is abundant and of high scientific quality in terms of
bibliometric records. An update has been summarized in the present publication.
Clinical scientists operating with synchrotron proton beams are remarkably active
in generating knowledge on topics such as cost effectiveness, the implementation
of randomized trials and the collection of outcomes data in multi-institutional
registries.

Some fundamental issues to understand clinical outcomes are unsolved. This
includes the equivalence of passive beams versus pencil beam radiation delivery and
the relative biological effectiveness (RBE) of protons which is simplistically
assumed to have a constant value of 1.1. In reality, the RBE is variable and a
complex function of the energy of protons, dose per fraction, tissue and cell type,
end point, etc.

From 2012 to 2017, both ASTRO’s Emerging Technology Committee report and
ASTRO Model Policy document on proton beam therapy consider its recommenda-
tion reasonable in instances where sparing the surrounding normal tissue cannot be
adequately achieved with photon-based radiotherapy and is of added clinical bene-
fit to the patient. Based on the medical necessity requirements or the generation of
clinical evidence in IRB-approved clinical trials or in multi-institutional patient
registries adhering to Medicare requirements, PBT is expanding widely in clinical
practice [133].

For a practicing oncologist evaluating treatment plans has uncertainties about
the radiobiological equivalences (RBE) and other dosimetric elements that are taken
into current models, which means that, the dose displayed on a commercial treat-
ment plan is likely to be less accurate. These features are not intuitive for oncolo-
gists and allied cancer specialties clinicians and need further refinement in the
assessment of dosimetric displays. It means the dose effects may extend past the
isodose lines shown on paper, not considering certain uncertainties and this effect
beyond the target will always be in non-target normal tissues [134].

Synchrotron technology is a component of the integral health care of a patient
requiring radiotherapy and all the elements involved in the medical process need to
be optimized to achieve an improved quality and safety standards in proton cancer
therapy [135].
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