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Chapter

Selected Issues and Constraints of
Image Matching in Terrain-Aided
Navigation: A Comparative Study
Piotr Turek, Stanisław Grzywiński and Witold Bużantowicz

Abstract

The sensitivity of global navigation satellite systems to disruptions precludes
their use in conditions of armed conflict with an opponent possessing comparable
technical capabilities. In military unmanned aerial vehicles (UAVs) the aim is to
obtain navigational data to determine the location and correction of flight routes by
means of other types of navigational systems. To correct the position of an UAV
relative to a given trajectory, the systems that associate reference terrain maps with
image information can be used. Over the last dozen or so years, new, effective
algorithms for matching digital images have been developed. The results of their
performance effectiveness are based on images that are fragments taken from
source files, and therefore their qualitatively identical counterparts exist in the
reference images. However, the differences between the reference image stored in
the memory of navigation system and the image recorded by the sensor can be
significant. In this paper modern methods of image registration and matching to
UAV position refinement are compared, and adaptation of available methods to the
operating conditions of the UAV navigation system is discussed.

Keywords: digital image processing, image matching, terrain-aided navigation,
unmanned aerial vehicle, cruise missile

1. Introduction

Global navigation satellite systems are widely used in both civil and military
technology areas. The advantage of such systems is very high accuracy in deter-
mining the coordinates, however, the possibility of easy interference precludes their
use in conditions of armed conflict with an opponent equipped with comparable
technical capabilities. In the case of military autonomous unmanned aerial vehicles
(UAVs), in particular cruise missiles (CM), the aim is therefore to determine
navigation data for specifying the position and correcting the flight paths by means
of other types of navigation and self-guidance systems.

Such systems are usually based on inertial navigation systems (INS) which use
accelerometers, angular rate gyroscopes and magnetometers to provide relatively
accurate tracking of an object’s position and orientation in space. However, they are
exposed to drift and systematic errors of sensors, hence the divergence between the
actual and the measured position of the object is constantly increasing with time.
This results in a significant navigational error.
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Therefore, two types of systems designed to correct the position of an object in
relation to a given trajectory are normally used in the solutions of the UAV/CM
navigation and self-guidance systems. The first group contains systems whose task
is to determine the position on the basis of data obtained from radio altimeters,
related to reference height maps. Such systems include, for example: TERCOM
(terrain contour matching), used in Tomahawk cruise missiles, SITAN (Sandia
inertial terrain-aided navigation), using terrain gradients as input for the modified
extended Kalman filter (EKF) estimating the position of the object, and VATAN
(Viterbi-algorithm terrain-aided navigation), a version of the system based on the
Viterbi algorithm and characterised – in relation to the SITAN system – with lower
mean square error of position estimation [1–5]. The main disadvantage of these
solutions is the active operation of measuring devices, which reveals the position of
the object in space and eliminates the advantages associated with the use of a
passive (and therefore undetectable) inertial navigation system. The second group
consists of systems associating reference terrain maps with image information
obtained by means of visible, residual or infrared light cameras [6, 7]. Such systems
include the American DSMAC (digital scene matching area correlator), also used in
Tomahawk missiles [8, 9], and its Russian counterpart used in Kalibr (aka Club)
missiles. Their advantage is both the accuracy of positioning and the secrecy
(understood as passivity) of operation.

Due to the dynamic development of UAVs/CMs equipped with navigation sys-
tems operating independently of satellite systems and a number of problems asso-
ciated with the implementation of the discussed issue, the assessment on the
sensitivity of the selected methods to environmental conditions and constraints in
the measurement systems, which often negatively affect the results obtained, has
been carried out. The essence of the work is to consider issues related to the
processing of image information obtained from optical sensors carried by UAV/CM
and its association with terrain reference images. In particular, issues of the cor-
rectness of image data matching and the limitations of the possibilities of their
similarities’ assessment are considered. The article compares modern image
matching methods assuming real conditions for obtaining information. The main
goal set by the authors is to verify selected algorithms, identify the key aspects
determining the effectiveness of their operation and indicate potential directions of
their development.

2. State of the art

The operation of classic object identification algorithms, indicating the
similarities between the recorded and reference images (the so-called patterns),
is mainly based on the use of correlation methods. These algorithms, although
effectively implemented in solutions to typical technical problems, are insuffi-
ciently effective in the case of topographic navigation. It is related to, inter alia,
the limitations and conditions in the measurement system, environmental
conditions and characteristics of the detected objects, which have a strong negative
impact on the obtained correlation results. This disqualifies the possibility of their
direct use in the tasks of matching reference terrain maps with the acquired
image information.

A particularly significant obstacle is the fact that the sensory elements of
navigation systems installed on UAV/CM record image data in various environ-
mental and lighting conditions [10]. Frequently, reference data of high informative
value, due to various conditions, constitute a pattern of little use or even lead to
incorrect results. This is the case, for example, when the reconnaissance is
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conducted in different weather conditions than those in which the UAV/CM
mission takes place (Figure 1). Therefore, image feature matching becomes a com-
plex issue. The conditions related to the image recording parameters, e.g. variable
view angle, maintaining scale or using various types of sensors, turn out to be
equally important.

Image matching methods began to be strongly developed with the dissemination
of digital image in technology. Initially, the classical Fourier and correlation
methods were used. However, these methods did not allow for successful multi-
modal, multi-temporal, and multi-perspective matching of different images. The
taxonomy of the classical methods used in the image matching process was
presented in the early 1990s [11]. The image feature space, considered as a source of
information necessary for image matching, was defined and local variations in the
image were identified as the greatest difficulty in the matching process. In the 21st
century, further development of methods based on the features of the image con-
tinued [12]. It should be emphasised that most image matching methods based on
image features include four consecutive basic steps: feature detection, feature
matching, model estimation of mutual image transformation and final transforma-
tion of the analysed image. These methods became an alternative to the correlation
and Fourier methods. For over a dozen years, new, effective algorithms for
processing and matching digital images have been developed, using statistical
methods based on matching local features in images [11–14], cf. Figure 2. Their
authors point to the greater invariance of the proposed algorithms to perspective
distortions, rotation, translation, scaling and lighting changes. Given their high
reliability under static conditions, as well as their low sensitivity to changes in the
optical system’s position, including translation, orientation and scale, it is justified
to conduct studies in order to verify their usefulness and effectiveness. The paper
focuses on modern image matching algorithms, which can potentially be used in
topographic navigation issues. It should be stressed that the problem is completely
different in the indicated context. This is due to the fact that although the matched
images represent the same area of the terrain, the manner and time of the recording
differ significantly from each other. This is not a typical application of these algo-
rithms, hence a limited effectiveness of their operation can be expected.

The common feature of all methods is the use of the so-called scale space
described in [15], allowing the decimation of image data and examination of

Figure 1.
Images of the same fragment of the Earth’s surface taken under different weather and lighting conditions.
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similarities between images of different scales. A significant step in the develop-
ment of image matching methods based on local features was the development of
the Scale-Invariant Feature Transform (SIFT) algorithm [16]. In this algorithm, the
characteristics are selected locally and their position does not change while the
image is scaled. Their indication is done by determining the local extremes of
function D x̂ð Þ, that is the difference between the results of image I x, yð Þ convolution
with Gaussian functions G x, y, σð Þ with different values of scale parameter σ:

D x̂ð Þ ¼ Dþ 1

2

∂DT

∂x
x̂ (1)

where

D ¼ D x, y, σð Þ ¼ Gσ1 x, yð Þ � Gσ2ðx, yÞ½ �⋆ I x, yð Þ ¼

¼ 1
ffiffiffiffiffi

2π
p 1

σ1
e �x2y2

2σ2

� �

� 1

σ2
e �x2y2

2σ2

� �

� �

⋆ I x, yð Þ
(2)

A more numerically efficient version of the SIFT algorithm, called Speeded-Up
Robust Features (SURF) is based on the so-called integral images [17]. Both methods
use the basic processing steps described in [12]. Additionally, in order to ensure the
effectiveness of feature detection in images of different resolutions, a scale space,
consisting of octaves which represent the series of responses of a convolutional
filter with a variable size, was introduced.

Simply put, the detection of the characteristic point is based on the use of the
determinant of a Hessian matrix det Hð Þ. In the case of SURF, the second-order
derivatives of the Gaussian function G approximated by the box filters Bxx, Bxy, Byy,
and the integral image are also used [18]. The Hessian matrix in these methods takes
the form

H ¼
Lxx x, y, σð Þ Lxy x, y, σð Þ

Lxy x, y, σð Þ Lyy x, y, σð Þ

" #

(3)

Figure 2.
Classification of the selected methods of image feature matching.
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where

Lxx x, y, σð Þ ¼ ∂
2

∂x2
G x, y, σð Þ⋆ I x, yð Þ≈Bxx ⋆ I x, yð Þ

Lxy x, y, σð Þ ¼ ∂
2

∂x∂y
G x, y, σð Þ⋆ I x, yð Þ≈Bxy ⋆ I x, yð Þ

Lyy x, y, σð Þ ¼ ∂
2

∂y2
G x, y, σð Þ⋆ I x, yð Þ≈Byy ⋆ I x, yð Þ

(4)

The determinant of the Hessian matrix after approximation using box filters and
the Frobenius norm is given as

det Hð Þ≈BxxByy �
9

10
Bxy

� �2

(5)

After detecting the local extremes of det Hð Þ, similarly to D x̂ð Þ, the location of
characteristic points representing local features, called blob-like for the SIFT and
SURF methods, is determined. In this step, the SIFT method also rejects features
whose contrast is lower than the assumed threshold t by comparing ∣D x̂ð Þ ∣< t as
well as points lying on isolated edges. This is done by comparing the value of the
Hessian matrix H trace quotient, and its determinant with the curvature
coefficient r:

tr Hð Þ
det Hð Þ <

rþ 1ð Þ2
r

(6)

In 2011, an alternative method to SIFT and SURF, Oriented FAST and Rotated
BRIEF (ORB), was proposed [19]. The method was based on the modified Features
from Accelerated Segment Test (FAST) detector [20, 21], enabling corner and edge
detection, and a modified Binary Robust Independent Elementary Features (BRIEF)
descriptor [22]. This approach involves changing the scale of the image on the basis
of blurring with an increasing value of Gaussian filter. Despite the noise reduction
and enhancing the uniformity of areas interpreted by human beings as unique (e.g.
surface of the lake, wall of a building, shape of a vehicle, etc.), it causes blurring of
their edges. This often leads to the inability to indicate the boundaries between
areas and to define characteristic points in their neighbourhood.

The solution to this problem was proposed in the KAZE method (Japanese for
“wind”) [23]. Unlike the SIFT and SURF methods, which use the Gaussian function
causing isotropic diffusion of luminance to generalise the image, in the KAZEmethod
the generalisation is based on nonlinear diffusion in consecutive octaves of the scale
[24]. The anisotropic image blurring in this method depends on the local luminance
distribution. Nonlinear diffusion can be presented in the following equation:

∂I

∂t
¼ div c x, y, tð Þ∇I½ � (7)

The blur intensity can be adapted by the introduced conductivity function c,
which is usually related to time. However, using the approach proposed in [15],
parameter t is related to the image scale. Various forms of the conductivity function
c were proposed in related works developing the use of nonlinear diffusion in the
context of image filtration [24–26]. One of the functions used for nonlinear
diffusion can be:
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c ¼ exp � ∇Lσj j2

k2

 !

(8)

where ∇Lσ is the gradient of the Gaussian blurred function of the original image
I on the scale σ, and k is the contrast ratio.

This function allows for blurring the image while maintaining the edges of
structures. As a result, more features can be detected at different image scales.
However, it involves the use of a gradient, which in the case of intense image
disturbance, e.g. in the form of a shadow, may cause an unfavourable (due to the
subsequent detection of features) distribution of diffusion in the image.

An important stage of the considered methods is the description of a character-
istic point by means of a vector containing information about its surroundings. The
SIFT method uses a luminance gradient and in the SURF method the image
response to horizontally and vertically oriented Haar wavelet is applied. In general,
around the characteristic point in the area with a defined radius dependent on the σ
scale, a certain number of cells are created and dominant values of the gradient or
the responses to Haar wavelets are determined. These are the basis for calculating
the so-called feature metrics. Finally, the dominant orientation is established. Char-
acteristic features in the SIFT method are determined by

m x, yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lσ xþ 1, yð Þ � Lσðx� 1, yÞ½ �2 þ Lσ x, yþ 1ð Þ � Lσðx, y� 1Þ½ �2
q

θ x, yð Þ ¼ tan �1 Lσ x, yþ 1ð Þ � Lσ x, y� 1ð Þ
Lσ xþ 1, yð Þ � Lσ x� 1, yð Þ

� � (9)

where m x, yð Þ is the gradient size, θ x, yð Þ is the orientation, and Lσ is the blurred
image discussed above.

The SIFT method creates thereunder a gradient histogram that sums up the
determined values in four cells. In analogous cells, according to the SURFmethod, the
responses to Haar wavelets distributed along the radii in the neighbourhood of the
point with an interval of π=3 are summed up. In each SURF subregion, a vector v is
determined:

v ¼
X

dx
X

dy
X

jdxj
X

jdyj
h i

(10)

where dx and dy are the characteristic point’s neighbourhood responses to the
horizontally and vertically oriented Haar wavelets, respectively.

In the KAZE method the procedure is similar as for the SURF method with the
difference that the first order derivatives from the image function are used. The
point description operation is performed for all levels in the adopted scale space,
thereby creating a pyramid of vectors assigned to subsequent levels containing an
increasingly generalised image.

The Maximally Stable Extremal Regions (MSER) method introduced in [27] has a
different approach to the detection and description of local features. In this method,
regions (shapes), referred to as maximally stable, are selected as the characteristics of
the image. The image in this method is treated as a function I which transforms

I : D⊂
2 ! S (11)

where D is the domain of I and S is its set of values, usually S ¼ 0, 1, … , 255f g.
Regions (areas, shapes) with a specific (typically average) luminance level can

be determined in the image. Region Q is understood as a subset of pixels in the
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image which is a continuous subset of D such that ∀p, q∈Q exist sequences
p, a1, a2, … , q and pAa1, … , aiAaiþ1, … , anAq, where A⊂D�D is the
neighbourhood relation and the formula aiAaiþ1 is the neighbourhood between
pixels ai and aiþ1. The extremal region is Q ⊂D, such that ∀p∈Q, ∀q∈ ∂Q :

I pð Þ> I qð Þ (maximum intensity region) or I pð Þ< I qð Þ (minimum intensity region).
The desired maximally stable extremal region (MSER) is the region R ¼ Q i ∗ , which
for the sequence of extremal regions Q1, … ,Q i�1,Q i, nested i.e. Q i ⊂Q iþ1 and for
q ið Þ ¼ ∣Q iþΔ\Q i�Δ∣=∣Q i∣ has a local minimum at i ∗ . Whereas Δ∈S is the stability
parameter and the luminance threshold. The procedure of determining MSER
regions is repeated throughout the assumed σ scale space.

In the feature description stage, a vector using image moments is determined for
each region. Based on the moments m00,m01, … ,m20, the centre of gravity of each
MSER region and the ellipse approximating the region are determined according to
the procedure described in [28]. The ellipse equation is given as

x� xg þ θ y� yg

	 
h i2

a1 1þ θ2
� � þ

y� yg þ θ x� xg
� �

h i2

a2 1þ θ2
� � � 1 ¼ 0 (12)

The orientation θ and the size of the ellipse defined by its a1 and a2 axes allow to
describe the features of the region taken for comparison in the matching step. The
moment m of the order pþ qð Þ of the MSER region used to determine the centre of

gravity of the C ¼ I xg, yg

	 


region can be represented as follows:

mpq ¼
X

x, yf g∈ℝ

xpyq (13)

The use of moments and the centre of gravity is also a feature of ORB method
which uses machine learning approach for corner detection. After their detection,
based on the image moments, the centre of gravity C is determined for each corner
according to the formula

C ¼ m10

m00
,
m01

m00

� �

(14)

where

mpq ¼
X

xpyqI x, yð Þ (15)

On the basis of the corner’s position and centre of gravity, the orientation of the
feature is determined as shown in the equation:

θ x, yð Þ ¼ atan2 m01,m10ð Þ (16)

The feature description step uses the assigned orientation to complete the binary
BRIEF descriptor [22], with the condition of verifying the belonging of the point
Lσ x, yð Þ to the matrix Wθ. It is based on the simple comparison of the pixel
luminance values in the neighbourhood of the feature:

τ Lσ; x, yð Þ ¼
1 ⇔ Lσ x, yð Þ<Lσ x1, y1

� �

0 ⇔ Lσ x, yð Þ≥Lσ x1, y1
� �

8

<

:

(17)
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The matrix Wθ is the product of the original matrix W, containing the locations
of the points, which are subject to the tests, and the rotation matrix based on the
determined angles θ x, yð Þ. In such case the ORB vector describing the feature takes
the form:

vn ¼
X

1≤ i≤ n

2i�1τ Lσ; xi, yi
� �

∣ xi, yi
� �

∈Wθ (18)

The common element for the described methods is the stage of comparing the
distinguished features detected on the reference and registered images. It is of
fundamental importance in the field of absolute terrain position designation,
because the location of the matched features is the source of determining the
matrix of mutual image transformation. In this comparison, vectors describing the
features in a given method, e.g. feature metric and its orientation, are taken into
account.

The determination of the similarity between the feature description vectors va

and vb is based on various measures. The most commonly used are the distances
defined as follows:

d1 va,vbð Þ ¼
X

∣va � vb ∣ and d2 va,vbð Þ ¼
X

va � vbð Þ2 (19)

The third frequently used norm for binary vectors is the Hamming distance
given as:

d3 va,vbð Þ ¼
X

XOR va,vbð Þ (20)

Another approach for matching two features is the nearest neighbour algorithm
based on the ratio of the distances d1 and d2. However, it should be remembered
that the matching result for the described distances may vary, hence the importance
of the features’ detection and description step.

The final step in all the discussed methods is the statistical verification of a set of
matched local features. It happens that, as a result of the initial comparison of the
vectors which describe the features, mismatches resulting from the acquisition
conditions described above are indicated. Therefore, after the pre-processing step,
additional criteria are applied to distinguish matches from mismatches, e.g. based
on the Random Sample Consensus (RANSAC) method [29]. This method allows for
the estimation of a mathematical model describing the location of local features in
the image provided that most of the matched points fit into this model (with the
assumed maximum error). Then those points that do not fit into the estimated
model are discarded in the step of determining the image transformation matrix.

3. Problem formulation

The following set is considered:

I ¼ Ii, i∈f g (21)

Elements of I are two-dimensional discrete signals (digital images) and describe
the same part of the Earth’s surface, but recorded at different times and therefore
under different environmental and lighting conditions. Image I j chosen from the set
I is treated as a reference signal, i.e. characterised by excellent structural similarity
to itself. In order to compare any Ik image selected from the set I with reference
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image I j, the following similarity measures were used: mean square error JMSE and
the related JPSNR (peak-signal-to-noise ratio) and JSSIM (structural similarity index
measure).

The mean square error is determined by the formula:

JMSE I j, Ik
� �

¼ 1

MN

X

M

x¼1

X

N

y¼1

I j x, yð Þ � Ikðx, yÞ
� �2

(22)

in which M and N are the width and height of images in pixels. Index JPSNR is
defined as:

JPSNR I j, Ik
� �

¼ 10 log 10

ℓ
2

JMSE I j, Ik
� �

( )

(23)

where ℓ is the range of changes of the luminance value, while the index JSSIM can
be described as:

JSSIM I j, Ik
� �

¼
2μI j

μIk þ ξ1

	 


2σI jIk þ ξ2

	 


μ2I j
þ μ2Ik þ ξ1

	 


σ2I j
þ σ2Ik þ ξ2

	 
 (24)

in which μI j
and μIk are the mean values of the I j and Ik image luminance, σI j

and

σIk are the variances of I j and Ik, σI jIk is covariance of a pair I j, Ik
� �

, and ξ1 ¼
0:01ℓð Þ2 and ξ2 ¼ 0:03ℓð Þ2 are positive constants avoiding instability when the
denominator of the Eq. (24) is very close to zero [30–32].

For such defined initial conditions, the best match of the subsequent elements of
the set I in relation to the reference element I j is sought, assuming that the

similarity index measures of the examined pairs I j, Ik
� �

are strongly undesirable, i.e.

JPSNR I j, Ik
� �

! 0 and JSSIM I j, Ik
� �

≪ 1 (25)

The term best match is understood as defining certain vectors v j and vk of values,
which characterise the considered signals I j and Ik, and then linking them in a way

that makes it possible to explicitly state that the selected pair I j, Ik
� �

describes the
same fragment of the Earth’s surface.

4. Performance analysis

In order to verify the sensitivity of the selected methods to limitations in the
measurement system and environmental changes, a number of studies taking into
account the actual conditions of obtaining information were conducted. Due to
their difficult nature, they were performed with the use of computer simulation
methods. The research was carried out in three stages. In the first stage, a detailed
analysis of the test sets, using the values of the similarity indexes of the elements
defined in the article, was completed. On the basis of the performed tests, special
cases were selected and subjected to detailed analysis. In the further part of the
study, the methods and verification of the correctness of image data matching in the
scope of mutual matching of the sets presented to the analysis were compared.
Finally, the influence of changes in the contrast of the acquired image on the
number of features detected and the subsequent matching results was examined.
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4.1 Analysis of test set elements

For the initial numerical tests, the test set I consisting of four elements was
adopted, whereby I0 is treated as reference. Each element of the set I is a 24-bit
digital image with a size of 1080 � 1080 pixels, representing the same fragment of
the Earth’s surface, with a centrally located characteristic terrain object (Figure 3).

The object is located in a natural environment characteristic for tundra and
therefore distinguished by a rocky ground with a very low plant cover, dominated
by mosses and lichens. Image I0 (reference) was taken in the autumn and mostly
brown colours, associated with the tundra soils and rock formations in this area,
prevail in it. The image I1 shows the environment in spring–summer conditions, i.e.
during the growing season. Images I2 and I3 were taken in winter, with snow cover,
whereby in the case of I3, there is also a strong cloud cover. Test set I elements’
similarity index measures, determined on the basis of the Eqs. (22)–(24) with the
reference image I0, are presented in Table 1 (columns 2–5).

Based on the obtained results, it can be shown that the elements constituting the
test set I were selected so that only one of them (I1) has a relatively high degree of

Figure 3.
Test image set I: (a) reference image I0, (b)-(d) test images I1, I2, I3 (source: Google Earth).
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I0, I0ð Þ I0, I1ð Þ I0, I2ð Þ I0, I3ð Þ I2, I2ð Þ I2, I3ð Þ

JMSE 0 2.23E03 1.46E04 1.19E04 0 2.99E03

JPSNR ∞ 14.65 6.47 7.36 ∞ 13.37

JSSIM 1 0.4373 0.0742 0.0755 1 0.3378

Table 1.
Similarity index measures for selected pairs of the set I.

Figure 4.
Image pair I0, I1ð Þ matching result for: (a) SURF, (b) KAZE, and (c) MSER method.
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similarity to the reference image. The remaining items (I2 and I3) have
unfavourable similarity index measures JPSNR and JSSIM, which enables the assump-
tions of the Eq. (25) to be met. Although in a subjective manner the image I2 is more
similar to the reference image I0, I3 is characterised by more favourable JPSNR and
JSSIM index measures.

It should be noted that I2 and I3 were also carefully selected. Both images show a
similar arrangement of snow cover, which is reflected in the determined values of
the pair similarity indexes I2, I3ð Þ, cf. Table 1, columns 6 and 7. This is justified in
practice: it may happen that the data from the reconnaissance are accurate (e.g. they
take into account the snow in the area concerned, the lack of leaves on the trees in
late autumn or the high water level in spring), but strong fogging or rainfall make
the image I3 obtained from UAV/CM recording systems several hours later signifi-
cantly different from the reference image (in this case I2).

4.2 Comparison of the selected methods of image feature matching

The test set I presented in SubSection 4.1 was examined in order to compare the
effectiveness of image matching performed by algorithms using local features. The
SURF, MSER, ORB and KAZE methods were taken into account. Image I0 is a
pattern, and I1, I2, I3 are matched images. In the algorithms, the values of parame-
ters proposed by their authors were used with the exception of the features’ simi-
larity threshold, which was lowered to the level of 50% due to large differences
between individual elements of the set I. The best matching of individual features in
the compared images was assumed, using the similarity measures proposed for
these methods. The RANSAC method was used for the final correction of the
matched features, for which an affine transformation model between images was
adopted. In order to verify the effectiveness of the considered methods and the
correctness of the parameters adopted in the last study, the pattern was replaced.
It was assumed that I2 is a reference image and I3 is a matched image. The
matching results of the individual test pairs of I are shown in Figures 4–8 and
in Tables 2–5.

Analysis of the matching results has shown that the selected algorithms are not
effective when the matched images, despite the same content, differ significantly,
cf. pair I0, I3ð Þ. All methods were most effective in matching the pair I0, I1ð Þ. While
the SURF and MSER methods indicated mismatches for matching pairs I0, I2ð Þ and
I0, I3ð Þ, the ORB method did not (cf. Table 3 and Table 4). The KAZE method
identified correctly the fragment of the image on which the corresponding features

Figure 5.
Image pair I0, I1ð Þ matching result for ORB method.

12

Self-Driving Vehicles and Enabling Technologies



of the pair I0, I2ð Þ were located. When comparing a relatively similar pair I2, I3ð Þ, it
appeared that all algorithms indicated mismatches or lack thereof, with KAZE and
MSER indicating two correct matches each (Table 5).

In general, the KAZE method proved to be the most effective, while the ORB
method showed the least processing efficiency of the set I. Due to the lack of any
pair I0, I2ð Þ, I0, I3ð Þ and I2, I3ð Þ matches, no graphical results are presented for the
ORB method. A potential cause of a lack of pair I2, I3ð Þ matches is a large contrast
change, characteristic of the occurrence of acquisition interference, such as the fog
visible in the image I3.

Figure 6.
Image pair I0, I2ð Þ matching result for: (a) SURF, (b) KAZE, and (c) MSER method.
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4.3 Effect of contrast change on the number of the detected features

The research focused on the analysis of the effect of contrast change on the
number of features detected in the image. For this purpose, the contrast of the
image I0 had been gradually reduced until a uniform colour throughout the image
was obtained. Afterwards, the transformed set was further analysed. SURF, MSER,
ORB and KAZE methods were used again. Figure 9 shows the cumulative results of
this study.

Figure 7.
Image pair I0, I3

� �

matching result for: (a) SURF, (b) KAZE, and (c) MSER method.
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Figure 8.
Image pair I2, I3

� �

matching result for: (a) SURF, (b) KAZE, and (c) MSER method.

SURF KAZE MSER ORB

Correct matches 9 489 2 11

Mismatches 0 0 1 0

Percentage of correct matches 100% 100% 67% 100%

Table 2.
Image pair I0, I1ð Þ matching results.
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On the basis of the results obtained, it can be concluded that the number of
features detected by the examined methods decreases with image contrast reducing,
which results in a smaller statistical sample processed in each subsequent step of
these methods. This may be the cause of the lower matching efficiency of the
methods considered for images that are significantly different from each other.

SURF KAZE MSER ORB

Correct matches 0 3 2 0

Mismatches 8 1 1 0

Percentage of correct matches 0% 75% 67% 0%

Table 5.
Image pair I2, I3

� �

matching results.

SURF KAZE MSER ORB

Correct matches 0 6 0 0

Mismatches 2 0 1 0

Percentage of correct matches 0% 100% 0% 0%

Table 3.
Image pair I0, I2ð Þ matching results.

SURF KAZE MSER ORB

Correct matches 0 2 1 0

Mismatches 9 7 2 0

Percentage of correct matches 0% 29% 33% 0%

Table 4.
Image pair I0, I3

� �

matching results.

Figure 9.
Effect of contrast change on the number of the detected image features.
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5. Conclusions and final remarks

The results of the algorithms presented in the literature are usually related to
images that are fragments of source images, i.e. have their qualitatively identical
counterparts in Ref. images. In the analysed cases, the differences between the
reference image stored in the memory of the navigation system and that recorded
by the sensor are significant. As a result, there are certain consequences that often
prevent the image representing the same field object from being effectively
matched. This is due to real environmental conditions and restrictions on obtaining
information. The measurement system parameters and the quality of the images
taken have a direct impact on the number of detected features. For example, the
lack of complete information about the accuracy of field object’s image mapping
makes it impossible to properly select the size of the filters. This results in the
detection of objects that are completely irrelevant to the issue considered, such as
bushes, leaves or grass blades, which are highly variable over time. Consequently, it
has a significant impact on the performance of individual algorithms.

The study concluded that the use of statistical algorithms such as RANSAC
improves the effectiveness of the selected methods. However, the results obtained
strongly depend on the size of the set taken into consideration and the match/
mismatch ratio. Therefore, in the terrain image processing, it is necessary to con-
duct an analysis of the informational characteristics of the examined objects and the
conditions of acquisition. This allows for extracting characteristic points whose
description does not significantly change due to atmospheric conditions.

The results of the simulation tests enable a general conclusion that the methods
considered are often insufficient to determine the coordinates of a UAV/CM flying
under unfavourable environmental conditions. The greatest development potential,
in the context of the implementations examined in this work, is characterised by
methods based on anisotropic diffusion, which in the course of simulation studies
showed the highest effectiveness. Therefore, it seems justified to focus the research
effort on further development of new image processing methods within the group
of anisotropic diffusion methods. In particular, it is proposed to take the informa-
tive character of terrain images as determinants of the input parameters of the
designed processing methods into account, to apply pre-processing methods aimed
at decimation of the input data, their segmentation and determination of the main
components, and to extend the definition of the designed methods with additional
criteria increasing the effectiveness of detection and image feature matching. The
newly developed methods should be aimed at the improvement of feature detection
efficiency in terrain images and the selection of processing parameters taking into
account environmental conditions as well as limitations and conditions in the mea-
surement system.
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