
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter

Wavelet Theory: Applications of
the Wavelet
Mohammed S. Mechee, Zahir M. Hussain
and Zahrah Ismael Salman

Abstract

In this Chapter, continuous Haar wavelet functions base and spline base have
been discussed. Haar wavelet approximations are used for solving of differential
equations (DEs). The numerical solutions of ordinary differential equations (ODEs)
and fractional differential equations (FrDEs) using Haar wavelet base and spline
base have been discussed. Also, Haar wavelet base and collocation techniques are
used to approximate the solution of Lane-Emden equation of fractional-order
showing that the applicability and efficacy of Haar wavelet method. The numerical
results have clearly shown the advantage and the efficiency of the techniques in
terms of accuracy and computational time. Wavelet transform studied as a mathe-
matical approach and the applications of wavelet transform in signal processing
field have been discussed. The frequency content extracted by wavelet transform
(WT) has been effectively used in revealing important features of 1D and 2D
signals. This property proved very useful in speech and image recognition. Wavelet
transform has been used for signal and image compression.

Keywords: Haar wavelet, continuous wavelet function, wavelet transform, B-cubic
spline base

1. Introduction

Wavelets are special mathematical functions which have advantages over tradi-
tional Fourier methods in analyzing physical situations where the signal contains
discontinuities and sharp spikes. The fields of applied mathematics such as quantum
physics, seismic geology and electrical engineering have used and developed inde-
pendently wavelets during last twenty years ago which leads to new wavelet applica-
tions such as image compression, radar, and earthquake prediction. Haar wavelet was
initiated and independently developed by some authors. Wavelets can be summa-
rized as a family of functions constructed from transformation and dilation of a single
function called mother wavelet. From various types of continuous and discrete
wavelets, Haar wavelet is the discrete type of wavelet which was first proposed and
the first orthonormal wavelet basis is the Haar basis. Differential equations (DEs) are
most important tools in mathematical models for physical phenomena. Many basis
used to approximate the solutions of DEs. Haar wavelet is simple basis used to
approximate the solution of DEs. [1] established a simple numerical method based on
Haar wavelet operational matrix of integration for solving two dimensional elliptic
partial differential equations (PDEs) of the form ∇2u x, yð Þ þ ku x, yð Þ ¼ f x, yð Þ, [2]
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used Haar wavelet operational matrix for the numerical solutions of FrDEs, [3] used
Haar wavelet-quasi linearization technique for FrDEs, [4] used Haar wavelet method
for solving FrPDEs numerically, [5] applied Haar wavelet transform to solve integral
equations (IEs) and DEs, [6] solved 2D and 3D Poisson equations and biharmonic
equations by the Haar wavelet method while [7] presented a numerical method for
inversion of Laplace transform using the method of Haar wavelet operational matrix.
The implementations of FrDEs which are used as mathematical models in many
physically significant fields and applied science. Recently, the approximated solutions
of the FrDEs have been studied using Haar wavelet method which shows to be more
suitable to approximate the solutions of them. Nowadays, Haar wavelets are most
widely and simplest due to their simplicity, the Haar wavelets are effective tools for
approximating solutions of DEs. When this type of problem arises, mainly approxi-
mated solutions come to be available. From the many approximated methods, Haar
wavelet approach is one to find the solutions of DEs. If the approximated solution
gives less error than other methods, then, the method be an efficient method. How-
ever, one of interesting applications of wavelets bases is the approximation of DEs.
Also, Haar wavelet technique is used to approximate the solutions of DEs of
fractional-order. Wavelet transform is a mathematical approach widely used for
signal processing applications. It can decompose special patterns hidden in mass of
data. Wavelet transform has the advantage to simultaneously display functions and
manifest their local characteristics in time-frequency domain. Wavelet transforms
have had tremendous impact on the fields of signal processing, signal coding, esti-
mation, pattern recognition, applied sciences, process systems engineering, econo-
metrics, and medicine. Wavelet transforms are mainly divided into two groups;
continuous wavelet transform (CWT) and discrete wavelet transform (DWT). The
discretization of a voice transform generated by a representation of the Blaschke
group on the Hardy space of the unit disk leads to the construction of analytic rational
orthogonal wavelets. In this chapter, we introduce the concept of continuous wavelet
functions together to the approximations solutions of DEs with ordinary- or
fractional-order using Haar wavelet functions. Also, a comparison between Haar
wavelet base with cubic spline base has been introduced. Wavelet transform as a
mathematical approach has been discussed together to the applications of wavelet
transform in signal.

1.1 Objectives of chapter

This chapter aims at achieving the following objectives:

1.To introduce continuous wavelet functions.

2.To use Haar wavelet approximations in solving of differential equations (DEs).

3.To imply Haar wavelet functions to approximate the solutions of DEs of
fractional-order.

4.To compare Haar wavelet base with cubic spline base.

5.To study wavelet transform as a mathematical approach.

6.To discuss the discrete wavelet transform (DWT).

7.To study the applications of wavelet transform in signal processing field.
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1.2 Scope of study

This chapter entailed the studying of continuous wavelet functions and Haar
wavelet approximations. Wavelet transform introduced as a mathematical
approach with some of applications of wavelet transform which is widely used in
signal processing field. The approximation of DEs using Haar wavelet base was
implemented with comparing to B-cubic spline base.

2. Preliminary

In this section, we introduce the definitions of two types of continues Haar
wavelet functions and linear, quadratic and cubic spline functions base.

2.1 Continues Haar wavelet functions

Haar functions have been introduced by Hungarian mathematician. The orthog-
onal set of Haar functions is defined as a square waves with magnitude of �1 in
some interval and zero elsewhere. The first curve is that h0 xð Þ ¼ 1 during the whole
interval 0≤ x≤ 1. The second curve h1 xð Þ is the fundamental square wave, or
mother wavelet which also spans the whole interval 0, 1½ �. All the other subsequent
curve are generated from h1 xð Þ with two operation translation and dilation. Haar
wavelet functions defined as follows on 0,Xð � [8].

h0 xð Þ ¼ 1
ffiffiffiffiffi

M
p 0≤ x<X, (1)

h1 xð Þ ¼ 1
ffiffiffiffiffi

M
p

1 0≤ x<
X
1

�1
X
2
≤ x<X

0 o:w:
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hi xð Þ ¼ 1
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M
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for i ¼ 1, 2, 3, … ,m� 1, M ¼ 2 j and i ¼ 2 j þ k� 1: We say that h1 xð Þ is mother

function and hi xð Þ ¼ 2
j
2h1 2 jx� k
� �

for i ¼ 2, 3, … ,m� 1: In general, we have the

following: h0 xð Þ ¼ h1 2 jx� k
2 j

� �

, where n ¼ 2 j þ k, j≥0, 0< k≤ 2 j
: Note that:

hp xð Þ, hq xð Þ
� �

¼
ðx

0
hp xð Þhq xð Þdx ¼ X

m
δpq:

To approximate f xð Þ using Haar functions consider f xð Þ ¼
Pm�1

i¼0 aihi xð Þ:.
Then,

a j ¼
Ð x
0hi xð Þh j xð Þdx
Ð x
o h

2
j xð Þdx

¼ m
X

ðx

0
f xð Þh jdx
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for

j ¼ 0, 1, 2, …m� 1:

All Haar wavelets are orthogonal to each other:

ð1

0
hi xð Þh jdx ¼ 2�jδij ¼

2�j, i ¼ j ¼ 2 jþk

0, i 6¼ j

(

2.2 Spline functions

The spline is used to refer to a wide class of smooth functions that are used in
applications requiring data interpolation [9, 10]. The data may be either one-
dimensional or multi-dimensional. Spline functions for interpolation are normally
determined as the minimizers of suitable measures of roughness (for example
integral squared curvature) subject to the interpolation constraints. Smoothing
splines may be viewed as generalizations of interpolation splines where the func-
tions are determined to minimize a weighted combination of the average squared
approximation error over observed data and the roughness measure. For a number
of meaningful definitions of the roughness measure, the spline functions are found
to be finite dimensional in nature, which is the primary reason for their utility in
computations and representation. For the rest of this section, the focus is entirely on
one-dimensional, polynomial splines and the use of the term spline in this restricted
sense. The base Φ xð Þ ¼ Φ1 xð Þ,Φ2 xð Þ, … ,Φn xð Þf g is called spline base of order n if
the basis functions satisfy Φi xð Þ∈Cn�1 �∞,∞ð Þ for i ¼ 1, 2, … , n: First of all, we
partition 0, 1½ � by choosing a positive integer n and defining h ¼ 1

nþ1 : This produces
the equally-spaced nodes xi ¼ ih, for each i ¼ 0, 1, … , nþ 1: We then define the
basis functions ϕ xð Þf gnþ1

i¼0 on the interval 0, 1½ �.

2.2.1 Linear spline

The simplest spline is a piecewise polynomial function, with each polynomial
having a single variable. The spline S takes values from an interval a, b½ � and maps
them to ℜ where S : a, b½ � ! ℜ Since S is piecewise defined, choose k subintervals
to partition a, b½ �. The simplest choice of spline functions basis involves piecewise-
linear polynomials. The first step is to form a partition of 0, 1½ � by choosing points
x0, x1, … , xnþ1. Letting hi ¼ xiþ1 � xi, for each i ¼ 0, 1, … , n. We have defined the
basis functions Φ1 xð Þ,Φ2 xð Þ, … ,Φn xð Þ. Linear spline is linear polynomial S xð Þ
which satisfies S xð Þ∈C �∞,∞ð Þ. To construct linear spline base in which it can
satisfy the boundary conditions ϕi 0ð Þ ¼ ϕi 1ð Þ for i ¼ 1, 2, … , n. we have constructed
the following component linear spline functions:

Φi xð Þ ¼

0, 0≤ x≤ xi�1,

1
hi�1

x� xi�1ð Þ, xi�1 < x≤ xi,

1
hi

xiþ1 � xð Þ, xi < x≤ xiþ1,

0, xiþ1 < x≤ 1:
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:

(4)
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for each i ¼ 1, 2, … , n: (See Figure 1(a), Table 1(a)). We can prove that the
functions are orthogonal because Φi xð Þ and Φ

0
i xð Þ are nonzero only on xi�1, xiþ1ð Þ

such that Φi xð ÞΦ j xð Þ ¼ 0 and Φ
0
i xð ÞΦ0

j xð Þ ¼ 0 if i 6¼ j, j� 1, jþ 1, consequently,
Φi xð Þ∈C �∞,∞ð Þ for i = 1,2,3,…n.

Figure 1.
(a) Linear spline and (b) quadratic spline (c) cubic spline function and (d) compound cubic spline function.

xi Φi xið Þ Φ
0
i
xið Þ Φ

00
i
xið Þ

xi�1 0

xi 1

xiþ1 0

(a)

xi�1
1
2

2

xi 1 0

xiþ1
1
2

�2

(b)

xi�2 0 0 0

xi�1
1
4

3
4 -32

xi 1 0 -34

xiþ1
1
4 -34 -32

xiþ2 0 0 0

(c)

Table 1.
Values at node points (a) linear spline, (b) quadratic B-spline, and (c) cubic B-spline.
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2.2.2 Quadratic B-spline

Quadratic B-spline is quadratic B-Spline polynomial S xð Þ which satisfy
S xð Þ∈C2 �∞,∞ð Þ. To construct quadratic spline base in which satisfy the boundary
conditions ϕi 0ð Þ ¼ ϕi 1ð Þ for i ¼ 1, 2, … , n we have constructed the following com-
ponent quadratic spline functions (Figure 2):

ϕi xð Þ ¼ 1

h2

xiþ2 � xð Þ2 � 3 xiþ1 � xð Þ2 þ 3 xi � xð Þ2; xi�1; xi½ �;

xiþ2 � xð Þ2 � 3 xiþ1 � xð Þ2; xi; xiþ1½ �;

xiþ2 � xð Þ2; xiþ1; xiþ2½ �;

0; o:w:
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>

>

>

>

>

>
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>

>

>

>

>

>

>

:

(5)

See Figure 1(b) and Table 1(b).

2.2.3 Cubic B-spline

Many researchers used B-cubic spline base which defined as follows:

S xð Þ ¼ 1
4

0, x< � 2

2þ xð Þ3, �2≤ x≤ � 1

2þ xð Þ3 � 4 1þ xð Þ3, �1< x≤0

2� xð Þ3 � 4 1� xð Þ3, 0< x≤ 1

2� xð Þ3, 1< x≤ 2

0, x> 2:
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(6)

Consequently, S xð Þ∈C2
0 �∞,∞ð Þ.

To construct cubic spline base in which satisfy the boundary conditions ϕi 0ð Þ ¼
ϕi 1ð Þ for i ¼ 1, 2, … , n we have constructed the following component cubic spline
functions:

Figure 2.
Comparison of Haar wavelet and Spline Base with exact solutions for examples (a) 3.5 (b) 3.6 (c) 3.7.
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ϕi xð Þ ¼

S
x
h

� �

� 4S
xþ h
h

� �

, i ¼ 0

S
x� h
h

� �

� S
xþ h
h

� �

, i ¼ 1

S
x� ih

h

� �

, 2≤ i≤ n

S
x� nh

h

� �

� S
x nþ 2ð Þh

h

� �

, i ¼ n

S
x� nþ 1ð Þh

h

� �

� 4S
x� nþ 2ð Þh

h

� �

, i ¼ nþ 1:
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(7)

See Figure 1(c), (d) and Table 1(c).

3. Approximation of differential equations (DEs)

Mathematics has several tools to describe the problems in real life, engineering
and science. ODEs and PDEs are significant tools in applied mathematics. They
played significant rule in describing the mathematical models in applications of
engineering, science and economics. High-order DE arises in some fields of engi-
neering and science such as nonlinear optics and quantum mechanics. The approx-
imated solutions of DEs should be studied when the ODEs and PDEs have no
analytical solutions or it is very difficult to find the analytical solutions. The
numerical or approximated solutions of DEs are very important in scientific com-
putation, as they are widely used to model real life problems. In this section, we
have studied the approximation solutions of DEs using spline and Haar wavelet
bases (Table 2).

3.1 Approximation of ordinary differential equations (ODEs)

In this section, we have studied approximation solutions of ODEs using spline
and Haar wavelet bases.

nnt 0 0.25 0.5 0.75 1

5 0 1.3345e-3 0.0015 5.0673e-3 3.6339e-3

0 1.311e-3 0.0005 5.0683e-3 3.6229e-3

10 0 1.3232e-5 2.6342e-5 1.5634e-6 4.1443e-5

0 1.3211e-5 2.1212e-5 1.2341e-6 4.0101e-5

50 0 2.3416e-7 1.6611e-7 5.1126e-7 2.1233e-7

0 2.1414e-7 1.2211e-7 5.2233e-7 2.1266e-7

100 0 4.9383e-8 3.4453e-8 5.0347e-8 6.4332e-7

0 4.9121e-8 3.4564e-8 5.0111e-8 6.4222e-7

Table 2.
Absolute errors of example 3.1 using numerical collection method with (a) polynomial basis (b) Haar wavelet
basis.
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3.1.1 Approximation of DEs using spline functions

In this section, we have introduced the linear, quadratic and cubic B-spline base
and their applications in solving ODEs. The operational matrices of the fractional-
order integration of the B-spline base has been studied.

3.1.2 Rayleigh-Ritz Metod

Rayleigh-Ritz metod is variational technique for solving boundary value
problems (BVPs) which is the first reformulated as a problem of choosing,
from set of all sufficiently differentiable functions satisfying the boundary
conditions, the function to minimize a certain integral. To describe the
Rayleigh-Ritz method, we consider the approximation of the solution to a linear
of two-boundary value problem from beam-stress analysis. This BVP is described
by the following DE:

� d
dx

p xð Þ dy
dx

� �

þ q xð Þy xð Þ ¼ f xð Þ, 0≤ x≤ 1: (8)

with boundary conditions

y 0ð Þ ¼ y 1ð Þ ¼ 0:

The DE describes the deflection y xð Þ of a beam of length 1 with variable cross
section represented by q xð Þ: The deflection is due to the added stresses p xð Þ and
f xð Þ: We have the following functional that is equivalent to Eq. (8).

I u xð Þð Þ ¼
ð1

0
p xð Þ u0 xð Þð Þ2 þ q xð Þ u xð Þð Þ2 � 2f xð Þu xð Þ
� �

dx: (9)

An approximation

u xð Þ ¼
X

n

i¼0

Φi xð Þ: (10)

to the solution y xð Þ of Eq. (9) can be obtained by finding the constants
c1, c2, c3, … cn to minimize the integral Eq. (9):When considering I c1, c2, c3, … cnð Þ as
a function of c1, c2, c3, … cn to have

∂I
∂c j

¼ 0

for i = 1,2,3,… ,n.
Lastly, we have obtained the linear system of equations Ac ¼ b, where,

aij ¼
ð1

0
p xð ÞΦ0

i xð ÞΦ0
j xð Þ þ q xð ÞΦi xð ÞΦ j xð Þ

� �

dx

and

bi ¼
ð1

0
f xð ÞΦi xð Þdx,

8
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for i, j ¼ 1, 2, … n [10]. To impalement the Ritz method we consider the
following problems.

Example 3.1 [8]
Consider

y00 tð Þ þ y tð Þ ¼ t2 � tþ 2, 0≤ t≤ 1, (11)

subject to the initial condition is

y 0ð Þ ¼ y 1ð Þ ¼ 0,

with the exact solution y tð Þ ¼ t2 � t
Let n = 5, then,

aij ¼
ð1

0
�h0i xð Þh0j xð Þ þ hi xð Þh j xð Þ
� �

dx ¼ m
X
δij,

and

bi ¼
ð1

0
x2 � xþ 2
� �

hi xð Þdx,

for i, j ¼ 1, 2, … n: However,

c ¼ � 1
3
, 0,

1

4
ffiffiffi

2
p ,� 1

4
ffiffiffi

2
p ,

:0234375
2

	 


:

Example 3.2 [8].
Consider

y00 tð Þ þ π2y tð Þ ¼ 0, 0≤ t≤ 1, (12)

subject to the initial condition is

y 0ð Þ ¼ y 1ð Þ ¼ 0,

with the exact solution y tð Þ ¼ sin πt
Let n = 10, then,

aij ¼
ð1

0
�h0i xð Þh0j xð Þ þ π2hi xð Þh j xð Þ
� �

dx ¼ π2
m
X
δij,

and

bi ¼ 0,

for i, j ¼ 1, 2, … n: However, c = [1,1,2,3,1,1,1,1,1,1].

3.1.3 Analysis of collection method

Let the differential operator L defined on the interval I ¼ a, b½ �: Define the
collocation points xi ¼ aþ ih for i ¼ 0, 1, … , n; where h ¼ b�a

n and n is the number
of partitions on I. Discretize the functions

9
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Φ xð Þ ¼ Φ1 xð Þ,Φ2 xð Þ,Φ3 xð Þ, … ,Φn xð Þf g:

Suppose

y xð Þ ¼
X

n

i¼1

ciΦi xð Þ:

Put the approximation of y xð Þ at the point x j in the DE, we get the function
coefficient matrix Φi,j ¼ Φi x j

� �

and Φ
0
i,j ¼ Φ

0
i x j
� �

: The matrix of coefficients has the
dimension n� n. Any function y xð Þ which is square integrable in the interval 0, 1ð Þ
can be expressed as an infinite sum of Haar wavelet. The above series terminates at
finite terms if y xð Þ is piecewise constant or can be approximated as piecewise
constant during each subinterval.

3.2 The quadratic B-Spline Base

Consider the quadratic B-spline Base

S xð Þ ¼ S1 xð Þ, S2 xð Þ, S3 xð Þ, … , Sn xð Þf g:

Suppose y xð Þ ¼Pn
i¼1ciSi xð Þ: The general ODE of first-order has the following

form

a0 tð Þy0 tð Þ þ a1 tð Þy tð Þ ¼ f tð Þ, 0≤ t≤ 1, (13)

subject to the initial condition is y 0ð Þ ¼ α:.
Example 3.3 [8].

y0 tð Þ þ y tð Þ ¼ sin tð Þ þ cos tð Þ, 0≤ t≤ 1, (14)

subject to the initial condition is

y 0ð Þ ¼ 0,

The coefficients are a0 tð Þ ¼ a1 tð Þ ¼ 1 and f tð Þ ¼ sin tð Þ þ cos tð Þ:.
Consider the quadratic B-spline base, then, the matrix of coefficients has the

following formula:

Aij ¼ S0i t j
� �

þ Si t j
� �

,

and

bi ¼ sin tið Þ þ cos tið Þ

for i, j ¼ 1, 2, … , n: By solving the system of coefficients Ac ¼ b we will obtain
the coefficients of approximation.

3.3 Approximation of DEs using Haar wavelet Functions Base

We introduce the Haar wavelet technique for solving general linear first-order
ODEs [11].

10
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3.3.1 First-order linear ODEs

Consider the following general linear first-order ODE:

y0 tð Þ þ f tð Þy tð Þ ¼ g tð Þ; 0≤ t≤ a; f tð Þ 6¼ 0, (15)

y 0ð Þ ¼ β: (16)

Substituting t ¼ ax in Eq. (15) which reduces to

y0 xð Þ þ af xð Þy xð Þ ¼ ag xð Þ; 0≤ t≤ 1; f tð Þ 6¼ 0, (17)

y 0ð Þ ¼ β: (18)

We assume that

y0 xð Þ ¼
X

k

i¼1

cihi xð Þ, (19)

where c0is for i = 1,2,… ,k are Haar coefficients to be determined. Integrating
Eq. (19) with respect to x, we get the following

y xð Þ ¼ β þ
X

k

i¼1

ciP1,i xð Þ: (20)

Substituting Eqs. (19) and (20) in Eq. (17), we get the following system of
equation:

X

k

i¼1

cihi xð Þ þ af xð Þ
X

k

i¼1

cihi xð Þ ¼ ag xð Þ: (21)

Put x ¼ t j for j ¼ 1, 2, … , n: in Eq. (21), we get linear system in which the matrix
of coefficients has the following formula:

Aij ¼ 1þ af tið Þð Þhi t j
� �

and

bi ¼ ag t j
� �

,

for i, j ¼ 1, 2, … , n: By solving the linear system of coefficients Ac ¼ b, we
obtain the coefficients of approximated solution.

3.4 Approximation of fractional differential equations (FrDEs)

In this section, we have studied approximation of DEs using spline and Haar
wavelet bases.

3.4.1 Operational matrix of the fractional order integration of the B-Spline Base

In this section, we have evaluated the operational matrices of the fractional-
order integration of the linear, quadratic and cubic B-spline Base.
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3.4.2 Linear spline

This subsection examines the cubic linear spline operational matrix FSα of
integration of the fractional order as follows:

Jαxi xð Þ ¼ 1
Γ αþ 2ð Þ

0, 0≤ x≤ xi�1,
1

hi�1
xαþ1
i�1 , xi�1 < x≤ xi,

1
hi�1

xαþ1
i�1 þ 1

hi
αhixαi � xαþ1

i

� �

, xi < x≤ xiþ1,

0, xiþ1 < x≤ 1:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(22)

where xi�1 ¼ x� xi�1, xi ¼ x� xi.

3.4.3 Quadratic B-spline

This subsection introduced the quadratic B-spline operational matrix FSα of
integration of the fractional order as follows:

Jαx xð Þ ¼ JJ ∗
1

Γ αþ 3ð Þ ,

where

JJ ¼

2 x� 1ð Þαþ2; x∈ 1, 2½ �;

2 x� 1ð Þαþ2 � 6 x� 2ð Þαþ2; x∈ 2, 3½ �;

2 x� 1ð Þαþ2 � 6 x� 2ð Þαþ2 þ 6 x� 3ð Þαþ2; x∈ 3, 4½ �;

0; o:w:

8

>

>

>

>

>

<

>

>

>

>

>

:

(23)

3.4.4 Cubic B-spline

This subsection introduced the cubic B-spline operational matrix FSα of inte-
gration of the fractional order as follows:

Jαx xð Þ ¼ JJ ∗
1

Γ αþ 4ð Þ ,

where

JJ ¼

0, x< � 2
3
2
xαþ3, �2≤ x≤ � 1

3
2
xαþ3 � 6xαþ3

1 , �1< x≤0

3
2
xαþ3 � 6xαþ3

1 þ 9xαþ3
2 ; 0< x≤ 1

3
2
xαþ3 � 6xαþ3

1 þ 9xαþ3
2 � 6xαþ3

3 ; 1< x≤ 2

0, x> 2,

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(24)

where xi = x�i; i = 1,2,3.
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3.5 Numerical Solutions of fractional differential equations

3.5.1 Numerical solutions of fractional differential equations using Haar base

We will introduce the Haar wavelet technique for solving FrDEs.
Example 3.4 [8].
Consider the general fractional-order linear DE

yα tð Þ ¼ A tð Þ þ B tð Þy tð Þ ¼ C tð Þ; 0≤ t≤ a; n� 1< α< n, (25)

subject to initial conditions y j 0ð Þ ¼ a j for j ¼ 0, 1, … , n� 1: where A tð Þ,B tð Þ and
C tð Þ are given functions, are arbitrary constants and α is a parameter describing the
order of the fractional derivative. The general response expression contains a
parameter describing the order of the fractional derivative that can be varied to
obtain various responses.

Substituting t ¼ ax in Eq. (25) which reduces to

yα xð Þ ¼ aA xð Þ þ aB xð Þy xð Þ ¼ C tð Þ; 0≤ x≤ 1; n� 1< α< n, (26)

y j 0ð Þ ¼ a j; g ¼ 0, 1, … , n� 1: (27)

We assume that

yα xð Þ ¼
X

k

i¼1

cihi xð Þ: (28)

If α ¼ 1
2 , integrating Eq. (28) once, we get

y xð Þ ¼ a0 þ
X

k

i¼1

ciFH1
2,i

xð Þ: (29)

Substituting Eqs. (28) and (29) in Eq. (26), we get

X

k

i¼1

cihi xð Þ � aA xð Þ � aB xð Þ a0 þ
X

k

i¼1

ciFH1
2,i

xð Þ
 !

¼ C xð Þ, (30)

If α ¼ 3
2, integrating Eq. (26) twice, we get

y
1
2 xð Þ ¼ a1 þ

X

k

i¼1

ciFH1
2,i

xð Þ, (31)

and

y xð Þ ¼ a0 þ a1xþ
X

k

i¼1

ciFH3
2,i

xð Þ: (32)

Substituting Eqs. (28) and (37) in Eq. (26), we get

X

k

i¼1

cihi xð Þ � aA xð Þ � aB xð Þ a0 þ
X

k

i¼1

ciFH3
2,i

xð Þ
 !

¼ C xð Þ: (33)

Put x ¼ t j for j ¼ 1, 2, … , n: in Eq. (30) in case α ¼ 1
2 , or in Eq. (33) in case α ¼ 3

2 ,
we get the linear system in which the matrix of coefficients has the following formula:
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Aij ¼ hi xð Þ t j
� �

þ aB t j
� �

FHα,i t j
� �

and

bi ¼ C t j
� �

þ aA t j
� �

� aa0B t j
� �

,

for i, j ¼ 1, 2, … , n: By solving the linear system of coefficients Ac ¼ b we obtain
the coefficients of approximated solution y tð Þ of Eq. (26).

3.5.2 Numerical solutions of fractional differential equations using B-spline base

We will introduce the B-spline technique for solving FrDE (26).
Consider the quadratic B-spline base

S xð Þ ¼ S1 xð Þ, S2 xð Þ, S3 xð Þ, … , Sn xð Þf g,

Suppose

y xð Þ ¼
Xn

i¼1
ciSi xð Þ:

We assume that

yα xð Þ ¼
X

k

i¼1

ciSi xð Þ: (34)

If α ¼ 1
2, integrating Eq. (34) once, we get

y xð Þ ¼ a0 þ
X

k

i¼1

ciFS1
2,i

xð Þ: (35)

Substituting Eqs. (34) and (35) in Eq. (26), we get

X

k

i¼1

ciSi xð Þ � aA xð Þ � aB xð Þ a0 þ
X

k

i¼1

ciFS1
2,i

xð Þ
 !

¼ C xð Þ: (36)

If α ¼ 3
2, integrating Eq. (34) once, we get

y xð Þ ¼ a0 þ a1xþ
X

k

i¼1

ciFH3
2,i

xð Þ: (37)

Substituting Eqs. (28) and (29) in Eq. (26), we get

y
1
2 xð Þ ¼ a1 þ

X

k

i¼1

ciFH1
2,i

xð Þ, (38)

and

y xð Þ ¼ a0 þ a1xþ
X

k

i¼1

ciFH3
2,i

xð Þ, (39)
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X

k

i¼1

ciSi xð Þ � aA xð Þ � aB xð Þ a0 þ
X

k

i¼1

ciFS3
2,i

xð Þ
 !

¼ C xð Þ: (40)

Put x ¼ t j for j ¼ 1, 2, … , n: in Eq. (36) in case α ¼ 1
2 , or Eq. (40) in case α ¼ 3

2 , ,
we get the linear system in which the matrix of coefficients has the following
formula:

Aij ¼ hi xð Þ t j
� �� �

þ aB t j
� �

FHα, i t j
� �

Þ

and

bi ¼ C t j
� �

þ aA t j
� �

� aa0B t j
� �

,

for i, j ¼ 1, 2, … , n: By solving the linear system of coefficients, we obtain the
coefficients of approximated solution y tð Þ of Eq. (26).

3.5.3 Numerical solution of fractional Lane differential equation

We generalize the definition of Lane-Emden equations up to fractional order as
following:

Dαy tð Þ þ k
tα�β

Dβy tð Þ þ f t, yð Þ ¼ g tð Þ; 0< t≤ 1, k>0, (41)

with the initial condition y 0ð Þ ¼ A; y0 0ð Þ ¼ B where 1< α≤ 2, 0< β≤ 1 and A,B
are constants and f t, yð Þ is a continuous real-valued function and g t, yð Þ∈ 0, 1½ �: The
theory of singular boundary value problems has become an important area of
investigation in the past three decades. One of the equations describing this type is
the Lane-Emden equation. Lane-Emden type equations, first published by [12], and
further explored in detail by [13], represents such phenomena and having signifi-
cant applications, is a second-order ODE with an arbitrary index, known as the
polytropic index, involved in one of its terms. The Lane-Emden equation describes
a variety of phenomena in physics and astrophysics. [14] imposed the Lane-Emden
DE of fractional order and the approximate solution is obtained by employing the
method of power series and a numerical solution is established by the least
squares method for these Eqs. [14] approximate the solution of DE by employing
the method of power series and the numerical solution is established by collection
method.

3.5.3.1 Analysis of numerical method of fractional Lane differential equation

[15] studied the solution of DEs based on Haar operational matrix, [16] studied
the solution of DEs using Haar wavelet collocation method, [17] studied the
numerical solution of DEs by using Haar wavelets, [18] used Haar wavelet approach
to ODEs, [19] solved the fractional Riccati DEs using Haar wavelet while [14]
studied the fractional DEs of Lane-Emden type numerically by method of colloca-
tion. [20] introduced an operational Haar wavelet method for solving fractional
Volterra integral equations, [21] solved fractional integral equations by the Haar
wavelet method, [22] used Haar wavelet-quasi linearization technique for fractional
nonlinear DEs, [21] solved the fractional integral equations by the Haar wavelet
method, [4] used Haar wavelet method for solving fractional PDEs numerically.
In Eq. (41), consider α> β, f t, yð Þ ¼ 1

tαþ2 y tð Þ and g tð Þ ¼ 0, .

15

Wavelet Theory: Applications of the Wavelet
DOI: http://dx.doi.org/10.5772/intechopen.94911



However, DαW tð Þ ¼ ah tð Þ ¼Pm
i¼0cihi tð Þ and

DβW tð Þ ¼ Iα�βDα
� �

W tð Þ þWβ 0ð Þ

¼ apα�βh tð Þ þWβ 0ð Þ

W tð Þ ¼ IαDαð ÞW tð Þ þW 0ð Þ

¼ apαh tð Þ þ A:

Hence,

ah tð Þ þ k
tα�β

apα�βh tð Þ þWβ 0ð Þ þ apαh tð Þ þ A ¼ Ch tð Þ:

If we consider α ¼ 3
2 and β ¼ 1

2 we solve the system of equations to obtain the
coefficients c0, c1, c2, … , cmð Þ.

3.6 Comparison study using numerical collection method

Collocation method for solving DEs is one of the most powerful approximated
methods. This method has its basis upon approximate the solution of FrDEs by a
series of complete sequence of functions, a sequence of linearly independent func-
tions which has no non-zero function perpendicular to this sequence of functions.
In general, y tð Þ is approximated by [14].

y tð Þ ¼
X

n

i¼1

aiΘi tð Þ, (42)

where ai for i ¼ 1, 2, … , n are an arbitrary constants to be evaluated and Θi for
i ¼ 1, 2, … , n are given set of functions. Therefore, the problem in Eq. (41) of
evaluating y tð Þ is approximated by (42) then, is reduced to the problem of evaluat-
ing the coefficients for i ¼ 0, 1, 2, … , n:

Let t1, t2, … , tnf g is a partition to interval 0, 1½ � and t j ¼ jh and h ¼ 1
n and j ¼

0, 1, 2, … , n: See the comparison of absolute errors of the problem using numerical
collection method with polynomial basis and Haar wavelet basis.

Example 3.5 [8]
Consider

w00 tð Þ þ π2w tð Þ ¼ 0, (43)

with the boundary conditions

w 0ð Þ ¼ w 1ð Þ ¼ 0:

The exact solution is w tð Þ ¼ sinπt:
Example 3.6 [8]
Consider

t2w00 tð Þ � 6w tð Þ ¼ 4t2, (44)

with the boundary conditions

w 0ð Þ ¼ w 1ð Þ ¼ 0:

16

Wavelet Theory



The exact solution is w tð Þ ¼ t2 t� 1ð Þ:.
Example 3.7 [8]
Consider

w00 tð Þ ¼ w tð Þ þ 4tet, (45)

with the boundary conditions

w 0ð Þ ¼ w 1ð Þ ¼ 0:

The exact solution is w tð Þ ¼ t t� 1ð Þet:

4. Wavelet transform (WT)

Fourier transform (FT) of a time signal x tð Þ reveals the frequency content of the
signal by decomposing the signal using complex sinusoids as follows:

X fð Þ ¼ F x tð Þf g ¼
ð

∞

�∞
x tð Þe�j2πftdt:

However, FT cannot reveal the time information associated with a specific fre-
quency. This drawback enhanced research in the time-frequency domain [23]. One of
the most important time-frequency distributions (TFD’s) is the wavelet transform
(WT), which is a time-frequency representation of signals. While not all TFD’s are
invertible, a big advantage of WT over many other TFD’s is invertibility. WT proved
to be successful in revealing spectral features of signals. Instead of sustainable waves
like sinusoidal waves as in the case of Fourier transform, WT is based on
decomposing signals using decaying waves (small waves, or wavelets), all are shifted
and dilated versions of a specific wavelet called mother wavelet. The continuous
wavelet transform (CWT) of a signal x tð Þ using a mother wavelet ψ tð Þ is given by:

Wψ
x t, sð Þ ¼ 1

ffiffi

s
p
ð

∞

�∞
x λð Þ:ψ ∗ λ� t

s

� �

dλ,

where λ is a representation of time inside the convolution integral, ψ ∗ is the
complex conjugate of the wavelet ψ , and s∈ℜþ ¼ ℜ� 0f g is called the “scale”,
which we expect to be inversely related to the radian frequency ω ¼ 2πf for the
above structure to be comparable to the structure of the sinusoidal waves sinω tð Þ
used in the Fourier transform; the actual scale-frequency relationship is given by:

s≈
K
f

where K ¼ fm: f s; fm ¼ arg max ψ fð Þf gð Þ; ψ fð Þ ¼ F ψ tð Þf g; f s is the sampling
frequency used to discretize ψ tð Þwhile computing ψ fð Þ via DFT. It is apparent that,
for a fixed scale s, the wavelet transform Wψ

x t, sð Þ is given by the convolution
between the signal and the time-reversed wavelet as follows:

Wψ
x t, sð Þ ¼ x tð Þ⊙ h tð Þ

where

h tð Þ ¼ 1
ffiffi

s
p ψ ∗ �t

s

� �
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and ⊙ refers to the 1D convolution process:

x tð Þ⊙ h tð Þ ¼
ð

∞

�∞
x λð Þ hð Þ t� λð Þdλ

This fact gives another equivalent expression for Wψ
x t, sð Þ using Fourier trans-

forms of the signal and the wavelet as follows:

Wψ
x t, sð Þ ¼ F�1 X fð Þ:H fð Þf g ¼

ð

∞

�∞
X fð Þ:H fð Þeþj2πftdf

where H fð Þ ¼ F h tð Þf g. Hence, Wψ
x t, sð Þ can be implemented via filtering the

signal x tð Þ by a filter whose impulse response is h tð Þ. This will be the basis for
implementing the discrete 1D and 2D wavelet transforms as explained below.

Generally speaking, Fourier transform X fð Þ ¼ F x tð Þf g decomposes the signal
x tð Þ using the same sinusoidal wave e�j2πft at different values of frequency f , while
the wavelet transform Wψ

x t, sð Þ decomposes the signal x tð Þ using the same mother
wavelet ψ tð Þ at different values of scale s (hence, frequency, f) and time t; where
both time and frequency information are revealed.

The WT is invertible, giving it a great advantage in applications:

x tð Þ ¼ 1
cψ

ð

∞

�∞

ð

∞

�∞
Wψ

x λ, sð Þ: 1
s2
ψ

t� λ

s

� �

dλ:ds

where cψ ¼
Ð

∞

�∞
∣ψ fð Þ∣
∣f ∣ df , which implies that ψ 0ð Þ ¼ 0 !

Ð

∞

�∞ψ tð Þdt ¼ 0, hence,

ψ tð Þ must be oscillating. Also, to satisfy Parseval’s Theorem we should have
Ð

∞

�∞ψ tð Þdt ¼ 1: The above continuous wavelet transform can be discretized to give the
discrete wavelet transform (DWT), which can be implemented (as 1D DWT) by
passing the signal x tð Þ through a low-pass filter followed by down-sampling with a
factor of 2 (giving approximation coefficients), and a high-pass filter then down-
sampling by a factor of 2 (giving detail coefficients). These filters differ according to
the analyzing wavelet [24]. The 2D DWT (for images) can be designed based on 1D
DWT via tensor products, and it results into a decomposition of approximation
coefficients at level k into four components: low-pass component that contains the
approximation coefficients at level k + 1, and three high-pass components that con-
tain the detail coefficients in three directions (horizontal, vertical, and diagonal).
Note that approximation at level k = 0 is equivalent to the original 2D signal [24].

4.1 Some applications of the wavelet transform

The frequency content extracted by wavelet transform (WT) has been effec-
tively used in revealing important features of 1D and 2D signals. This property
proved very useful in speech and image recognition [25]. Also, the orthogonality of
WT paved the way for using WT in orthogonal frequency division multiplexing
(OFDM), a pivotal technique for 4th and 5th generations of digital communication
[26]. In addition to that, WT proved to put high focus on the low-frequency part of
the signal, in which most of the information resides, hence, WT has been used for
signal and image compression [27]. The compression process can be performed
using hard-thresholding of the WT as follows:

t xð Þ ¼ x ∣x∣ ≥T

0 ∣x∣<T

�

(46)
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where t xð Þ is the new WT coefficient value to replace the original coefficient x,
and T is the threshold. Better compression results (in terms of signal size) can be
obtained by increasing the threshold, however, larger deviation from the original
signal (i.e., larger error) is obtained. Hence, choice of the threshold involves a trade-
off between size and error. Original signal can be obtained from the compressed one
via inverting the thresholded WT.

4.2 Noise removal using WT

An important application of the Wavelet Transform is noise removal from
signals and images. As most of the information content of real-life signals is in the
low-frequency regions, removal of high frequency regions in the WT of signals can
help in removing the majority of noise. This can be done via thresholding WT
coefficients or by removing the details coefficients of WT and considering only the
approximation coefficients of WT. This property of separating low-frequency con-
tent from high-frequency content in the WT is mainly due to the filtering involved
in the structure of WT as explained above. Noise removal using WT is more
efficient for 1D signals corrupted by 1D noise process, where the 2D structure of
WT in joint time-frequency domain can spread the 1D noise effect into a 2D plane,
hence the noise power is greatly reduced. For noise removal, a soft-threshold can be
used to cut out high-frequency coefficients as follows:

t xð Þ ¼
sign xð Þ jxj�Tð Þ ∣x∣ ≥T

0 ∣x∣<T

�

(47)

where t xð Þ is the newWT coefficient value to replace the original coefficient x,T
is the threshold, and sign xð Þ is the signum function defined as follows:

sign xð Þ ¼
þ1 x>0

0 x ¼ 0

�1 x<0

8

>

<

>

:

(48)

Figure 3 shows the use of WT to denoise an image, while Figure 4 shows the
denoising of 1D signal using WT, where WT is performed on MATLAB via the
wavelet Daubechies 3,

Figure 3.
Image denoising using WT with soft threshold.
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5. Discussion and conclusion

The numerical solutions of differential equations using Haar wavelet technique
have been studied. Haar wavelet technique is used to approximate the solutions of
DEs. The results which obtained form numerical solutions of ordinary differential
equations as well as fractional differential equations by Haar collection method are
compared with spline base. The numerical results have clearly shown the advantage
and the efficiency of the techniques in terms of accuracy and computational time.
Special initial value problem of Lane-Emden equation has been solved to show the
applicability and efficacy of the Haar wavelet method. Wavelet transform as a
mathematical approach has been studied and the applications of wavelet transform
in signal processing field have been introduced. The wavelet transform has been
effectively used to reveal on the features signals and the compression of signal and
image.
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