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Chapter

Classification and Separation of
Audio and Music Signals
Abdullah I. Al-Shoshan

Abstract

This chapter addresses the topic of classification and separation of audio and
music signals. It is a very important and a challenging research area. The impor-
tance of classification process of a stream of sounds come up for the sake of building
two different libraries: speech library and music library. However, the separation
process is needed sometimes in a cocktail-party problem to separate speech from
music and remove the undesired one. In this chapter, some existed algorithms for
the classification process and the separation process are presented and discussed
thoroughly. The classification algorithms will be divided into three categories. The
first category includes most of the real time approaches. The second category
includes most of the frequency domain approaches. However, the third category
introduces some of the approaches in the time-frequency distribution. The
approaches of time domain discussed in this chapter are the short-time energy
(STE), the zero-crossing rate (ZCR), modified version of the ZCR and the STE with
positive derivative, the neural networks, and the roll-off variance. The approaches
of the frequency spectrum are specifically the roll-off of the spectrum, the spectral
centroid and the variance of the spectral centroid, the spectral flux and the variance
of the spectral flux, the cepstral residual, and the delta pitch. The time-frequency
domain approaches have not been yet tested thoroughly in the process of classifica-
tion and separation of audio and music signals. Therefore, the spectrogram and the
evolutionary spectrum will be introduced and discussed. In addition, some algo-
rithms for separation and segregation of music and audio signals, like the indepen-
dent Component Analysis, the pitch cancelation and the artificial neural networks
will be introduced.

Keywords: audio signal, music signal, classification, separation, time domain,
frequency domain, time-frequency domain

1. Introduction

Audio signal processing is an important subfield of signal processing that is
concerned with the electronic manipulation of audio signals [1–6]. The problem of
discriminating music from audio has increasingly become very important as auto-
matic audio signal recognition (ASR) systems and it has been increasingly applied in
the domain of real-world multimedia [7]. Human’s ear can easily distinguish audio
without any influence of the mixed music [8–23]. Due to the new methods of the
analysis and the synthesis processing of audio signals, the processing of musical
signals has gained particular weight [16, 24], and therefore, the classical sound
analysis methods may be used in the processing of musical signals [25–28]. Many
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types of musical signals such as Rock music, Pop music, Classical music, Country
music, Latin music, Arabic music, Disco and Jazz, Electronic music, etc. are existed
[29]. The sound type signals hierarchy is shown in Figure 1 [30].

Audio signal changes randomly and continuously through time. As an example,
music and audio signals have strong energy content in the low frequencies and
weaker energy content in the high frequencies [31, 32]. Figure 2 depicts a general-
ized time and frequency spectra of audio signals [33]. The maximum frequency fmax

varies according to type of audio signal, where, in the telephone transmission fmax is
equal to 4 kHz, 5 kHz in mono-loudspeaker recording, 6 KHz in multi-loudspeaker
recording or stereo, 11 kHz in FM broadcasting, however, it equals to 22 KHz in the
CD recording.

Acoustically speaking, the audio signals can be classified into the following
classes:

1.Single talker in specific time [34].

2.Singing without music.

3.Mixture of background music and single talker audio.

4.Songs that are a mixture of music with a singer voice.

5.May completely be music signal without any audio component.

6.Complex sound mixture like multi-singers or multi-speakers with multi-music
sources.

Figure 1.
Types of audio signals.

Figure 2.
Generalized frequency spectrum for audio signal [33].
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7.Non-music and non-audio signals: like fan, motor, car, jet sounds, etc.

8.Audio signal that is a mixture of more than one speakers talking
simultaneously at the same time [8].

9.Abnormal music can be single word cadence, human whistle sound, or
opposite reverberation [4, 34–38].

2. Analysis of audio and music signals

2.1 Properties of audio signal

2.1.1 Representation of audio signal

The letters symbols used for writing are not adequate, as the way they are
pronounced varies; for example, the letter “o” in English, is pronounced differently
in words “pot” most“ and “one”. It is almost impossible to tackle the audio classifi-
cation problem without first establishing some way of representing the spoken
utterances by some group of symbols representing the sounds produced [39–43].
The phonemes in Table 1 are divided into groups based on the way they are
produced [44], forming a set of allophones [45]. In some tonal languages, such as
Vietnamese and Mandarin, the intonation determines the meaning of each word
[46–48].

2.1.2 Production of audio signal

Since the range of sounds that can be produced by any system is limited [39–44],
the pressure in the lungs is increased by the reverse process. They push the air up
the trachea; the larynx is situated at the top of the trachea. By changing the shape of
the vocal tract, different sounds are produced, so the fundamental frequency will be
changing with time. The spectrogram (or sonogram) for the sentence “What can I
have for dinner tonight?” is shown in Figure 3.

Vowels Diphthongs Fricatives Plosives Semivowels Nasals Affricates

heed bay sail bat was am jaw

hid by ship disc ran an chore

head bow funnel Goat lot sang

had bough thick pool yacht

hard beer hull tap

hod doer zoo kite

hoard boar azure

hood boy that

who’d bear valve

hut

heard

the

Table 1.
Phoneme categories of British English and examples of words in which they are used [44].
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The way that humans recognize and interpret audio signal has been considered
by many researchers [1, 25, 39]. To produce a complete set of English vowels, many
researchers have depicted that the two lowest formants are necessary, as well as that
the three lowest formants in frequency are necessary for good audio intelligibility.
As the number of formants increased, sounds that are more natural are produced.
However, when we deal with continues audio, the problem becomes more complex.
The history of audio signal identification can be found in [1, 25, 39–48].

2.2 Properties of music signal

2.2.1 Representation of music signal

There are two kinds of tone structures in music signal. The first one is a simple
tone formed of single sinusoidal waveform, however, the second one is a more
complex tone consisting of more than one harmonic [31, 49–52]. The spectrum of
music signal has twice the bandwidth of audio spectrum, and most of the power of
audio signal is concentrated at lower frequencies. Melodists and musicians divide
musical minor to eight parts and each part named octave, where each octave is
divided into seven parts called tones [30]. For different instrument, a tempered
scale is shown in Table 2. These tones, shown in Table 2, are named (Do, Re, Me,
Fa, So, La and Se) or simply (A, B, C, D, E, F, and G). The tone (A1) at the first
octave has the fundamental frequency of the first tone in each octave, i.e., every
first tone in each octave takes the reduplicate frequency of the first tone of previous
one, (i.e., An = 2nA1 or Bn = 2n B1 and so on where n ∈ {2, 3, 4, 5, 6, 7}.

From Table 2, the highest tone C8 occurs at the frequency of 4186 Hz, which is
the highest frequency produced by human sound system, which leads musical

Figure 3.
A sonogram for the sentence “What can I have for dinner tonight?” [43].

A Hz B Hz C Hz D Hz E Hz F Hz G Hz

A1 27.5 B1 30.863 C1 32.703 D1 36.708 E1 41.203 F1 43.654 G1 48.99

A2 55 B2 61.735 C2 65.406 D2 73.416 E2 82.407 F2 87.307 G2 97.99

A3 110 B3 123.47 C3 130.81 D3 146.83 E3 164.81 F3 174.61 G3 196

A4 220 B4 246.94 C4 261.63 D4 293.66 E4 329.63 F4 349.23 G4 392

A5 440 B5 493.88 C5 523.25 D5 587.33 E5 659.26 F5 698.46 G5 783.9

A6 880 B6 987.77 C6 1046.5 D6 1174.7 E6 1318.5 F6 1396.9 G6 1568

A7 176 B7 1975.5 C7 2093 D7 2349.3 E7 2637 F7 2793 G7 3136

A8 352 B8 3951.1 C8 4186

Table 2.
Frequencies of notes in the tempered scale [3].
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instrument manufactures to try their best to bound music frequency to human’s
sound system limits to achieve strong concord [35, 53, 54]. In the real world,
musical instruments cover more frequencies than audible band, which is limited to
20 kHz).

2.2.2 Production of music signal

The concept of tone quality that is most common depends on the subjective
acoustic properties, regardless of partials or formants and the production of music
depends mainly on the kind of musical instruments [53, 54]. These instruments can
be summarized as follows:

1.The string musical instrument. Its tones is produced by vibrating chords
made from horsetail hair, or other manufactured material like copper or
plastic. Every vibrating chord has its own fundamental frequency, producing
complex tones so that it covers most of the audible bands. Figure 4 shows
string instruments.

2.The brass musical instrument. The Brass musical instrument depends on
blowing air like woodwind. Its shape looks like an animal horn and has manual
valves to control cavity size. Brass musical instrument has huge number of
nonharmonic signals existed in its spectrum. Figure 5 shows brass
instruments.

3.The woodwind musical instrument. Woodwind instrument consists of an
open cylindrical tube at both ends. Some woodwind instruments may use
small-vibrated piece of copper to produce tones. It produces many numbers of
harmonic tones. Figure 6 shows woodwind instruments.

4.The percussion musical instrument. Examples of percussion instruments are
piano, snare drum, chimes, marimba, timpani, and xylophone. Most of the
power of tones in percussion instruments produces non-harmonic
components. Figure 7 shows some percussion instruments.

5.The electronic musical instrument. The most qualified robust and accurate
electronic musical instrument is the organ. It has a large keyboard, a memory
that can store notes and use their frequencies as basic cadences or tones.
Without organ help, disco, pop, rock and jazz cannot stand [29, 35–38]. Organ
is not the only electronic musical producer. If the electronic musical

Figure 4.
String instruments.
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instruments are used for producing music, the tone quality measure of the
fundamental frequency or harmonics is not needed. Figure 8 shows an
example of organ electronic instrument.

2.3 Characteristics and differences between audio and music

The audio signal is a slowly time varying signal in the sense that, when examined
over a sufficiently short period of time “between 5 and l00 msec. Therefore, its
characteristics are stationary within this period of time. A simple example of an
audio signal is shown in Figure 9.

Figure 10 is a typical example of music portion. It is very clear from the two
spectrums in Figures 9 and 10 that we can distinguish between the two types of
signals.

Figures 11 and 12 depict the evolutionary spectrum of two different types of
signals, audio and music.

Now, let us discuss some of the main similarity and differences between the two
types of signals.

Figure 5.
Brass instruments.

Figure 6.
Woodwind instruments.
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Figure 7.
Percussion instruments.

Figure 8.
Electronic organ.

Figure 9.
An example of audio signal of specking the two-second long phrase “Very good night”: (a) time domain
(b) magnitude. (c) Phase.
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Tonality. By tone, we mean a single harmonic of a pure periodical sinusoid.
Regardless of the type of instruments or music, the musical signal is composed of a
multiple of tones; however, this is not the case in the voice signal [47, 52, 55–57].

Bandwidth. Normally, the audio signal has 90% of its power concentrated within
frequencies lower than 4 kHz and limited to 8 kHz; however, music signal can extend
its power to the upper limits of the ear’s response, which is 20 kHz [52, 58].

Figure 11.
The spectrum of an average of 500 specimens: (a) audio, (b) music.

Figure 12.
Evolutionary spectrum of an average of 500 specimens: (a) audio, (b) music.

Figure 10.
A 2-second long music signal: (a) time domain. (b) Spectrum. (c) Phase.
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Alternative sequence. Audio exhibits an alternating sequence of noise-like seg-
ment while music alternates in more tonal shape. In other words, audio signal is
distributed through its spectrum more randomly than music does.

Power distribution. Normally, the power distribution of an audio signal is
concentrated at frequencies lower than 4 kHz, and then collapsed rapidly above this
frequency. On the other hand, there is no specific shape of the power of music
spectrum [59].

Dominant frequency. For a single talker, his dominant frequency can accu-
rately be determined uniquely, however, in a single musical instrument only the
average dominant frequency can be determined. In multiple musical instruments,
the case will be worst.

Fundamental frequency. For a single talker, his fundamental frequency can be
accurately configured. However, this is not the case for a single music instrument.

Excitation patterns. The excitation signals (pitch) for audio are usually existed
only over a span of three octaves, while the fundamental music tones can span up to
six octaves [60].

Energy sequences. A reasonable generalization is that audio follows a pattern of
high-energy conditions of voicing followed by low energy conditions, which the
envelope of music is less likely to exhibit.

Tonal duration. The duration of vowels in audio is very regular, following the
syllabic rate. Music exhibits a wider variation in tone lengths, not being constrained
by the process of articulation. Hence, tonal duration would likely be a good
discriminator.

Consonants. Audio signal contains too many consonants while music is usually
continuous through the time [33].

Zero crossing rate (ZCR). The ZCR in music is greater than that in audio. We
can use this idea to design a discriminator [60].

In the frequency domain, there is a strong overlapping between audio and music
signals, so no ordinary filter can separate them. As mentioned before, audio signal
may cover spectrum between 0 and 4 kHz with a dominant frequency of an aver-
age = 1.8747 kHz. However, the lowest fundamental frequency (A1) of a music
signal is about 27.5 Hz and the highest frequency of the tone C8 is around 4186 Hz.
The reason behind this is that musical instrument manufacturers try to bound
music frequency to human’s sound limits in order to achieve a strong consonant and
a strong frequency overlap. Moreover, music may propagate over the audible

Key Difference Audio Music

Units of Analysis Phonemes Notes Finite

Temporal

Structure

• Short sample (40 ms–200 ms).

• More steady state than dynamic.

• Timing unstrained but variable.

• Amplitude modulation rate for

sentences is slow (� 4 Hz)

• Longer sample: 600–1200 ms.

• Mix of steady state (strings, winds)

and transient (percussion).

• Strong periodicity.

Spectral Structure • Largely harmonic (vowels, voiced

consonants).

• Tend to group in formants.

• Some inharmonic stops.

• Largely harmonic and some

inharmonic (percussion).

Syntactic /

Semantic

Structure

• Symbolic

• Productive

• Can be combined in grammar

• Symbolic

• Productive

• Combined in a grammar

Table 3.
The main differences between audio and music signals.
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spectrum to cover more than the audible band of 20 kHz, with a dominant
frequency of an average = 1.9271 kHz [25].

Table 3 summarizes the main similarity and differences between music and
audio signals.

3. Audio and music signals classification

The main classification approaches will be discussed in this section. They can be
categorized into three different approaches: (1) time domain approaches, (2) fre-
quency domain approaches, and (3) time-frequency domain approaches. A two-
level music and audio classifier was developed by El-Maleh [61, 62]. He used a
combination of long-term features such as the variance, the differential parameters,
the zero crossing rate (ZCR), and the time-averages of spectral parameters.
Saunders [60] proposed another two-level classifier. His approach was based on the
short-time energy (STE) and the average ZCR features. In addition, Matityaho and
Furst [63] have developed a neural network based model for classifying music
signals. Their model was designed based on human cochlea functional performance.

For audio detection, Hoyt and Wecheler [64] have developed a neural network
base model using Fourier transform, Hamming filtering, and a logarithmic function
as pre-processing then they applied a simple threshold algorithm for detecting
audio, music, wind, traffic or any interfering sound. In addition, to improve the
performance, they suggested wavelet transform feature for pre-processing. Their
work is much similar to the work done by Matityaho and Furst’s [63, 64]. 13
features were examined by Scheirer and Slaney [65]. Some of these features were
simple modification of each other’s. They also tried combining them in several
multidimensional classification forms. From these previous works, the most pow-
erful discrimination features were the STE and the ZCR. Therefore, the STE and the
ZCR will be discussed thoroughly. Finally, the common classifiers of the audio and
the music signals can be divided into the following approaches:

I.The Time domain algorithms:

1.The ZCR algorithm [1, 34, 66–77]:

a. The standard deviation of first order difference of the ZCR.

b. The 3rd central moment of the mean of ZCR.

c. The total number of zero crossings exceeding a specific threshold.

2.The STE [60–65, 78].

3.The ZCR and the STE positive derivative [78, 79].

4.The Pulse Metric [31, 59, 80–82].

5.The number of silence [32, 60].

6.The HMM (Hidden Markov Model) [83–85].

7.The ANN (Artificial neural networks) [12, 49, 58, 63, 79, 83–120].

8.The Roll-Off Variance [31, 59].
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II.The Frequency-domain algorithms [32, 33, 35, 59, 112, 66–77, 121]:

1.The Spectrum [31, 111]:

a. The Spectral Centroid.

b. The Spectral Flux Variance.

c. The Spectral Centroid Mean and Variance.

d. The Spectral Flux Mean and Variance.

e. The Spectrum Roll-Off.

f. The Signal Bandwidth.

g. The Spectrum Amplitude.

h. The Delta Amplitude.

2.The Cepstrum [122]:

a. The Cepstral Residual [122–124].

b. The Variance of the Cepstral Residual [122–124].

c. The Cepstral feature [122–124].

d. The Pitch [94, 107, 108, 117–119, 125, 126].

e. The Delta Pitch [88, 119].

III.The Time-Frequency domain algorithms:

1.The Spectrogram (or Sonogram) [13, 19, 86, 127].

2.The Evolutionary Spectrum and the Evolutionary Bispectrum
[81, 128, 129].

3.1 Time domain algorithms

3.1.1 The ZCR algorithm

The ZCR algorithm can be defined as the number of crossing the signal the zero
axis within a specific window. It is widely used because its simplicity and robustness
[34]. We may define the ZCR as in the following equation.

Zn ¼
1

2N

X

N

m¼n�Nþ1

∣ sgn x mð Þ½ � � sgn x m� 1ð Þ½ �∣ (1)

where Zn is the ZCR, N is the number of samples in one window, and sgn
is the sign of the signal such that sgn [x(n)] = 1 when x(n) > 0, sgn [x(n)] = �1,
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when x(n) < 0. An essential not is that the sampling rate must be high
enough to catch any crossing through zero. Another important note before evaluat-
ing the ZCR is to normalize the signal by subtracting its average value. It is clear
from Eq. (1) that the value of the ZCR is proportional to the sign change in the
signal, i.e., the dominant frequency of x(n). Therefore, we may find that the
ZCR of music is, in general, higher than that of audio, but not sure at the
unvoiced audio.

Properties of ZCR:
The ZCR properties can be summarized as follow.

1.The Principle of Dominant Frequency

The dominant frequency of a pure sinusoid is the only value in the
spectrum. This value of frequency is equal to the ZCR of the signal in one
period. If we have a non-sinusoidal periodic signal, its dominant frequency is
frequency with the largest amplitude. The dominant frequency (ω0) can be
evaluated as follow.

ωo ¼
πE Dof g

N � 1
(2)

where N is the number of intervals, E{.} is the expected value, and Do is the
ZCR per interval.

2.The Highest frequency

Since D0 denotes the ZCR of a discrete-time signal Z(i), let us assume that
Dn denotes the ZCR of the nth derivative of Z(i), i.e., D1 is the ZCR of the
first derivative of Z(i), D2 is the ZCR of the second derivative of Z(i), and
so on. Then, the highest frequency ωmax in the signal can be evaluated as
follow.

ωmax ¼ lim
i!∞

π E Dif g

N � 1
(3)

where N is the number of samples. If the sampling rate equals 11 KHz, then
the change in ωmax can be ignored for i > 10.

3.The Lowest frequency

Assuming that the time period between any two samples is normalized
to unity, the derivative∇ of Z(i) can be defined as Z(i) = Z(i) – Z(i–1).
Then, the ZCR of the nth derivative of Z(i) is defined as Dn. Now, let us
define ∇ + as the +ve derivative of Z(i), then ∇

+ [Z(i)] can be defined as
follow.

∇þ Z ið Þ½ � ¼ Z ið Þ þ Z i� 1ð Þ (4)

Now, let us define the ZCR of the nth + ve derivative of Z(i) by the symbol nD.
Then we can find the lowest frequency ωmin of a signal as follow.

Wmin ¼ lim
i!∞

π E iD
� �

N � 1
(5)
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4.Measure of Periodicity

A signal is said to be purely periodic if and only if.

E 1D
� �

¼ E 2D
� �

(6)

Using Eq. (6), it was found that music is more periodic or than audio
[44–47, 55–57, 130].

The Ratio of High ZCR (RHZCR)
It was found that the variation of the ZCR is more discriminative than the exact

ZCR, so the RHZCR can be considered as one feature [78]. The RHZCR is defined as
the ratio of the number of frames whose ZCR are above 1 over the average ZCR in
one-window, and can be defined as follow.

RHZCR ¼
1

2N

X

N�1

n¼0

sgn ZCR nð Þ � ZCRavð Þ þ 1½ (7)

ZCRav ¼
X

N�1

n¼0

ZCR nð Þ (8)

where N is the number of frames per one-window, n is the index of the frame,
sgn[.] is a sign function and ZCR(n) is the zero-crossing rate at the nth frame. In
general, audio signals consist of alternating voiced and unvoiced sounds in each
syllable rate, while music does not have this kind of alternation. Therefore, from
Eq. (7) and Eq. (8), we may observe that the variation of the ZCR (or the RHZCR)
in an audio signal is greater than that of a music, as shown in Figure 13.

3.1.2 The STE algorithm

The amplitude of the audio signal varies appreciably with time. In particular, the
amplitude of unvoiced segments is generally much lower than the amplitude of
voiced segments. The STE of the audio signal provides a convenient representation

Figure 13.
Music and audio sharing some values [65].
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that reflects these amplitude variations. Unlike the audio signal, since the music
signal does not contain unvoiced segments, the STE of the music signal is usually
bigger than that of audio [60]. The STE of a discrete-time signal s(n) can define as.

STES ¼
X

∞

n¼�∞

s nð Þj j2 (9)

where STEs in Eq. (9) is the total energy of the signal. The average power of s(n)
is defined as.

Ps ¼ lim
N!∞

1

2N þ 1

X

N

n¼�N

∣s nð Þ2∣ (10)

Signals can be classified into three types, in general: an energy signal, which has
a non-zero and finite energy, a power signal, which has a non-zero and finite
energy, and the third type is neither energy nor power signal, see Table 4. Now, let
us define another sequence {f(n;m)} as follow.

f s n,mð Þ ¼ s nð Þw m� nð Þ (11)

where w(n) is just a window with a length of N with a value of zero outside [0,
N-1]. Therefore, fs(n,m) will be zero outside [m-N + 1, m].

Deriving short term features
The silence and unvoiced period in audios can be considered a stochastic back-

ground noise. Now, let us define F
s
as a feature of {s(n)}, mapping its values of the

Hilbert space, H, to a set of complex numbers C such that.

Fs : H ! C (12)

The long-term feature of {s(n)} may be defined as follow.

L s nð Þf g ¼ lim
N!∞

1

2N þ 1

X

N

n¼�N

s nð Þ (13)

The long-term average, when applied to energy signals, will have zero values,
however, it is appropriate for power signals. Eq. (13) can be re-written as follow.

L s nð Þf g ¼
1

2N

X

∞

n¼�∞

s nð Þ (14)

Energy Signal

0 < Es < ∞

Transient S(n) = α
nu(n) |α| < 1

Finite Sequence eβt[u(n)-u(n-255)] |β| < ∞

Power Signal

0 < Ps < ∞

Constant s(n) = α -∞ < α < ∞

Periodic s(n) = α sin(nωo + φ) -∞ < α < ∞

Stochastic S(n) = rand (seed)

Neither Energy nor Power Signal Zero s(n) = 0

Blow up s(n) = α
n u(n) |α| > 1

Table 4.
Types of signals.
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Resulting a family of mappings. If each member of the family is selected to be a
λ, the we can use the notation Fs(λ). The discrete-time Fourier transforms is an
example of a parametric long-term feature. The long-term feature can be of the
form.

L M λð Þ s nð Þf gf g (15)

where M in Eq. (15) is the mapping sequence. It maps {s(n)} to another
sequence. The long-term feature Fs(λ) is defined as LoM, a composition of function
L and M. If Fs(λ) is the long-term feature of Eq. (12), then the short-term feature
Fs(λ,m) of time period m can be constructed as follows:

• Define a frame as in Eq. (11).

• Apply the long-term feature transformation to the frame sequence as in
Eq. (16).

Fs λ,mð Þ ¼ L M λð Þf g f s n,mð Þ
� �

¼ L M λð Þf g s nð Þw m� nð Þf g

¼
1

N

X

∞

n¼�∞

M λð Þ s nð Þw m� nð Þf g

(16)

Low Short Time Energy Ratio (LSTER)
As done in the ZCR, the variation is selected [33]. Here, the LSTER is used to

represent the variation of the STE. LSTER is defined as the ratio of the number of
frames whose STE are less than 0.5 times of the average STE in a one-second
window, as in Eq. (17).

LSTER ¼
1

2N

X

N�1

n¼0

sgn 0:5STEav � STE nð Þ þ 1ð �½ (17)

where.

STEav ¼
X

N�1

n¼0

STE nð Þ (18)

N is the total number of frames, STE(n) is the STE at the nth frame, and STEav in
Eq. (18) is the average STE in a one-window.

3.1.3 The effect of positive derivation

Figure 14 shows the preprocessing flow on Z(i) using the positive derivation
concept (∇+), which provided some improvement in the discrimination process [78].

This pre-processing increased the ZCR of music and reduced the ZCR of the
audio with the expenses of some delay. The averages of the ZCR in speech, mixture,
and music are shown in Figure 15, after applying the +ve derivative of order 50.

Figure 14.
The preprocessing using the +ve derivative before evaluating the ZCR.
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3.1.4 Artificial neural network (ANN) approach

The ANN approach is a multipurpose technique that was used for implementing
many algorithms [14, 36, 63, 79, 86–105, 110, 125], especially in classification issues
[16, 49, 107–111, 119, 120, 131, 132]. A multi-layer ANN approach was used in many
classification tools since it can represent nonlinear decision support systems.

3.2 Algorithms in the frequency domain

3.2.1 The spectrum approaches

3.2.1.1 Spectral flux mean and variance

This feature characterizes the change in the shape of the spectrum so it measures
frame-to-frame spectral difference. Audio signals go through less frame-to-frame
changes thanmusic. The spectral flux values in audio signal is lower than that of music.

The spectral flux, sometimes called the delta spectrum magnitude, is defined as
the second norm of the spectral amplitude of the difference vector and defined as in
Eq. (19).

SF ¼ k ∣X kð Þ‐∣X kþ 1ð Þ∣ ∣ k (19)

where X(k) is the signal power and k is the corresponding frequency. Another
definition of the SF is also described as follow.

SF ¼
1

N � 1ð Þ M� 1ð Þ

X

N�1

n¼1

X

M�1

k¼1

log A n, kð Þ þ δð Þ � log A n� 1, kð Þ þ δð Þ½ �2 (20)

where A(n, k) in Eq. (20) is the discrete Fourier transform (DFT) of the nth

frame of the input signal and can be described as in Eq. (21).

A n, kð Þ ¼ ∣
X

∞

m¼�∞

x mð Þw nL�mð Þe j2πL km∣ (21)

and x(m) is the original audio data, L is the window length,M is the order of the
DFT, N is the total number of frames, δ is an arbitrary constant, and w(m) is the

Figure 15.
The average ZCR of speech, mixture, and music, after pre-processing with the +ve derivative [78].
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window function. Scheirer and Slaney [65] has found that SF feature is very useful
in discriminating audio from music. Figure 16 depicts that the variances are lower
for music than for audio, and the means are less for audio than for music signal.
Rossignol and others [133] have computed the means and variances of a one-second
segment using frames of length 18 milliseconds.

Rossignol and others [133] have tested three classification approaches to classify
the segments. They used the k-nearest-neighbors (kNN) with k = seven, the Gauss-
ian mixture model (GMM), and the ANN classifiers. Table 5 shows their results are
shown in Table 5, using the mean and the variance of the SF.

3.2.1.2 The mean and variance of the spectral centroid

In the frequency domain, the mean and variance of the spectral centroid feature
describes the center of frequency at which most of the power in the signal is found.
In audio signals, the pitches of the signals are concentrated in narrow range of low
frequencies. In contrast, music signals have higher frequencies that result higher
spectral means, i.e., higher spectral centroids. For a frame at time t, the spectral
centroid can be evaluated as follows.

SC ¼

P

kkX kð Þ
P

kX kð Þ
(22)

where X(k) is the power of the signal at the corresponding frequency band k.
When the mean and the variance of the SP are combined with the mean and the
variance of the SC in Eq. (22), and the mean and the variance of the ZCR, the results
of Table 6 are found.

Figure 16.
3D histogram normalized features (the mean and the variance of spectral flux) of: (a) music signal, (b) audio
signal [133].

Training Testing Cross-validation

GMM 8.0% 8.1% 8.2%

kNN X 6.0% 8.9%

ANN 6.7% 6.9% 11.6%

Table 5.
Percentage of misclassified segments [133].
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3.2.1.3 Energy at 4 Hz modulation

Audio signal has an energy peak centered on the 4 Hz syllabic rate. Therefore, a
2nd order band pass filter is used, with center frequency of 4 Hz. Although audio
signals have higher energy at that 4 Hz, some music bass instruments was found to
have modulation energy around this frequency [65, 133].

3.2.1.4 Roll-off point

In the frequency domain, the roll-off point feature is the value of the frequency
that has 95% of the power of the signal. The value of the roll-off point can be found
as follow [65, 133].

X

k< v

X kð Þ ¼ 0:95ð Þ
X

k

X kð Þ (23)

where the left hand side of Eq. (23) is the sum of the power at the frequency
value V, and the right hand side of Eq. (23) is the 95% of the total power of the
signal of the frame, and X(k) is the DFT of x(t).

3.2.2 Cepstrum

The cepstrum of a signal can be defined as the inverse of the DFT of the
logarithm of the spectrum of a signal. Music signals have higher cepstrum values
than that of speech ones. The complex cepstrum is defined in the following Equa-
tion [122–124].

X̂ ejω
� �

¼ log X ejω
� �� �

¼ log ∣X ejω
� �

∣þ jarg X ejω
� �� �

(24)

and then.

x̂ nð Þ ¼
1

2π

ðπ

�π

X̂ ejωn
� �

dω (25)

where X(ejω) is the DFT of the sequence x(n).

3.2.3 Summary

Table 7 summarizes the percentage error of a simulation done per each feature.
Latency refers to the amount of past input data required to calculate the feature.

Scheirer and Slaney [65] have evaluated their models using 20 minutes long data
sets of music and audio. Their data set consists of 80 samples, each with 15-second-
long audio. They collected their samples using a 16-bit monophonic FM tuner with a
sampling rate of 22.05 kHz, from a variety of stations, with different content styles

Training Testing Cross-validation

GMM 7.9% 7.3% 22.9%

kNN X 2.2% 5.8%

ANN 4.7% 4.6% 9.1%

Table 6.
Percentage of misclassified segments [133].
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Features The 4 Hz Mod

Energy

The Low

Energy

The

Roll off

The Roll

off Var

Spec

Centroid

Spec

Centroid

Var

The Spec

Flux

Spec

Flux Var

The

ZCR

The Var of the

ZC Rate

The

Cepstrum

Resid

Cepstrum

Res Var

The Pulse

Metric

Latencies 1 sec 1 sec 1 frame 1 sec 1 frame 1 sec 1 frame 1 sec 1 frame 1 sec 1 frame 1 sec 5 sec

Errors 12 +/�1.7% 14 +/

�3.6%

46 +/�

2.9%

20 +/�

6.4%

39 +/�

8.0%

14 +/� 3.7% 39 +/�

1.1%

5.9 +/�

1.9%

38 +/�

4.6%

18 +/� 4.8% 37 +/� 7.5% 22 +/� %5.7 18 +/� %

2.9

Table 7.
Latency and univariate discrimination performance for each feature [65].
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and different noise levels, over a period of three days in the San Francisco Bay Area.
They also claimed that they have audios from both male and female.

They also recorded samples of many types of music, like pop, jazz, salsa, coun-
try, classical, reggae, various sorts of rock, various non-Western styles [29, 65].
They also used several features in a spatial partitioning classifier. Table 8
summarizes their results.

The features used in Best 8 are the plus the 4 Hz modulation, the variance
features, the pulse metric, and the low-energy frame [80, 134]. In the Best 3, they
used the pulse metric, the 4 Hz energy, and the variance of spectral flux. In the Fast
5, they used the 5 basic features. From results shown in Table 8, we conclude that it
is not necessary to use all features in order to have a good classification, so in real
time a good performance system may be found using only few features. A more
detailed discussion can be found in [29, 65, 80, 134].

3.3 Algorithms in the time-frequency domain

3.3.1 Spectrogram (or sonogram)

The spectrogram is an example of time-frequency distribution and this method
was found to be a good classical tool for analyzing audio signal [13, 19, 86, 127]. The
spectrogram (or sonogram) of a signal x(n) can be defined as follow.

X n,ωð Þ ¼
X

N

m¼�N

W nþmð Þx mð Þe�jω m (26)

where N is the length of the sequence x(n), and W(n) is a specific window.
The method of spectrogram can be used in discriminating audio from music

signal, however, it may have a high percentage error. That is because it depends on
the strength of the frequency in the tested samples. Figure 17 depicts two examples
of spectrograms of audio and music signals.

3.3.2 Evolutionary spectrum (ES)

The spectral representation of a stationary signal may be viewed as an infinite
sum of sinusoids with random amplitudes and phases as described in Eq. (27).

e nð Þ ¼

ð

π

�π

ejωndZ ωð Þ (27)

where Z(ω) is the process with orthogonal increments i.e.

E dZ ∗
ωð ÞdZ Ωð Þf g ¼

S ωð Þdω

2π
δ ω� Ωð Þ (28)

Subset All features Best 8 Best 3 VS Flux only Fast 5

Audio % Error 5.8 +/� 2.1 6.2 +/� 2.2 6.7 +/� 1.9 12 +/� 2.2 33 +/� 4.7

Music % Error 7.8 +/� 6.4 7.3 +/� 6.1 4.9 +/� 3.7 15 +/� 6.4 21 +/� 6.6

Total % Error 6.8 +/� 3.5 6.7 +/� 3.3 5.8 +/� 2.1 13 +/� 3.5 27 +/� 4.6

Table 8.
Performance for various subsets of features.
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andS ωð Þ in Eq. (28) is the spectrum of e(n) [81]. Since the audio signal is, in
general nonstationary, we will use the Wold-Cramer (WC) representation of a
nonstationary signal. WC considers the discrete-time non-stationary process {x(n)}
as the output of a casual, linear, and time-variant (LTV) system with a white noise
input e(n) that has a zero-mean, unit-variant, i.e.,

x nð Þ ¼
X

n

m¼∞

h n,mð Þe n�mð Þ (29)

where h(n,m) is defined as the unit impulse response of an LTV system.
Substituting e(n) into x(n) of Eq. (29) (assuming S(ω) = 1 for white noise) we get.

x nð Þ ¼

ð

π

�π

H n,ωð Þejω ndZ ωð Þ (30)

where H(n,ω) in Eq. (30) is the time-frequency transfer function of the LTV
system defined as

H n,ωð Þ ¼
X

n

m¼�∞

h n,mð Þe�jω m (31)

and the instantaneous power of x(n) is given by

E x nð Þj j2
n o

¼
1

2π

ð

π

�π

H n,ωÞð j2dω
�

� (32)

and then, the Wold-Cramer ES is defined as

S n,ωð Þ ¼
1

2π
H n,ωÞð j2
�

� (33)

The ES S(n,ω) in Eq. (33) was found to be a good classifier for the distinction of
audio from music signals [81, 129]. Because of the extensive math calculation of the
time-frequency spectrum, they may be very useful in off-line classification and
analysis. The ESs of music and audio signals are shown in Figure 18(a) and (b),
respectively. The suppression of the amplitude for audio might due to gaussianity.

Figure 17.
(a) Audio spectrogram, (b) music Spectrum.
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4. Separation of audio and music signals

Since the separation of audio and music signals is more complicated than classi-
fication, in this section we will introduce only two approaches [7–13, 22, 76, 77, 86,
135]. The first approach is the approach of independent component analysis (ICA)
with ANN. The second classifier is the pitch cancelation approach. A block diagram
of a classifier integrated with a separator is depicted in Figure 19.

4.1 ICA with ANN separation approach

In [13, 20, 21, 127, 136], Wang and Brown proposed a model for audio segrega-
tion algorithm. His model consists of preprocessing using cochlear filtering,
gammatone filtering, and correlogram forming autocorrelation function and feature
extraction. The impulse response of the gammatone filters is represented as.

hi tð Þ ¼ tn�1e �2πbitð Þ cos 2π f itþφið Þ½ �U tð Þ g ið Þ, l≤ i≤N (34)

where n is the filter order, N is the number of channels, and U is the unit step
function. Therefore, the gammatone system can be considered as a causal, time
invariant system with an infinite response time. For the ith channel, fi is the center

Figure 18.
(a) The ES of a music signal, (b) the ES of an audio signal [81].

Figure 19.
A block diagram of a classifier integrated with a separator.
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frequency of the channel, ϕi is the phase of the channel, b is the rate of decay of the
impulse response and g(i) is an equalizing gain adjust for each filter. Figure 20
depicts the impulse response of the gammatone system, where Figure 21 depicts the
block diagram of the Wang and Brown model.

Wang and Brown model has some drawbacks. The first drawback is its com-
plexity. Their model needs a high specification hardware to perform the calcula-
tions. In [20], Andre reported that Wang and Brown model needs to be improved.
The ICA method can be used for separation if two sources of mixture are available
assuming that the two signals from the two different sources are statistically inde-
pendent [66, 74, 75, 121, 137]. In [19], Takigawa tried to improve the performance
of W & B model. He used the short time Fourier transform (STFT) in the input
stage and used the spectrogram values instead of correlogram, however, they have
not reported the amount of improvement. A similar work for separating the voiced
audio of two talkers speaking simultaneously at similar intensities in a single chan-
nel, using pitch peak canceling in cepstrum domain, was done by Stubbs [8].

4.2 The pitch cancelation

The pitch cancelation method is widely used in noise reduction. A good try to
separate two talkers speaking simultaneously at similar intensities in a single chan-
nel, or by other words, separation of two talkers without any restriction was intro-
duced by Stubbs [8]. For a certain person, the letters A and R have lot of consonant.
These consonants, in the frequency domain, have low amplitudes, however, they
appear as long pitch peak in the cepstrum domain. If these consonants are deleted

Figure 20.
4th order impulse responseGammatone system: (a) In time domainwhen i = 1, fi = 80Hz. (b) In time domainwhen
i = 5, fi = 244Hz. (c) In the frequency domain for the 1st five filters (i.e i = 1 to i = 5)with gain g(i) set to unity.

Figure 21.
A block diagram of Wang and Brown model.
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by replacing the five-cepstral samples centered at the pitch peak by zeros, the audio
segment may be attenuated or distorted completely. A typical example of the
cepstrum of two audio and music signals is depicted in Figure 22 for 5 seconds
signals. The logarithmic effect will increase low amplitude reduce high one, and the
values near zero will be very large after the logarithm.

5. Conclusions

In this chapter, a general review of the common classification and separation
algorithms used for speech and music was presented and some were introduced and
discussed thoroughly. The approaches dealt with classification were divided into
three categories. The first category included most of the real-time approaches. In
the real-time approaches, we introduced the ZCR, the STE, the ZCR and the STE
with positive derivative, with some of their modified versions, and the neural
networks. The second category included most of the frequency domain approaches
such as the spectral centroid and its variance, the spectral flux and its variance, the
roll-off of the spectrum, the cepstral residual, and the delta pitch. However, the last
category introduced two time-frequency approaches, mainly the spectrogram and
the evolutionary spectrum. It has been noticed that the time-frequency classifiers
provided an excellent and a robust discrimination result in discriminating speech
from music signals in digital audio. Depending on the application, the decision of
which feature should be chosen is selected. The algorithms of the first category are
faster since the processing is made in the real time; however, those of the second

Figure 22.
(a) A typical 5 seconds audio signal in cepstrum domain, the pitch peak appears near zero. (b) a typical
5 seconds music signal in cepstrum domain.

Approaches Time domain Frequency domain

(Spectrum) | (Cepstrum)

Time-Frequency

domain

Algorithms ZCR Spectral Centroid Cepstral Residual Spectrogram (Sonogram)

STE Spectral Flux Variance of the

Cepstral Residual

Evolutionary Spectrum

Roll-Off Variance Spectrum Roll-Off Cepstral feature Evolutionary Bispectrum

Pulse Metric Signal Bandwidth Pitch

Number of

Silence

Spectrum

Amplitude

Delta Pitch

HMM Delta Amplitude

ANN

Table 9.
Summary of the classification and separation algorithms.
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one are more precise. The time-frequency approaches has not been discussed thor-
oughly in literature and they still need more research and elaboration. Lastly, we
may conclude that many classification algorithms were proposed in literature,
however, few ones were proposed for separation. The algorithms introduced in this
chapter can be summarized in Table 9.
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