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Chapter

Peculiarities of the Fundamental
Solution of Parabolic Systems with
a Negative Genus
Vladyslav Antonovich Litovchenko

Abstract

For the parabolic Shilov-type systems with a negative genus, a method of
studying the properties of a fundamental solution of the Cauchy problem is pro-
posed. This method allows to improve the known estimates of Zhitomirskii funda-
mental solution for systems with dissipative parabolicity and describe the features
of this solution more accurately. It opens wide possibilities for constructing a clas-
sical theory of the Cauchy problem for parabolic systems with negative genus and
variable coefficients.

Keywords: parabolic Shilov systems, negative genus, fundamental solution,
Cauchy problem, matriciant, dissipative parabolicity

1. Introduction

The theory of parabolic equations dates back to the time of the classical equation
of thermal conductivity [1]. However, it acquired its most distinct features from the
fundamental work by I.G. Petrovskii [2] published in 1938. There he describes and
investigates a fairly wide class of systems of linear equations with partial deriva-
tives, the fundamental solution of which has typical properties of the fundamental
solution of the thermal conductivity equation:

G∘ t� τ; xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πa t� τð Þ
p

� ��n
e�

∥x∥2

4a t�τð Þ, t> τ≥0, x∈
n (1)

(here a – is the coefficient of thermal conductivity, and ∥ � ∥ – is the Euclidean
norm in 

n). These systems were later called “parabolic by Petrovskii” or
“2b-parabolic” systems. Due to the efforts of many researchers, the theory of 2b-
parabolic systems developed rapidly throughout the second half of the 20th century.
At that, there were considered the systems with both fixed and variable coefficients
having different properties. Comprehensive results were obtained on the structure
and properties of solutions, as well as on the correct solvability of boundary value
problems, in particular, the Cauchy problem, in different functional spaces [3–13].

In 1955, G.Ye. Shilov formulates a new definition of parabolicity, which generalizes
the concept of “2b -parabolicity” and significantly expands the class of Petrovskii’s
systems with constant coefficients by those systems, in which the order p is no longer
necessarily even, and may not coincide with the parabolicity index h [14]. The para-
bolic Shilov-type systems, mostly with constant coefficients, were studied in [15–24].
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The presence of a gap between p and h in such systems produces a peculiar
“dissipation” effect, the measure of which may be a special characteristic of the system
– its genus μ: 1� p� hð Þ≤ μ≤ 1. The parabolic systems, in which p ¼ h,� the classical
equation of thermal conductivity, in particular, as well as all 2b-parabolic systems, �
have the genus μ ¼ 1, while for the systems with p 6¼ h, generally speaking, the genus
is μ< 1. Besides, the more the parabolicity index h deviates from the order of the
system p, the more its genus μ, decreasing, gets further away from 1. In systems with
such a dissipation, even with constant coefficients, deviations from the standards set
by the classical thermal equation are observed. First of all, for their fundamental
solution G t, τ; �ð Þ, the analytic properties in the complex space n [15] are getting
worse, and the order of exponential behavior on the real hyperplane n changes [16]:

∣∂kxG t, τ; xð Þ∣ ≤Ak t� τð Þ�
nþγþ kj jþ

h
e
�δ0 ∥x∥

t�τð Þμ=p

� �

p
p�μ

, 0< μ≤ 1,

e
�δ0 ∥x∥

t�τð Þμ=h

� � h
h�μ

, μ≤0,

8

>

>

>

<

>

>

>

:

γ ≥0: (2)

Another anomalous phenomenon of the systems with “dissipative parabolicity”
is their parabolic instability with respect to changes in the coefficients, even of those
found at zero derivative. This fact was first pointed out by U Hou-Sin in 1960, who
gave the example of a parabolically unstable system [17]. In this regard, the ques-
tion of the study of parabolic Shilov-type systems with variable coefficients is
problematic and still remains open.

Zhitomirskii’s estimates (2) show that the fundamental solution of G t, τ; xð Þ
parabolic systems with the positive genus μ on the set τ;þ∞ð Þ � 

n shows the
behavior typical for G∘ t� τ; xð Þ: it decreases exponentially and has a peculiarity at
only one point t; xð Þ ¼ τ; 0ð Þ. This fact allowed us to successfully develop the
classical theory of the Cauchy problem for parabolic systems with variable coeffi-
cients and non-negative genus μ in [25–28]. However, according to these estimates,
in the case of μ<0 the function G t, τ; xð Þ may have a peculiarity on the entire
hyperplane t ¼ τ, x∈

n. This point significantly complicates the substantiation of
the convergence of the process of successive approximations, in particular, while
making the fundamental solution of the Cauchy problem for systems with variable
coefficients using the Levy method. In this regard, a natural question arises: How
accurate are the estimates (2) for systems of the genus μ<0?

The answer to this question is given in this paper. A method for studying the
function G t, τ; xð Þ for parabolic Shilov-type systems of genus μ<0, which allows us
to more accurately describe the behavior of this function in the vicinity of the point
t; xð Þ ¼ τ; 0ð Þ is also suggested in this research paper. In addition, one class of
systems with dissipative parabolicity is also defined here. These systems are para-
bolically stable to changes in their lower coefficients.

The main content of the work is as follows. Section 2 contains the necessary
information on the concept of parabolicity by Shilov. One class of systems with
dissipative parabolicity and variable coefficients is described in Section 3. The study
of the properties of the fundamental solution of the Cauchy problem for parabolic
Shilov-type systems with a negative genus is carried out in Section 4. The final
Section 5 is the conclusions.

2. Preliminary information

Let  – be the set of all natural numbers; m ¼ 1, … ;mf g; n and 
n
– real and

complex space of n≥ 1 dimension respectively; n
þ – the set of all n-dimensional

2
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multi-indices; ≔
1,≔

1, þ≔
1
þ; i – imaginary unit; �, �ð Þ – scalar product in

the space n; ∣xþ iy∣ ≔ x2 þ y2ð Þ
1
2, if x, yf g⊂; zl ≔ zl11 … zlnn , zj jl ≔ z1j jl1 … znj jln ,

zj jhþ≔ z1j jh þ … þ znj jh, zj jþ≔ zj j1þ, if z≔ z1; … ; znð Þ∈
n, l≔ l1; … ; lnð Þ∈

n
þ, h∈;

∂ξ� – is the partial derivative with the variable ξ.
Let us fix m, pf g⊂, T ∈ 0;þ∞ð Þ arbitrarily and consider the system of partial

differential equations of p order

∂tu t; xð Þ ¼ A t; i∂xð Þu t; xð Þ, t; xð Þ∈Π 0;Tð �, (3)

in which Π 0;Tð �≔ 0;Tð � � 
n, u t; xð Þ≔ col u1 t; xð Þ; … ; um t; xÞð Þð – is an unknown

vector-function and

A t; i∂xð Þ≔
X

kj jþ ≤ p

a
jl
k tð Þi kj jþ∂kx

0

@

1

A

m

j,l¼1

(4)

matrix differential expression with coefficients a
jl
k �ð Þ.

Let us denote by A the matrix symbol of the differential expression A t; i∂xð Þ:

A t; sð Þ ¼
X

kj jþ ≤ p

a
jl
k tð Þsk

0

@

1

A

m

j,l¼1

, t∈ 0;Tð �, s∈
n: (5)

The Shilov-type parabolicity of the system (3) depending on the constancy or
variability of its coefficients, is defined differently.

In the case when the coefficients a
jl
k are constant, i.e., when

A t; i∂xð Þ � A i∂xð Þ, A t; �ð Þ � A �ð Þ, (6)

the system (3) on the set Π 0;T½ � is referred to as Shilov-type parabolic system with

the parabolicity index h, 0< h≤ p, if [15]

∃δ0 >0∃δ≥0∀ξ∈
n
: max

j∈m

Re λ j ξð Þ≤ � δ0∥ξ∥
h þ δ, (7)

where λ j sð Þ - characteristic numbers of the matrix symbol A sð Þ, s∈
n.

If the coefficients of the system (3) depend on t (continuously), then the
Shilov-type parabolicity of this system is defined somewhat differently, using the
concept of the matriciant of the linear differential equations system.

For the system (3) we shall write the corresponding dual by Fourier system

∂tv t; ξð Þ ¼ A t; ξð Þv t; ξð Þ, 0≤ τ< t≤T, ξ∈
n: (8)

The matriciant of the system (8) is such a matrix solution of the system
Θ

t
τ �ð Þ, 0≤ τ< t≤T, that

Θ
t
τ �ð Þ
�

�

t¼τ ¼ E ∀τ∈ 0;T½ �ð Þ (9)

(here E – a single matrix of m order).
Under the condition of continuity of the coefficients of the system (3), the

matriciant Θt
τ �ð Þ has the structure [29]
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Θ
t
τ �ð Þ ¼ Eþ

X

∞

r¼1

ð

t

τ

ð

t1

τ

…

ð

tr�1

τ

Y

r

j¼1
A t j; �
� �

 !

dtr … dt2dt1: (10)

The system (3) with continuous coefficients on 0;T½ � is called a Shilov-type
parabolic system on the set Π 0;T½ � with parabolicity index h, 0< h≤ p, if for the

matriciant Θt
τ �ð Þ, 0≤ τ< t≤T, of the corresponding dual by Fourier system (8) the

following estimation is performed [15]

∣Θt
τ ξð Þ∣ ≤ c 1þ ∥ξ∥γð Þe�δ t�τð Þ∥ξ∥h , t; ξð Þ∈Π τ;Tð �, (11)

with some positive constants c and δ. Here

γ≔ p� hð Þ m� 1ð Þ, ∣ ajl
� �k,m

j¼1,l¼1∣ ≔ max
j l

∣ajl∣: (12)

It should be noted that for Shilov-type parabolic systems with constant coeffi-
cients, the condition (11) is a direct consequence of the corresponding condition of
parabolicity (7) [15]. For parabolic systems (3) with t-dependent coefficients at
p 6¼ h, this fact generally cannot be confirmed by classical means of the theory of
parabolic systems due to the parabolic instability of such systems to changing their
coefficients.

The Eq. (10) allows us to extend the matriciant Θt
τ �ð Þ into the complex space n

to the complete analytical function. Taking into account the estimation

∣A t; sð Þ∣ ≤ c 1þ ∥s∥pð Þ, 0≤ t≤T, s∈
n, (13)

we find that

∣Θt
τ sð Þ∣ ≤ c0e

δ0 t�τð Þ∥s∥p , 0≤ τ< t≤T, s∈
n (14)

(here, a c0 and δ0 are positive constants independent of τ, t and s).
The smoothness of the matriciant Θt

τ �ð Þ together with the estimates (11), (14),
according to the statement of the theorem of the Phragmén-Lindelöf type
[30, p. 247], ensure the existence of the area

ν ¼ ξþ iη∈
n
: ∥η∥≤K 1þ ∥ξ∥ð Þνf g (15)

from ν with 1� p� hð Þ; 1½ �, in which the following estimate is performed

∣Θt
τ ξþ iηð Þ∣ ≤ c1 1þ ∥ξ∥γð Þe�δ1 t�τð Þ∥ξ∥h , 0≤ τ< t≤T: (16)

The genus μ of the Shilov-type parabolic system (3) is the exact upper boundary
of the indices ν, with which in the domain ν for the matriciant Θt

τ �ð Þ the estimate
(16) is performed [15]

Similarly to 2b-parabolicity, it is convenient to call the Shilov-type parabolicity a
p, hf g-parabolicity.
It should be noted that the fundamental solution of the Cauchy problem for

p, hf g-parabolic system (3) is represented by the function [15]

G t, τ; xð Þ ¼ 2πð Þ�n
ð


n

e�i x,ξð Þ
Θ

t
τ ξð Þdξ: (17)
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The following section gives an example of a p, hf g-parabolic system and defines
a class of systems with dissipative parabolicity, each of which is a p, hf g-parabolic
system with variable coefficients.

3. One class of parabolically resistant systems

Due to the difficulty of establishing the fundamental condition (11), for the
system (3) with variable coefficients, the definition of parabolability according to
Shilov is somewhat specific. It is known [4] that the corresponding condition (11) is
satisfied for 2b-parabolic systems (3) with continuous coefficients. However, it is
impossible to confirm the fulfillment of this condition in a similar way for systems
(3) with p 6¼ h based on the condition (7). Therefore, it is important to be aware of
the richness of the class of the Shilov-type systems with variable coefficients, in
particular, of the examples of such systems that are not parabolic by Petrovskii.

Let us consider a system of Eq. (3), in which the differential expression A t; i∂xð Þ
allows an image

A t; i∂xð Þ ¼ A0 i∂xð Þ þ A1 t; i∂xð Þ, (18)

where

A0 i∂xð Þ≔
X

kj jþ ≤ p

a
lj
ki

kj jþ∂kx

0

@

1

A

m

l,j¼1

, A1 t; i∂xð Þ≔
X

kj jþ ≤p1

a
lj
k tð Þi kj jþ∂kx

0

@

1

A

m

l,j¼1

: (19)

Let us assume that the corresponding system

∂tu t; xð Þ ¼ A0 i∂xð Þu t; xð Þ, t; xð Þ∈Π 0;Tð �, (20)

is p, hf g-parabolic on the set Π τ;Tð �, and the coefficients of the differential

expression A1 t; i∂xð Þ are continuous complex-valued functions defined on 0;T½ �,
while the values p, p1 and h satisfy the condition

(A): 0≤ p1 þ p� hð Þ m� 1ð Þ< h:
Example of system (3) with condition (A). Let n ¼ 1, m ¼ 2, a>0 and c j �ð Þ,

j∈5, are some continuous on 0;T½ � complex-valued functions. Then the system

∂tu1 ¼ �a∂4x þ c1 tð Þ∂2x
� 	

u1 þ ∂
5
x � ∂

3
x þ c2 tð Þ∂x

� 	

u2,

∂tu2 ¼ c3 tð Þ∂2x � ∂
3
x

� 	

u1 � a∂4x � c4 tð Þ∂2x � c5 tð Þ
� 	

u2,

8

<

:

(21)

is the system of kind (3) with condition (A). Indeed, putting

A0 i∂xð Þ ¼ �a∂4x ∂
5
x � ∂

3
x

�∂3x �a∂4x

 !

, (22)

A1 t; i∂xð Þ ¼ c1 tð Þ∂2x c2 tð Þ∂x
c3 tð Þ∂2x c4 tð Þ∂2x þ c5 tð Þ

 !

(23)

and solving the appropriate equation

det A0 sð Þ � λEð Þ ¼ 0, s∈
n, (24)

5
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we obtain that λ1,2 sð Þ ¼ �as4 � i
ffiffiffiffiffiffiffiffiffiffiffiffiffi

s8 þ s6
p

, p ¼ 5, p1 ¼ 2 and h ¼ 4. For these
values p, p1 and h, obviously the condition (A) holds.

Theorem 1 Let (3) be a system with continuous coefficients, for which the conditions
formulated in this clause are satisfied. Then it is an p, hf g-parabolic system with variable
coefficients.

Proof. According to the definition of p, hf g-parabolicity for the system (3) with
variable coefficients, it is enough to show that for the matrix Θ

t
τ �ð Þ of the

corresponding dual by Fourier system (8) on the set Π τ;T½ �, τ∈ 0;T½ Þ, the estimate

(11) is performed.
On condition of continuity of the coefficients, the matriciant Θt

τ �ð Þ is the only
solution of the Cauchy problem for the system (8) with the initial condition

v t; �ð Þjt¼τ ¼ E: (25)

Thus, the correct equality

∂tΘ
t
τ ξð Þ ¼ A0 ξð ÞΘt

τ ξð Þ þQ τ, t; ξð Þ, (26)

in which

Q τ, t; ξð Þ≔A1 t; ξð ÞΘt
τ ξð Þ: (27)

Having solved the Cauchy problem (26), (25), we obtain the image

Θ
t
τ ξð Þ ¼ e t�τð ÞP0 ξð Þ þ

ð

t

τ

e t�βð ÞP0 ξð ÞQ τ, β; ξð Þdβ, t; ξð Þ∈Π τ;Tð �, τ∈ 0;T½ Þ: (28)

It should be noted that e t�τð ÞP0 �ð Þ is the matriciant of the dual by Fourier system to
p, hf g-parabolic system (20), therefore, the estimate (11) is performed for it.

Hence, considering the inequality

∣Q τ, t; ξð Þ∣ ≤ c0 1þ ∥ξ∥p1ð Þ∣Θt
τ ξð Þ∣, t; ξð Þ∈Π τ;Tð �, τ∈ 0;T½ Þ (29)

(here the positive constant c0 in independent of τ, t and ξ), the next estimate is
obtained

∣Θt
τ ξð Þ∣ ≤ c 1þ ∥ξ∥γð Þe�δ t�τð Þ∥ξ∥h þ c1 1þ ∥ξ∥γð Þ 1þ ∥ξ∥p1ð Þ

ð

t

τ

e�δ t�βð Þ∥ξ∥h ∣Θβ
τ ξð Þ∣dβ, (30)

from which we come to the ratio

∣Θt
τ ξð Þ∣eδ t�τð Þ∥ξ∥h

1þ ∥ξ∥γð Þ ≤ cþ c1 1þ ∥ξ∥γð Þ 1þ ∥ξ∥p1ð Þ
ð

t

τ

∣Θβ
τ ξð Þ∣eδ β�τð Þ∥ξ∥h

1þ ∥ξ∥γð Þ dβ: (31)

Using now the classic Gr€onwall’s lemma [4], we get

∣Θt
τ ξð Þ∣ ≤ c 1þ ∥ξ∥γð Þe� t�τð Þ δ∥ξ∥h�c1 1þ∥ξ∥γð Þ 1þ∥ξ∥p1ð Þð Þ, t; ξð Þ∈Π τ;Tð �, τ∈ 0;T½ Þ: (32)

This inequality, in combination with condition (A), ensures the existence of
positive constants c and δ, with which for all t; ξð Þ∈Π τ;Tð �, τ∈ 0;T½ Þ, the estimate

(11) is performed.
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The theorem is proved.
Remark 1 The proof of Theorem 1 is based on the classical idea of establishing an

estimate (11) for 2b-parabolic systems with the coefficients continuously depending on t.
Therefore, analyzing this proof, especially its last part, we can understand why, in
contrast to the 2b-parabolicity, in the case of p 6¼ h the difficulties in establishing the
condition (11).

The study of the properties of the matriciant Θt
τ �ð Þ for systems with a negative

genus μ will be continued in the next section.

4. Properties of fundamental solution

Let us move on to the search for an answer to the question posed in Section 1
concerning the accuracy of Zhitomirskii’s estimates (2) in the case of a system (3) of
genus μ<0.

Theorem 2 Let the system (3) p, hf g be parabolic with the negative genus μ, and let
l≥0 and α≥0 be such arbitrarily fixed numbers that l≤ 1þ αh and αh� lð Þμ≥ αh. Then

∃ c, δ,A,Bf g⊂ 0;þ∞ð Þ∀k∈
n
þ∀q∈þ∀x∈

nn 0f g∀τ∈ 0;T½ Þ∀t∈ τ;Tð � :

∣∂kxG t, τ; xð Þ∣ ≤ cAqB kj jþ

∥x∥q
q 1�μ

hð Þqkk
h t� τð Þ

lþμð Þq�n� kj jþ�l0γ
h e

�δ xj jþ
t�τð Þ lþμð Þ=h

� � 1
1�μ=h

, (33)

where l0 ≔ max 1; lf g.
Proof. To simplify the calculations, we put τ ¼ 0. The general case τ>0 is

realized similarly.
Let us consider the functional matrix

ℑl t; ξð Þ≔Θ
t
0 t�l=hξ
� �

, l≥0, t∈ 0;Tð �, ξ∈
n, (34)

for which, according to the definition of the genus μ of the system (3), on the set

μ ¼ ξþ iη∈
n
: t�l=h∥η∥≤K0 1þ t�l=h∥ξ∥

� �μn o

(35)

the estimate is performed

∣ℑl t; ξþ iηð Þ∣ ≤ c 1þ t�l=h∥ξ∥
� �γ

e�δt
1�l ξj jhþ , t∈ 0;Tð �, (36)

with positive values c and δ, independent of t, ξ and η.

To estimate the derivatives ∂
q
ξℑl we use the Cauchy integral formula

∂
q
ξℑl t; ξð Þ ¼

Y

n

j¼1

q j!

2πi

ð

ΓR j

ℑl t; σð Þdσ j

σ j � ξ j

� �q jþ1
, q∈

n
þ, ξ∈

n, t∈ 0;Tð �, (37)

in which ΓR j
– is a circle with the center in the point ξ j þ i0 of the radius

R j ¼ K0 1þ t�l=hjξ jj
� �μ

, 0<K0 < < 1: (38)

Let us put ΓR ≔ΓR1 � … � ΓRn
and fix a fairly small positive K0 so that ΓR ⊂μ

(the existence of such K0 is substantiated in ([30], p. 287) when proving the

7

Peculiarities of the Fundamental Solution of Parabolic Systems with a Negative Genus
DOI: http://dx.doi.org/10.5772/intechopen.95024



theorem 4 of the Phragmén-Lindelöf type in the case of n independent variables).
Then, according to the estimate (36), we have

∣∂
q
ξℑl t; ξð Þ∣ ≤ c 1þ t�l=h∥ξ̂∥

� �γ

e�δt
1�l �ξj jhþ

Y

n

j¼1

q j!

R
q j

j

, (39)

where ξ̂;�ξ
� 	

⊂
n
– fixed points with such coordinates

ξ̂ j;�ξ j

n o

⊂ ξ j � R j; ξ j þ R j

h i

, j∈n, (40)

that

ξ̂ j
2 ¼ max

ξ j�R j; ξ jþR j½ �
x2j, ∣�ξ j∣ ¼ min

ξ j�R j; ξ jþR j½ �
∣x j∣, (41)

that is

ξ̂ j ¼ ξ j þ χ jR j, �ξ j ¼ ξ j þ ζ jR j, (42)

at some χ j, ζ j

n o

⊂ �1; 1½ �.
First of all it should be noted that

R j ¼
K0

1þ t�l=hjξ jj
� �∣μ∣

≤K0, ξ j ∈, t∈ 0;Tð �: (43)

Since

∥ξ∥≤
ffiffiffi

n
p

ξj jþ, ξ∈
n, (44)

then

∥ξ̂∥≤
ffiffiffi

n
p X

n

j¼1
∣ξ j þ χ jR j∣ ≤

ffiffiffi

n
p X

n

j¼1
jξ jjþR j

� �

≤
ffiffiffi

n
p X

n

j¼1
jξ jjþK0

� �

≤

≤
ffiffiffi

n
p

1þ ξj jþ
� �

, K0 ≤ 1=n, ξ∈
n, t∈ 0;Tð �:

(45)

Now let us estimate the value e�δt
1�l �ξj jhþ .

Let us start with the simpler case when t∈ 1;T½ �.
We assume that ∣ξ j∣ ≥ 2K0, then

�ξ j

�

�

�

�

�

�

h
¼ jξ jj�R j

� �h
≥ jξ jj�K0

� �h
≥ 2�h ξ j

�

�

�

�

�

�

h
: (46)

If ∣ξ j∣< 2K0, then

e�δt
1�l �ξ jj jh ≤ 1 ¼ eδ0t

1�l ξ jj jhe�δ0t1�l ξ jj jh ≤ e�δ0t
1�l ξ jj jhþa ∀δ0 >0ð Þ, (47)

where a ¼ δ0 2K0ð Þh max
t∈ 1;T½ �

t1�l.
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Therefore, for each δ>0 there are such positive constants c0 and δ0 that for all
ξ j ∈ and t∈ 1;T½ � the estimate is performed

e�δt
1�l �ξ jj jh ≤ c0e

�δ0t1�l ξ jj jh : (48)

We show that the statement (48) is also true in the case of t∈ 0; 1ð Þ.
We shall fix arbitrarily α≥0 and further consider that l≤ 1þ αh. Then for

∣ξ j∣< tα, we have:

e�δt
1�l �ξ jj jh ≤ eδ0t

1�l ξ jj jh�δ0t1�l ξ jj jh ≤ e�δ0 t1�l ξ jj jh�t1þαh�l
� �

≤ e�δ0 t1�l ξ jj jh�1
� �

∀δ0 >0ð Þ: (49)

Now let tα ≤ ∣ξ j∣, and α be such that the condition: l� αhð Þ∣μ∣ ≥ αh is satisfied.

Taking into consideration that

R j ≤
K0

1þ tα�l=hð Þ∣μ∣
≤K0t

l=h�αð Þ∣μ∣ ≤K0t
α, (50)

we obtain:

�ξ j

�

�

�

�

�

�

h
¼ jξ jj�R j

� �h
≥ jξ jj�K0t

α
� �h

¼ ξ j

�

�

�

�

�

�

h
1� K0t

α=jξ jj
� �h

≥

≥ ξ j

�

�

�

�

�

�

h
1� K0ð Þh ≥ 2�h ξ j

�

�

�

�

�

�

h
:

(51)

Hence we arrive at performing (48) at t∈ 0; 1ð Þ.
According to the estimates (45), (48) and equality

sup
y≥0

yβe�δy
� 	

¼ β

eδ


 �β

, β>0, δ>0, (52)

we find:

c�10 1þ t�l=h∥ξ̂∥
� �γ

e�
δ
3t
1�l �ξj jhþ ≤ 2

ffiffiffi

n
p� �γ

t�lγ=h 1þ ξj jþ
� �γ

e�δ0t
1�l ξj jhþ ≤

≤ 2
ffiffiffi

n
p� �γ

t�lγ=h 1þ ξj jþe�
δ0
γ
t1�l ξj jhþ

� �γ

≤ 2
ffiffiffi

n
p� �γ

t�lγ=h 1þ n
γtl�1

heδ0


 �1=h
 !γ

;

c�10 R
�q j

j e�
δ
3nt

1�l �ξj jhþ ≤R
�q j

j e�δ0t
1�l ξ jj jh ¼ K

�q j

0 1þ t�l=hjξ jj
� �∣μ∣q j

e�δ0t
1�l ξ jj jh ≤

≤ 2μK0ð Þ�q j 1þ tμlq j=h ξ j

�

�

�

�

�

�

∣μ∣q j

e�δ0t
1�l ξ jj jh


 �

≤ 2μK0ð Þ�q j 1þ
∣μ∣q j

heδ0t


 �∣μ∣q j=h
 !

:

(53)

Together with (39), these estimates ensure the existence of such positive con-
stants c, A and δ that for all ξ∈

n, t∈ 0;Tð � and q∈
n
þ the following inequality is

true

∣∂
q
ξℑl t; ξð Þ∣ ≤ cA qj jþq 1�μ

hð Þqt
μ qj jþ�l0γ

h e�δt
1�l ξj jhþ , (54)

in which l0 ¼ max 1; lf g.
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Next, we shall use the image

G t, 0; xð Þ ¼ 2πð Þ�nt�nl=h
ð


n

e�i x,t�l=hξð Þℑ t; ξð Þdξ, t; xð Þ∈Π 0;Tð �: (55)

Identity

tl=hLξ; x e�i x,t�l=hξð Þ
h i

¼ e�i x,t�l=hξð Þ, (56)

in which

Lξ; x ¼ i∥x∥�2
X

n

j¼1
x j∂ξ j

, (57)

at x 6¼ 0 allows to write the previous equality in the form

G t, 0; xð Þ ¼ 2πð Þ�ntl q�nð Þ=h
ð


n

L
q
ξ; x e�i x,t�l=hξð Þ
h i

ℑ t; ξð Þdξ ∀q∈þð Þ: (58)

Hence, after integrating by parts q times, we arrive at the relation

G t, 0; xð Þ ¼ �1ð Þq 2πð Þ�ntl q�nð Þ=h
ð


n

e�i x,t�l=hξð ÞLq
ξ; x ℑ t; ξð Þ½ �dξ ∀q∈þð Þ, (59)

from which we obtain that

∣xr∂kxG t, 0; xð Þ∣ ≤ 2πð Þ�nt
l q�n� k�rj jþð Þ

h

ð


n

ξj jk∣∂rξ L
q
ξ; x ℑ t; ξð Þ½ �

� �

∣dξ, (60)

for all r, kf g⊂
n
þ and q∈þ.

Having considered the estimate (54), for t; ξð Þ∈Π 0;Tð � and x 6¼ 0 we find:

∣∂rξ L
q
ξ; x ℑ t; ξð Þ½ �

� �

∣ ≤ cAqþ rj jþ∥x∥�qt
μ qþ rj jþð Þ�l0γ

h r 1�μ

hð Þrq 1�μ

hð Þqe�δt1�l ξj jhþ : (61)

Then

∣xr∂kxG t, 0; xð Þ∣ ≤ c1A
qþ rj jþ∥x∥�qt

lþμð Þ qþ rj jþð Þ�l nþ kj jþð Þ�l0γ
h r 1�μ

hð Þrq 1�μ

hð Þq�

�
ð


n

ξj jke�δl1�l ξj jhþdξ≤ c1A
qþ rj jþ∥x∥�qt

lþμð Þ qþ rj jþð Þ�n� kj jþ�l0γ
h r 1�μ

hð Þrq 1�μ

hð Þq�

�
Y

n

j¼1
sup
y≥0

y
k j
h e�

δ
2y

� 

 !

ð


n

e�
δ
2 ζhj jþdζ≤ c2A

qþ rj jþB kj jþ∥x∥�qt
lþμð Þ qþ rj jþð Þ�n� kj jþ�l0γ

h �

�r 1�μ

hð Þrq 1�μ

hð Þqkk
h, t∈ 0;Tð �, x 6¼ 0, q∈þ, k, rf g⊂

n
þ

(62)

(here positive values c2, A and B do not depend on t, x, q, k and r).
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Thus, for all t∈ 0;Tð �, x∈
nn 0f g, q∈þ and k∈

n
þ the correct estimates are

∣∂kxG t, 0; xð Þ∣ ≤ c2A
qB kj jþ∥x∥�qt

lþμð Þ qþ rj jþð Þ�n� kj jþ�l0γ
h q 1�μ

hð Þqkk
h�

�
Y

n

j¼1
inf
r j

t
lþμ
h A

� �r j

r
r j 1�μ

hð Þ
j x j

�

�

�

�

�r j

� 

 !

≤

≤ cAqB kj jþ∥x∥�qt
lþμð Þq�n� kj jþ�l0γ

h q 1�μ

hð Þqkk
he
�δ xj jþ

t lþμð Þ=h

� � 1
1�μ=h

,

(63)

in which the values c>0, A>0, B>0 and δ>0 do not depend on k, q, t and x.
The theorem is proved.
Remark 2 Zhitomirskii’s estimates (2) are obtained from (33) for q ¼ 0, l ¼ 0 and

α ¼ 0.
Given that l ¼ 1þ αh, αh� lð Þμ ¼ αh and q ¼ 0, from the theorem 2 we arrive at

the following statement.
Corollary 1 For p, hf g-parabolic system (3) with genus μ<0 there are such positive

constants c, B and δ that for all k∈
n
þ, x∈

n, τ∈ 0;T½ Þ and t∈ τ;Tð � the next estimate

is performed

∣∂kxG t, τ; xð Þ∣ ≤ cB kj jþk
k
h t� τð Þ�

nþγþ kj jþ
h e

�δ xj jþ
t�τð Þ1=h

� � 1
1�μ=h

: (64)

Therefore, according to the corollary 1, the fundamental solution G in the case of
negative genus μ also has a singularity only at the point t; xð Þ ¼ τ; 0ð Þ.

Corollary 2 Let (3) p, hf g be a parabolic system with negative genus μ, then for all
t∈ τ;Tð �, τ∈ 0;T½ Þ, x∈

nn 0f g and k∈
n
þ estimate is performed

∣∂kxG t, τ; xð Þ∣ ≤ cB kj jþk
k
h kj j 1�

μ

hð Þ kj jþ
þ

∥x∥nþ γ½ �þ1þ kj jþ
t� τð Þ

1� γf g
h e
�δ xj jþ

t�τð Þ1=h

� � 1
1�μ=h

, (65)

in which the positive values c, δ and B do not depend on t, τ, x and k; �½ � and �f g
are integer and fractional parts of the number respectively.

Proof. Estimates (65) are obtained directly from (33) at l ¼ 1þ αh, αh� lð Þμ ¼
αh and q ¼ nþ γ½ � þ 1þ kj jþ.

The established estimates (65) provide exponential decrease when changing
t! τ þ 0 on the set nn 0f g derivatives of the function G t, τ; �ð Þ in case μ<0.
Similarly to the case μ≥0 considered in [25–28], this will allow us to successfully
study the Cauchy problem for wide classes of p, hf g-parabolic systems (3) with

negative genus μ and variable coefficients a
jl
k t; xð Þ. Moreover, this will also allow us

to describe in a similar way the sets of classical solutions of such systems with
generalized limit values f on the initial hyperplane and to study the local behavior of
these solutions when changing t! τ þ 0 on that part of n where the functional f
has good properties etc.

5. Conclusions

The class of systems with dissipative parabolicity and variable coefficients
defined in Section 3 proves that the class of parabolic Shilov-type systems with
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coefficients a
jl
k tð Þ is quite broad and cannot be confined to the class of 2b-parabolic

systems (3) with continuous coefficients only.
Analyzing the obtained estimates (33) of the fundamental solution of the sys-

tems (3) with dissipative parabolicity, we conclude that in the case of the negative
genus μ the function G t, τ; xð Þ on the set τ;Tð � � 

n has only one singular point
t; xð Þ ¼ τ; 0ð Þ. Similarly to the case μ≥0, these estimates allow to perform the
expansion of the Shilov class p, hf g-parabolic systems by supplementing it with the
systems with negative genus μ and coefficients depending on space variable, and to
successfully develop the theory of the Cauchy problem for it using the classical
means. Moreover, the estimates (33) open wide possibilities for studying the prop-
erties of solutions of parabolic systems of the genus μ<0 at the approximation of
the initial hyperplane.
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