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Chapter

Existence and Asymptotic
Behaviors of Nonoscillatory
Solutions of Third Order Time
Scale Systems
Özkan Öztürk

Abstract

Nonoscillation theory with asymptotic behaviors takes a significant role for the
theory of three-dimensional (3D) systems dynamic equations on time scales in
order to have information about the asymptotic properties of such solutions. Some
applications of such systems in discrete and continuous cases arise in control theory,
optimization theory, and robotics. We consider a third order dynamical systems on
time scales and investigate the existence of nonoscillatory solutions and asymptotic
behaviors of such solutions. Our main method is to use some well-known fixed
point theorems and double/triple improper integrals by using the sign of solutions.
We also provide examples on time scales to validate our theoretical claims.

Keywords: nonoscillation, three-dimensional time scale systems, dynamical
systems, existence, fixed point theorems

1. Introduction

This chapter deals with the nonoscillatory solutions of 3D nonlinear dynamical
systems on time scales. In addition, it is very critical to discuss whether or not there
exist such solutions. Therefore, the existence along with limit behaviors are also
studied in this chapter by using double/triple integrals and fixed point theorems.
Stefan Hilger, a German mathematician, introduced a theory in his PhD thesis in
1988 [1] that unifies continuous and discrete analysis and extend it in one compre-
hensive theory, which is called the time scale theory. A time scale, symbolized by , is
an arbitrary nonempty closed subset of the real numbers . After Hilger, the theory
and its applications have been developed by many mathematicians and other
researchers in Control Theory, Optimization, Population Dynamics and Economics,
see [2–5]. In addition to those articles, two books were published by Bohner and
Peterson in 2001 and 2003, see [6, 7].

Now we explain what we mean by continuous and discrete analysis in details.
Assuming readers are all familiar with differential and difference equations; the
results are valid for differential equations when  ¼  (set of real numbers), while
the results hold for difference equations when  ¼ ℤ (set of integers). So we might
have two different proofs and maybe similar in most cases. In order to avoid
repeating similarities, we combine continuous and discrete cases in one general
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theory and remove the duplication from both. For more details in the theory of
differential and difference equations, we refer the books [8–10] to interested
readers.

3D nonlinear dynamical systems on time scales have recently gotten a valuable
attention because of its potential in applications of control theory, population dynam-
ics and mathematical biology and Physics. For example, Akn, Güzey and Öztürk [3]
considered a 3D dynamical system to control a wheeled mobile robots on time scales

αΔ tð Þ ¼ �v tð Þ cos β tð Þ

βΔ tð Þ ¼
sin βσ tð Þ
ασ tð Þ

v tð Þ � w tð Þ

γΔ tð Þ ¼
sin βσ tð Þ
ασ tð Þ

v tð Þ,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(1)

where α is the distance of the reference point from the origin, β is the angle of
the pointing vector to the origin, γ is the angle with respect to the x axis, and v,w
are controllers. They showed the asymptotic stability of the system above on time
scales. Another example for  ¼ , Bernis and Peletier [11] considered an equation
that can be written as the following system

u01 ¼ u2
u02 ¼ u3
u03 ¼ h uð Þ

8

>

<

>

:

(2)

to show the existence and uniqueness and properties of solutions for flows of
thin viscous films over solid surfaces, where u1, u2, u3ð Þ is the film profile in a
coordinate frame moving with the fluid.

We assume that readers may not be familiar with the time scale basics, so we
give an introductory section to the time scale calculus. We refer the books [6, 7] for
more details and information about time scales. Structure of the rest of this chapter
is as follows: In Section 3.1 and 3.2 we consider a system with different values, 1
and � 1, respectively, and show the qualitative behavior of solutions. In Section 4,
we give some examples for readers to comprehend our theoretical results. Finally,
we give a short conclusion about the summary of our results and open problems in
the last section.

2. Time scale essentials

In the introduction section, we have only mentioned the time scales  and ℤ.
However, there are some other time scales in the literature, which also have gotten
too much attention because of the applications of them. For example, when  ¼

qℕ0 ¼ 1, q, q2,⋯,
� �

, q> 1, the results hold for so-called q-difference equations, see
[12]. Another well-known time scale is  ¼ hℤ, h>0:

Definition 2.1 Let  be a time scale. Then for all t∈,

1.σ tð Þ≔ inf s∈ : s> tf g is called forward jump operator (σ tð Þ :  ! ).

2.ρ tð Þ≔ sup s∈ : s< tf g is said to be backward jump operator (ρ tð Þ :  ! ).

3.μ tð Þ≔ σ tð Þ � t for all t∈ is called the graininess function ((μ tð Þ :  ! 0,∞½ Þ).

2
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For the sake of the rest of the chapter, Table 1 summarizes how σ, ρ and μ are
defined for some time scales.

As we know, the set of real numbers are dense and set of integers are scattered.
Now we show how we classify the points on general time scales. For any t∈,
Figure 1 shows the classification of points on time scales and how we represent
those points by using σ, ρ and μ, see [6] for more details.

Now, let us introduce the derivative for general time scales. Note that


κ ¼

n ρ supð Þ, supð � if sup<∞

 if sup ¼ ∞:

�

Definition 2.2 If there exists a δ>0 such that

∣h σ tð Þð Þ � h sð Þ � hΔ tð Þ σ tð Þ � sð Þ∣ ≤ ε∣σ tð Þ � s∣ for all s∈ t� δ, tþ δð Þ∩,

for any ε, then h is said to be delta-differentiable on 
κ and hΔ is called the delta

derivative of h.
Theorem 2.3 Let h1, h2 :  !  be functions with t∈

κ. Then.

i. h1 is said to be continuous at t if h1 is differentiable at t.

ii. h1 is differentiable at t and

hΔ1 tð Þ ¼ h1 σ tð Þð Þ�h1 tð Þ
μ tð Þ ,

provided h1 is continuous at t and t is right-scattered.

iii. Suppose t is right dense, then h1 is differentiable at t if and only if

hΔ1 tð Þ ¼ lim
s!t

h1 tð Þ�h1 sð Þ
t�s

exists as a finite number.

 σ tð Þ ρ tð Þ μ tð Þ

 t t 0

hℤ t þ h t � h h

qℕ0 tq t
q t q� 1ð Þ

Table 1.
Some time scales with σ, ρ and μ.

Figure 1.
Classification of points.
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iv. If h2 tð Þh2 σ tð Þð Þ 6¼ 0, then h1
h2
is differentiable at t with

h1
h2

� �

Δ

tð Þ ¼ hΔ1 tð Þh2 tð Þ�h1 tð ÞhΔ2 tð Þ
h2 tð Þh2 σ tð Þð Þ :

A function h1 :  !  is called right dense continuous (rd-continuous) if it is
continuous at right dense points in  and its left sided limits exist at left dense
points in . We denote the set of rd-continuous functions with Crd ,ð Þ. On the
other hand, the set of differentiable functions whose derivative is rd-continuous is
denoted by C1

rd ,ð Þ. Finally, we use C for the set of continuous functions
throughout this chapter.

After derivative and its properties, we also introduce integrals for any time scale
. The Cauchy integral is defined by

ðb

a
f tð ÞΔt ¼ F bð Þ � F að Þ for all a, b∈:

Every rd-continuous function has an antiderivative. Moreover, F given by

F tð Þ ¼
ðt

t0
f sð ÞΔs for t∈

is an antiderivative of f .
The following theorem leads us to the properties of integrals on time scales,

which are similar to continuous case.
Theorem 2.4 Suppose that h1 and h2 are rd-continuous functions, c, d, e∈, and

β∈,

a. h1 is nondecreasing if hΔ1 ≥0.

b. If h1 tð Þ≥0 for all c≤ t≤ d, then
Ð d
c h1 tð ÞΔt≥0:

c.
Ð d
c βh1 tð Þð Þ þ βh2 tð Þð Þ½ � ¼ β

Ð d
c h1 tð ÞΔtþ β

Ð b
a h2 tð ÞΔt:

d.
Ð e
c h1 tð ÞΔt ¼

Ð d
c h1 tð ÞΔtþ

Ð e
dh1 tð ÞΔt:

e.
Ð d
c h1 tð ÞhΔ2 tð ÞΔt ¼ h1h2ð Þ dð Þ � h1h2ð Þ cð Þ �

Ð d
c h

Δ

1 tð Þh2 σ tð Þð ÞΔt

f.
Ð a
a h1 tð ÞΔt ¼ 0:

Table 2 shows how the derivative and integral are defined for some time scales
for a, b∈.

 fΔ tð Þ
Ð b
a f tð ÞΔt

 f 0 tð Þ
Ð b
a f tð Þdt

ℤ Δf tð Þ ¼ f t þ 1ð Þ � f tð Þ Pb�1
t¼a f tð Þ

qℕ0
Δqf tð Þ ¼ f tqð Þ�f tð Þ

q�1ð Þt

P

a,b½ Þ
qℕ0

f tð Þμ tð Þ

Table 2.
Derivative and integral for some time scales.
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This chapter assumes that  is unbounded above and whenever it is written t≥ t1,
we mean t∈ t1,∞½ Þ


≔ t1,∞½ Þ∩. Finally, we provide Schauder’s fixed point theo-

rem, proved in 1930, see ([13], Theorem 2.A), the Knaster fixed point theorem,
proved in 1928, see [14] and the following lemma, see [15], to show the existence of
solutions.

Lemma 2.5 Let X be equi-continuous on t0, t1½ �

for any t1 ∈ t0,∞½ Þ


: In addition

to that, let X ⊆BC t0,∞½ Þ

be bounded and uniformly Cauchy. Then X is relatively

compact.
Theorem 2.6 (Schauder’s Fixed Point Theorem) Suppose that X is a Banach

space and M is a nonempty, closed, bounded and convex subset of X. Also let T :

M ! M be a compact operator. Then, T has a fixed point such that y ¼ Ty.
Theorem 2.7 (The Knaster Fixed Point Theorem) Supposing M, ≤ð Þ being a

complete lattice and F : M ! M is order-preserving, we have F has a fixed point so
that y ¼ Fy. In fact, the set of fixed points of F is a complete lattice.

3. Nonoscillatory solutions of nonlinear dynamical systems

Motivated by [16, 17], we deal with the nonlinear system

xΔ tð Þ ¼ p tð Þf y tð Þð Þ

yΔ tð Þ ¼ q tð Þg z tð Þð Þ

zΔ tð Þ ¼ λr tð Þh x tð Þð Þ,

8

>

>

<

>

>

:

(3)

where p:q, r∈Crd t0,∞½ Þ

,þ

� �

, λ ¼ �1, and f and g are nondecreasing func-
tions such that uf uð Þ>0, ug uð Þ>0 and uh uð Þ>0 for u 6¼ 0.

The other continuous and discrete cases of system (3) were studied in [18–20].
We first give the following definitions to help readers understand the terminology.

Definition 3.1 If x, y, zð Þ, where x, y, z∈C1
rd t0,∞½ Þ,ð ÞT ≥ t0, satisfies system

(3) for all large t≥T, then we say x, y, zð Þ is a solution of (3).
Definition 3.2 By a proper solution x, y, zð Þ, we mean a solution x, y, zð Þ of

system (3) that holds

supf∣x sð Þ∣, ∣y sð Þ∣, ∣z sð Þ∣ : s∈ t,∞½ Þg>0

for t≥ t0:

Finally, let us define nonoscillatory solutions of system (3).
Definition 3.3 By a nonoscillatory solution x, y, zð Þ of system (3), we mean a

proper solution and the component functions x, y and z are all nonoscillatory. In
other words, x, y, zð Þ is either eventually positive or eventually negative. Otherwise,
it is said to be oscillatory.

For the sake of simplicity, let us set

P t0, tð Þ ¼

ðt

t0
p sð ÞΔs, Q t0, tð Þ ¼

ðt

t0
q sð ÞΔs and R t0, tð Þ ¼

ðt

t0
r sð ÞΔs,

where s, t, t0 ∈ and we assume that P t0,∞ð Þ ¼ Q t0,∞ð Þ ¼ ∞ throughout the
chapter.

Suppose that N is the set of all nonoscillatory solutions x, y, zð Þ of system (3).
Then according to the possible signs of solutions of system (3), we have the follow-
ing classes:
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Na ≔ x, y, zð Þ∈N : sgnx tð Þ ¼ sgny tð Þ ¼ sgnz tð Þ, t≥ t0
� �

Nb ≔ x, y, zð Þ∈N : sgnx tð Þ ¼ sgnz tð Þ 6¼ sgny tð Þ, t≥ t0
� �

Nc ≔ x, y, zð Þ∈N : sgnx tð Þ ¼ sgny tð Þ 6¼ sgnz tð Þ, t≥ t0
� �

:

It was shown in [21] that any nonoscillatory solution of system (3) for λ ¼ 1
belongs to Na or Nc, while it belongs to Na or Nb for λ ¼ �1. In the literature,
solutions in Na, Nb and Nc are also known as Type að Þ,Type bð Þ and Type cð Þ
solutions, respectively.

Next, we consider system (3) for λ ¼ 1 and λ ¼ �1 separately in different sub-
sections, split the classes Na,Nb and Nc into some subclasses and show the existence
of nonoscillatory solutions in those subclasses. To show the existence and limit
behaviors, we use the following improper integrals:

Y1 ¼

ð

∞

t0
r tð Þh

ðt

t0
p sð Þf k1

ðs

t0
q τð ÞΔτ

� 	

Δs
� 	

Δt,

Y2 ¼

ð

∞

t0
p tð Þf k2 þ

ð

∞

t
q sð Þg k3

ð

∞

s
r τð ÞΔτ

� 	

Δs
� 	

Δt,

Y3 ¼

ð

∞

t0
q tð Þg k4 þ

ð

∞

t
r sð Þh k5

ðs

t0
p τð ÞΔτ

� 	

Δs
� 	

Δt,

Y4 ¼

ð

∞

t0
p tð Þf k6 �

ð

∞

t
q sð Þg k7 þ k8

ð

∞

s
r τð ÞΔτ

� 	

Δs
� 	

Δt,

Y5 ¼

ð

∞

t0
p tð Þf

ðt

t0
q sð Þg k9

ð

∞

s
r τð ÞΔτ

� 	

Δs
� 	

Δt,

Y6 ¼

ð

∞

t0
p tð Þf k10

ðt

t0
q sð ÞΔs

� 	

Δt,

Y7 ¼

ð

∞

t0
q tð Þg

ð

∞

t
r sð Þh k11

ð

∞

s
p τð ÞΔτ

� 	

Δs
� 	

Δt,

Y8 ¼

ð

∞

t0
q tð Þg k12 þ k13

ð

∞

t
r sð ÞΔs

� 	

Δt,

Y9 ¼

ð

∞

t0
r tð Þh k14

ðt

t0
p sð ÞΔs

� 	

Δt,

for some nonnegative ki, i ¼ 1, … , 14.

3.1 The case λ ¼ 1

In this section, we consider system (3) with λ ¼ 1 and investigate the limit behav-
iors and the criteria for the existence of nonoscillatory solutions. The limit behaviors
are characterized by Akin, Došla and Lawrence in the following lemma, see [21].

Lemma 3.4 Let x, y, zð Þ be any nonoscillatory solution of system (3). Then we
have:

i. Nonoscillatory solutions in Na satisfy

lim
t!∞

∣x tð Þ∣ ¼ lim
t!∞

∣y tð Þ∣ ¼ ∞:
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ii. Nonoscillatory solutions in Nc satisfy

lim
t!∞

∣z tð Þ∣ ¼ 0:

Therefore, for a nonoscillatory solution x, y, zð Þ, we at least know that
the components x and y tend to infinity while the other component z tends to
0 as t ! ∞.

3.1.1 Existence in Na

Let x, y, zð Þ be a nonoscillatory solution of system (3) inNa such that x is eventually
positive. (x<0 can be repeated very similarly.) Then by System (3), we have that
x, y and z are positive and increasing. Hence, one can have the following cases:

(i) x ! c1 or x ! ∞, (ii) y ! c2 or y ! ∞, (iii) z ! c3 or z ! ∞, .

where 0< c1, c2, c3 <∞: But, the cases x ! c1 and y ! c2 are impossible due to
Lemma 3.4 (i). So we have that any nonoscillatory solution x, y, zð Þ of system (3) in
Na must be in one of the following subclasses:

Na
∞,∞,B ≔ x, y, zð Þ∈Na

: lim
t!∞

jx tð Þj¼ lim
t!∞

jy tð Þj¼ ∞, lim
t!∞

jz tð Þj¼ c3


 �

Na
∞,∞,∞≔ x, y, zð Þ∈Na

: lim
t!∞

jx tð Þj¼ lim
t!∞

jy tð Þj¼ lim
t!∞

jz tð Þj¼ ∞

 �

:

Now, we start with our first main result which shows that the existence of a
nonoscillatory solution in Na

∞,∞,B:

Theorem 3.5 Na
∞,∞,B 6¼ ∅ if the improper integral Y1 is finite for some k1 >0.

Proof: Suppose that Y1 <∞. Then choose t1 ≥ t0, k1 >0 such that

ð

∞

t1
r tð Þh

ðt

t1
p sð Þf k1

ðs

t1
q τð ÞΔτ

� 	

Δs
� 	

Δt<
1
2
, t≥ t1, (4)

where k1 ¼ g 1ð Þ. Suppose that Φ is the partially ordered Banach space of all real-
valued continuous functions with the norm zk k ¼ supt≥ t1

∣z tð Þ∣ and the usual
pointwise ordering ≤ . Let ϕ be a subset of Φ so that

ϕ≔ z∈X :

1
2
≤ z tð Þ≤ 1, t≥ t1


 �

and define an operator Tz : Φ ! Φ by

Tzð Þ tð Þ ¼
1
2
þ

ðt

t1
r sð Þh

ðs

t1
p uð Þf

ðu

t1
q τð Þg z τð Þð ÞΔτ

� 	

Δu
� 	

Δs (5)

for t≥ t1: First, it is trivial to show that T is increasing, hence let us prove that
Tz : ϕ ! ϕ. Indeed,

1
2
≤ Tzð Þ tð Þ≤

1
2
þ

ðt

t1
r sð Þh

ðs

t1
p uð Þf

ðu

t1
q τð Þg 1ð ÞΔτ

� 	

Δu
� 	

Δs≤ 1
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by (2). Also, it is trivial to show that inf B∈ϕ and supB∈ϕ for any subset B of
ϕ, i.e., ϕ, ≤ð Þ is a complete lattice. Therefore, by Theorem 2.7, we have that there
exists z∈ϕ such that z ¼ Tz, i.e.,

z tð Þ ¼
1
2
þ

ðt

t1
r sð Þh

ðs

t1
p uð Þf

ðu

t1
q τð Þg z τð Þð ÞΔτ

� 	

Δu
� 	

Δs: (6)

Then taking the derivative of (4) gives us

zΔ tð Þ ¼ r tð Þh
ðt

t1
p uð Þf

ðu

t1
q τð Þg z τð Þð ÞΔτ

� 	

Δu
� 	

, t≥ t1:

By setting

x tð Þ ¼
ðt

t1
p uð Þf

ðu

t1
q τð Þg z τð Þð ÞΔτ

� 	

Δu (7)

and taking the derivative of (5), we have

xΔ tð Þ ¼ p tð Þf
ðt

t1
q τð Þg z τð Þð ÞΔτ

� 	

, t≥ t1:

Finally letting

y tð Þ ¼
ðt

t1
q τð Þg z τð Þð ÞΔτ (8)

and taking the derivative yield

yΔ tð Þ ¼ q tð Þg z tð Þð Þ, t≥ t1,

that leads us to x, y, zð Þ is a solution of system (3). Thus, by taking the limit of
(4)–(6) as t ! ∞, we have that x, y tend to infinity and z tend to a finite number,
i.e., Na

∞,∞,B 6¼ ∅. This completes the proof.
Showing existence of a nonoscillatory solution in Na

∞,∞,∞ is not easy (left as an
open problem in Conclusion section). So, we only provide the following result by
assuming the existence of such solutions in Na. We leave the proof to readers.

Theorem 3.6 Suppose that x, y, zð Þ is a nonoscillatory solution of system (3) in
Na with C t0,∞ð Þ ¼ ∞. Then any such solution belongs to Na

∞,∞,∞.

3.1.2 Existence in Nc

Similarly, for any nonoscillatory solution of system (3) in Nc with x>0, we have
x is positive increasing, z is negative increasing and y is positive decreasing, that
results in the following cases:

(i) x ! c1 or x ! ∞, (ii) y ! c2 or y ! 0, (iii) z ! c3 or z ! 0,

where 0< c1, c2 <∞ and �∞< c3 <0. However, the component function z cannot
tend to c3 by Lemma 3.4 (ii). Hence, any nonoscillatory solution of (3) in Nc must
belong to one of the following sub-classes:

Nc
B,B,0 ≔ x, y, zð Þ∈Nc

: lim
t!∞

jx tð Þj¼ c1, lim
t!∞

jy tð Þj¼ c2, lim
t!∞

jz tð Þj¼ 0

 �

8
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Nc
B,0,0 ≔ x, y, zð Þ∈Nc

: lim
t!∞

jx tð Þj¼ c1 lim
t!∞

jy tð Þj¼ 0, lim
t!∞

jz tð Þj¼ 0

 �

Nc
∞,B,0 ≔ x, y, zð Þ∈Nc

: lim
t!∞

jx tð Þj¼ ∞, lim
t!∞

jy tð Þj¼ c2, lim
t!∞

jz tð Þj¼ 0

 �

Nc
∞,0,0 ≔ x, y, zð Þ∈Nc

: lim
t!∞

jx tð Þj¼ ∞, lim
t!∞

jy tð Þj¼ 0, lim
t!∞

jz tð Þj¼ 0

 �

,

where 0< c1, c2 <∞.
Next, we show the existence of nonoscillatory solutions of (3) in those subclasses

by using fixed point theorems. Observe that we have some additional assumption in
theorems such that g is an odd function. This assumption is very critical and cannot
show the existence without it.

Theorem 3.7 Let g be an odd function. Then Nc
B,B,0 6¼ ∅ if Y2 <∞ for some

k2, k3 >0.
Proof: Supposing Y2 <∞ and g is odd lead us to that we can choose k2, k3 >0 and

t1 ≥ t0 such that

ð

∞

t1
p tð Þf k2 þ

ð

∞

t
q sð Þg k3

ð

∞

s
r τð ÞΔτ

� 	

Δs
� 	

Δt<
1
4
, (9)

where k2 ¼ 1
2 and k3 ¼ h 1

2

� �

. Suppose Φ is the space of all bounded, continuous
and real-valued functions with xk k ¼ sup

t≥ t1
∣x tð Þ∣: It is easy to show that Φ is a Banach

space, see [22]. Let ϕ be a subset of Φ so that

ϕ≔ x∈X :

1
4
≤ x tð Þ≤

1
2
, t≥ t1


 �

:

Set an operator Tx : Φ ! Φ such that

Txð Þ tð Þ ¼
1
4
þ

ðt

t1
p sð Þf

1
2
þ

ð

∞

s
q uð Þg

ð

∞

u
r τð Þh x τð Þð ÞΔτ

� 	

Δu
� 	

Δs:

One can show that ϕ is bounded, closed and convex. So, we first prove that Tx :

ϕ ! ϕ. Indeed,

1
4
≤ Txð Þ tð Þ≤

1
4
þ

ðt

t1
p sð Þf

1
2
þ

ð

∞

s
q uð Þg h

1
2

� 	
ð

∞

u
r τð ÞΔτ

� 	

Δu
� 	

Δs≤
1
2

:

Second, we need to show T is continuous on ϕ: Supposing xn is a sequence in ϕ

such that xn ! x∈ϕ ¼ ϕ gives us

Txnð Þ tð Þ � Txð Þ tð Þk k

≤

ðt

t1
p sð Þ f

1
2
þ

ð

∞

s
q uð Þg

ð

∞

u
r τð Þh xn τð Þð ÞΔτ

� 	

Δu
� 	

�

�

�

�

�

f
1
2
þ

ð

∞

s
q uð Þg

ð

∞

u
r τð Þh x τð Þð ÞΔτ

� 	

Δu
� 	�

�

�

�

Δs:

So the Lebesgue dominated convergence theorem, continuity of f , g and h lead
us to that T is continuous on ϕ. As a last step, we prove that T is relatively compact,
i.e., equibounded and equicontinuous. Since
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Txð ÞΔ tð Þ ¼ p tð Þf
1
2
þ

ð

∞

t
q uð Þg

ð

∞

u
r τð Þh x τð Þð ÞΔτ

� 	

Δu
� 	

<∞,

we have that T is relatively compact by Lemma 2.5 and the mean value theorem.
So, there does exist x∈ϕ such that x ¼ Tx by Theorem 2.6. In addition to that,
convergence of x tð Þ to a finite number as t ! ∞ is so easy to show. Therefore,
setting

y tð Þ ¼
1
2
þ

ð

∞

t
q uð Þg

ð

∞

u
r τð Þh x τð Þð ÞΔτ

� 	

Δu>0, t≥ t1

and

z tð Þ ¼ �

ð

∞

t
r τð Þh x τð Þð ÞΔτ<0, t≥ t1,

and by a similar discussion as in Theorem 3.5, we get y tð Þ ! 1
2 and z tð Þ ! 0: So

we conclude that x, y, zð Þ is a nonoscillatory solution of system (3) in Nc
B,B,0:.

Next, we focus on the existence of nonoscillatory solutions in Nc
∞,B,0 and Nc

B,0,0.
In other words, we will show there exists such a solution x, y, zð Þ such that x tend to
infinity while y and z tend to a finite number. After that, we provide the fact that it
is possible to have such a solution whose limit is finite for all component functions
x, y and z. Since the following theorems can be proved similar to the previous
theorem, the proofs are skipped.

Theorem 3.8 Let g be an odd function. Then we have the followings:

i. There does exist a nonoscillatory solution in Nc
∞,B,0 if Y3 is finite for k4 ¼ 0

and some k5 >0.

ii. There does exist a nonoscillatory solution in Nc
B,0,0 if Y2 <∞ for k2 ¼ 0 and

k3 >0.

Finally, the last theorem in this section leads us to the fact that there must be a
solution such that x ! ∞while the other components converge to zero according to
the convergence and divergence of the improper integrals of Y2 and Y3.

Theorem 3.9 Supposing the fact that g is an odd function, Nc
∞,0,0 6¼ ∅ if Y2 ¼ ∞

and Y3 <∞ for k2 ¼ k4 ¼ 0 and k3, k5 >0.
Proof: Suppose that Y2 ¼ ∞ and Y3 <∞. Then choose t1 ≥ t0 and k3, k5 >0 such

that

ð

∞

t1
q tð Þg

ð

∞

t
r sð Þh k5

ðs

t1
p τð ÞΔτ

� 	

Δs
� 	

Δs<
1
2
, t≥ t1: (10)

and

ð

∞

t1
p tð Þf

ð

∞

t
q sð Þg k3

ð

∞

s
r τð ÞΔτ

� 	

Δs
� 	

Δt>
1
2
, t≥ t1, (11)

where k5 ¼ 1
2 and k3 ¼ h 1

2

� �

. Let Φ be the partially ordered Banach space of all

continuous functions with the supremum norm xk k ¼ supt≥ t1
x tð Þ

P t1, tð Þ and usual

pointwise ordering ≤ . Define a subset ϕ of Φ such that
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ϕ≔ x∈Φ :

1
2
≤ x tð Þ≤

1
2

ðt

t1
p sð ÞΔs, t≥ t1


 �

and an operator Tx : Φ ! Φ by

Txð Þ tð Þ ¼
ðt

t1
p sð Þf

ð

∞

s
q τð Þg

ð

∞

τ

r uð Þh x uð Þð ÞΔu
� 	

Δτ

� 	

Δs:

One can easily show that T : ϕ ! ϕ is an increasing mapping and ϕ, ≤ð Þ is a
complete lattice. So by Theorem 2.7, there does exist x∈ϕ such that x ¼ Tx: So
x tð Þ ! ∞ as t ! ∞: By setting

y tð Þ ¼
ð

∞

t
q τð Þg

ð

∞

τ

r uð Þh x uð Þð ÞΔu
� 	

Δτ, t≥ t1

and

z tð Þ ¼ �

ð

∞

t
r uð Þh x uð Þð ÞΔu, t≥ t1,

one can have y tð Þ>0 and z tð Þ<0 for t≥ t1 so that y tð Þ ! 0 and z tð Þ ! 0 as t !
∞: This proves the assertion.

3.2 The case λ ¼ �1

This section deals with system (3) for λ ¼ �1. The assumptions on f , g and h are
the same assumptions with the previous section. The following lemma describes the
long-term behavior of two of the components of a nonoscillatory solution, see ([21],
Lemma 4.2).

Lemma 3.10 Supposing x, y, zð Þ is a nonoscillatory solution in Nb, we have

lim
t!∞

y tð Þ ¼ lim
t!∞

z tð Þ ¼ 0:

In the next section, we examine the solutions in each class Na and Nb. We used
fixed-point theorems to establish our results.

3.2.1 Existence in Na

For any nonoscillatory solution x, y, zð Þ of system (3) in Na with x>0 eventually,
one has the following subclasses by using the same arguments as in Section 3.1.1:

Na
B,B,B ≔ x, y, zð Þ∈Na

: lim
t!∞

jx tð Þj¼ c1, lim
t!∞

jy tð Þj¼ c2, lim
t!∞

jz tð Þj¼ c3


 �

Na
B,B,0 ≔ x, y, zð Þ∈Na

: lim
t!∞

jx tð Þj¼ c1, lim
t!∞

jy tð Þj¼ c2, lim
t!∞

jz tð Þj¼ 0

 �

Na
B,∞,B ≔ x, y, zð Þ∈Na

: lim
t!∞

jx tð Þj¼ c1, lim
t!∞

jy tð Þj¼ ∞, lim
t!∞

jz tð Þj¼ c3


 �

Na
B,∞,0 ≔ x, y, zð Þ∈Na

: lim
t!∞

jx tð Þj¼ c1, lim
t!∞

jy tð Þj¼ ∞, lim
t!∞

jz tð Þj¼ 0

 �
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Na
∞,B,B ≔ x, y, zð Þ∈Na

: lim
t!∞

jx tð Þj¼ ∞, lim
t!∞

jy tð Þj¼ c2, lim
t!∞

jz tð Þj¼ c3


 �

Na
∞,B,0 ≔ x, y, zð Þ∈Na

: lim
t!∞

jx tð Þj¼ ∞, lim
t!∞

jy tð Þj¼ c2, lim
t!∞

jz tð Þj¼ 0

 �

Na
∞,∞,B ≔ x, y, zð Þ∈Na

: lim
t!∞

jx tð Þj¼ lim
t!∞

jy tð Þj¼ ∞, lim
t!∞

jz tð Þj¼ c3


 �

Na
∞,∞,0 ≔ x, y, zð Þ∈Na

: lim
t!∞

jx tð Þj¼ lim
t!∞

jy tð Þj¼ ∞, lim
t!∞

jz tð Þj¼ 0

 �

,

where c1, c2 and c3 are positive constants. Finally, we have the following results:
Theorem 3.11 Suppose R t0,∞ð Þ<∞: If Y4 <∞ and Y8 <∞ for all positive

constants k6, k7, k8, k12, k13, then Na
B,B,B 6¼ ∅.

Proof: Assume Y4 <∞ and Y8 <∞ for all k6, k7, k8, k12, k13 >0. Choose t1 ≥ t0
such that

ð

∞

t1
p tð Þf k6 �

ð

∞

t
q sð Þg k7 þ k8

ð

∞

s
r τð ÞΔτ

� 	

Δs
� 	

Δt<
1
2

and

ð

∞

t1
q sð Þg k12 þ k13

ð

∞

s
r τð ÞΔτ

� 	

Δs< k6,

where k8 ¼ k13 ¼ h 1
2

� �

>0 and k7 ¼ k12 for t≥ t1.
Let  be the set of all continuous and bounded functions with the norm xk k ¼

supt≥ t1
∣x tð Þ∣. Then  is a Banach space ([22]). Define a subset Ω of  such that

Ω≔ x∈ :

1
2
≤ x tð Þ≤ 1, t≥ t1


 �

and an operator Fx :  !  by

Fxð Þ tð Þ ¼
1
2
þ

ðt

t1
p sð Þf k6 �

ð

∞

s
q uð Þg k7 þ

ð

∞

u
r τð Þh x τð Þð ÞΔτ

� 	

Δu
� 	

Δs

for t≥ t1: First, for every x∈Ω, xk k ¼ sup
t≥ t1

∣x tð Þ∣, we have 1
2 ≤ x tð Þk k≤ 1 for t≥ t1,

which implies Ω is bounded. For showing that Ω is closed, it is enough to show that
it includes all limit points. So let xn be a sequence in Ω converging to x as n ! ∞.
Then 1

2 ≤ xn tð Þ≤ 1 for t≥ t1. Taking the limit of xn as n ! ∞, we have 1
2 ≤ x tð Þ≤ 1 for

t≥ t1, which implies x∈Ω. Since xn is any sequence in Ω, it follows that Ω is closed.
Now let us show Ω is also convex. For x1, x2 ∈Ω and α∈ 0, 1½ �, we have

1
2
¼

α

2
þ 1� αð Þ

1
2
≤ αx1 þ 1� αð Þx2 ≤ αþ 1� αð Þ ¼ 1,

where 1
2 ≤ x1, x2 ≤ 1, i.e., Ω is convex. Also, because

1
2
≤ Fxð Þ tð Þ≤

1
2
þ

ðt

t1
p sð Þf k6 �

ð

∞

s
q uð Þg k7 þ h

1
2

� 	ð

∞

u
r τð ÞΔτ

� 	

Δu
� 	

Δs

≤ 1,
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i.e., F : Ω ! Ω. Let us now show that F is continuous on Ω. Let xnf g be a
sequence in Ω such that xn ! x∈Ω as n ! ∞. Then

∣ Fxn � Fxð Þ tð Þ∣

≤

ðt

t1
p sð Þ f k6 �

ð

∞

s
q uð Þg k7 þ

ð

∞

u
r τð Þh xn τð Þð ÞΔτ

� 	

Δu
� 	�

�

�

�

�f k6 �
ð

∞

s
q uð Þg k7 þ

ð

∞

u
r τð Þh x τð Þð ÞΔτ

� 	

Δu
� 	�

�

�

�

Δs:

Then the continuity of f , g and h and Lebesgue Dominated Convergence theo-
rem imply that F is continuous on Ω. Finally, since

Fxð ÞΔ tð Þ ¼ p tð Þf k6 �
ð

∞

t
q uð Þg k7 þ

ð

∞

u
r τð Þh x τð Þð ÞΔτ

� 	

Δu
� 	

<∞,

we have F is relatively compact by the Mean Value theorem and Arzelà-Ascoli
theorem. So, by Theorem 2.6, we have there exists x∈Ω such that x ¼ Fx. Then by
taking the derivative of x, we obtain

xΔ tð Þ ¼ p tð Þf k6 �
ð

∞

t
q uð Þg k7 þ

ð

∞

u
r τð Þh x τð Þð ÞΔτ

� 	

Δu
� 	

, t≥ t1:

Setting

y tð Þ≔ k6 �
ð

∞

t
q uð Þg k7 þ

ð

∞

u
r τð Þh x τð Þð ÞΔτ

� 	

Δu

for k6 >0 and taking its derivative yields

yΔ tð Þ ¼ q tð Þg k7 þ
ð

∞

t
r τð Þh x τð Þð ÞΔτ

� 	

, t≥ t1:

Finally, differentiating

z tð Þ≔ k7 þ
ð

∞

t
r τð Þh x τð Þð ÞΔτ

gives

zΔ tð Þ ¼ �r tð Þh x tð Þð Þ, t≥ t1:

Consequently x, y, zð Þ is a solution of system (3) such that x tð Þ ! α, y tð Þ ! k6
and z tð Þ ! k7, where 0< α<∞, i.e., Na

B,B,B 6¼ ∅.
The following theorems can be proven very similarly to Theorem 3.11 with

appropriate operators. Therefore, the proof is left to the reader, see [17].
Theorem 3.12 We have the following results:

i. Suppose R t0,∞ð Þ<∞: If Y4 <∞ and Y8 <∞ for k7 ¼ k12 ¼ 0 and for all
k6, k8, k13 >0, then Na

B,B,0 6¼ ∅.

ii. If both Y3 and Y9 are finite for k4 ¼ 0 and for all k5, k14 >0, thenNþ
∞,B,0 6¼ ∅.
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iii. If Y3 <∞ and Y9 <∞ for all k4, k5, k14 >0, then Na
∞,B,B 6¼ ∅.

iv. If Y1 <∞ and Y6 ¼ ∞ for all k1, k10 >0, then Na
∞,∞,B 6¼ ∅.

We continue with the case when z tð Þ converges to 0 while other components x tð Þ
and y tð Þ of solution x, y, zð Þ tend to infinity as t ! ∞.

Theorem 3.13 Suppose R t0,∞ð Þ<∞. If Y1 <∞ and Y5 ¼ Y8 ¼ ∞ for all positive
constants k1, k9, k13 and k12 ¼ 0, then Na

∞,∞,0 6¼ ∅:.
Proof: Suppose Y1 <∞ and Y5 ¼ Y8 ¼ ∞ for k1, k9, k13 >0, k12 ¼ 0. Then choose

a t1 ≥ t0 such that

ð

∞

t1
r tð Þh

ðt

t1
p sð Þf k1

ðs

t0
q τð ÞΔτ

� 	

Δs
� 	

Δt<
1
2

and

ð

∞

t1
p sð Þf

ðs

t1
q τð Þg k9

ð

∞

τ

r vð ÞΔv
� 	

Δτ

� 	

Δs> 1, t≥ t1,

where k1 ¼ g 1
2

� �

and k9 ¼ k13 ¼ h 1ð Þ. Suppose that Φ is a space of real-valued
continuous functions and partially ordered Banach space with yk k ¼ supt≥ t1

∣y tð Þ∣
and the usual pointwise ordering ≤ . Let ϕ be a subset of Φ such that

ϕ≔ z∈Φ : h 1ð Þ

ð

∞

t
r sð ÞΔs≤ z tð Þ≤

d1
2
, t≥ t1


 �

:

and set an operator F : Φ ! Φ such that

Fzð Þ tð Þ ¼
ð

∞

t
r sð Þh

ðs

t1
p uð Þf

ðu

t1
q τð Þg z τð Þð ÞΔτ

� 	

Δu
� 	

Δs:

The rest of the proof can be done as in proofs of the previous theorems by using
the fact Y5 ¼ Y8 ¼ ∞, and therefore, Na

∞,∞,0 6¼ ∅.

3.2.2 Existence in Nb

Assuming x, y, zð Þ is a nonoscillatory solution of system (3) in Nb such that x>0
eventually and by a similar discussion as in the previous section, and by Lemma
3.10, we have the following subclasses:

Nb
B,0,0 ≔ x, y, zð Þ∈Nb

: lim
t!∞

jx tð Þj¼ c1 lim
t!∞

jy tð Þj¼ 0, lim
t!∞

jz tð Þj¼ 0

 �

Nb
0,0,0 ≔ x, y, zð Þ∈Nb

: lim
t!∞

jx tð Þj¼ 0, lim
t!∞

jy tð Þj¼ 0, lim
t!∞

jz tð Þj¼ 0

 �

,

where 0< c1 <∞.
The first result of this section considers the case when each of the component

solutions converges.
Theorem 3.14 Suppose R t0,∞ð Þ<∞ and f is odd. Then Nb

B,0,0 6¼ ∅ if Y2 <∞ and
Y8 <∞ for all k3 ¼ k13 >0 and k12 ¼ 0.
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Proof: Suppose that Y2 <∞ and Y8 <∞ for all k3 ¼ k13 >0 and k12 ¼ 0. Then
choose k3, k13 >0 and t1 ≥ t0 sufficiently large such that

ð

∞

t1
p tð Þf

ð

∞

t
q sð Þg k3

ð

∞

s
r τð ÞΔτ

� 	

Δs
� 	

Δt<
1
2
,

where k3 ¼ h 3
2

� �

. Let Φ be a partially ordered Banach space of real-valued
continuous functions with xk k ¼ supt≥ t1

∣x tð Þ∣ and the usual pointwise ordering ≤ .
Let us set a subset ϕ of Φ such that

ϕ≔ x∈Φ : 1≤ x tð Þ≤
3
2
, t≥ t1


 �

and an operator Fx : Φ ! Φ by

Fxð Þ tð Þ ¼ 1þ
ð

∞

t
p sð Þf

ð

∞

s
q uð Þg

ð

∞

u
r τð Þh x τð Þð ÞΔτ

� 	

Δu
� 	

Δs:

One can prove that F is an increasing mapping into itself and Ω, ≤ð Þ is a
complete lattice. Therefore, by Theorem 2.7, there does exist x∈Ω such that x ¼ Fx.
It follows that x tð Þ>0 for t≥ t1 and converges to 1 as t approaches infinity. Also,

xΔ tð Þ ¼ �p tð Þf
ð

∞

t
q uð Þg

ð

∞

u
r τð Þh x τð Þð ÞΔτ

� 	

Δu
� 	

, t≥ t1:

Now for t≥ t1, set

y tð Þ ¼ �

ð

∞

t
q uð Þg

ð

∞

u
r τð Þh x τð Þð ÞΔτ

� 	

Δu

and

z tð Þ ¼
ð

∞

t
r τð Þh x τð Þð ÞΔτ:

Then, since f is odd, we have

xΔ tð Þ ¼ p tð Þf y tð Þð Þ

yΔ tð Þ ¼ q tð Þg z tð Þð Þ

zΔ tð Þ ¼ �r tð Þh x tð Þð Þ:

Consequently x, y, zð Þ is a solution of system (3). Since both y tð Þ and z tð Þ
converge to 0 as t approaches infinity, Nb

B,0,0 6¼ ∅:.

4. Examples

In this section, we provide some examples to highlight our theoretical claims.
The following theorem help us evaluate the integrals on a specific time scale, see
([6] Theorem 1.79 (ii)).

Theorem 4.1 Suppose that a, b½ � has only isolated points with a< b. Then
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ðb

a
f tð ÞΔt ¼

X

t∈ a, b½ Þ

μ tð Þf tð Þ:

Example 4.2 Let  ¼ 3ℕ, k5 ¼ 1 ¼ k14 and consider the following system

Δ3x tð Þ ¼ t
t�1

� �1
3y

1
3 tð Þ

Δ3y tð Þ ¼
1

3t
1
5
z
3
5 tð Þ

Δ3z tð Þ ¼ �
26

54t
21
5
x

1
5 tð Þ,

8

>

>

>

>

>

<

>

>

>

>

>

:

(12)

where

Δ3k tð Þ ¼
k σ tð Þð Þ � k tð Þ

μ tð Þ
for σ tð Þ ¼ 3t and μ tð Þ ¼ 2t, t∈:

First we show P t0,∞ð Þ ¼ Q t0,∞ð Þ ¼ ∞. If s ¼ 3m and t ¼ 3n, m, n∈ℕ, we have

ð

∞

3
p sð ÞΔs ¼ lim

t!∞

ðt

3
p sð ÞΔs ¼ 2 lim

n!∞

X

ρ 3nð Þ

s¼3

s4

s� 1

� 	
1
3

> 2 lim
n!∞

X

n�1

m¼1

3m ¼ ∞:

Similarly one can obtain
Ð

∞

3 q sð ÞΔs ¼ ∞.
Now we consider Y3. With τ ¼ 3m and s ¼ 3n, m, n∈ℕ, we have

ðs

3

τ

τ � 1

� �1
3
Δτ ¼ 2

X

n�1

m¼1

34m

3m � 1

� 	
1
3

< 2
X

n�1

m¼1

3mð Þ
4
3

since 3m � 1> 1 on . We claim that

X

n�1

m¼1

3mð Þ
4
3 < 3nð Þ

4
3
:

The sum formula for a finite geometric series, 1� 3
4
3 <0, and.

3
4
3

� �1�n
� 1< 1 for n∈ yield

0≤
3
4
3

� �1�n
� 1

1� 3
4
3

< 1:

So the claim indeed holds, and consequently we have
ðs

3

τ

τ � 1

� �1
3
Δτ< 2s

4
3
: (13)

Also, we obtain

ðT

t
r sð Þh

ðs

3
p τð ÞΔτ

� 	

Δs<
ðT

t

26
54

1

s
21
5

2s
4
3

� �1
5
Δs ¼

26 � 2
6
5

54

X

s∈ t,T½ Þ3

1

s
44
15
< 2

X

s∈ t,T½ Þ3

1

s
44
15

by (11). Therefore, as T ! ∞, we obtain
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X

s∈ t,∞½ Þ3

1

s
44
15
¼ α �

1

t
44
15
, (14)

where α ¼ 1� 1

3
44
15
. Finally, with t ¼ 3m and T ¼ 3n, m, n∈, we have

ðT

t0
q tð Þg

ð

∞

t
r sð Þh

ðs

t0
p τð ÞΔτ

� 	

Δs
� 	

Δt<
2αð Þ

3
5

3

ðT

3

1

t
1
5

1

t
44
15

� 	3
5

Δt ¼
2αð Þ

3
5

3

ðT

3

1

t
49
25
Δt

¼
2αð Þ

3
5

3

X

n�1

m¼1

2
1

3mð Þ
49
25
3m ¼

2 2αð Þ
3
5

3

X

n�1

m¼1

1

3
24
25

� 	m

by (12). Since the above integral converges as T approaches infinity, we have
Y3 <∞. By using a similar discussion and (12), it is shown Y9 <∞: One can also
show that t, 1� 1

t,
1
t3

� �

is a nonoscillatory solution of system (10). Hence Na
∞,B,0 6¼ ∅

by Theorem 3.12 (ii).
Example 4.3 Let  ¼ q0

: Consider the system

xΔ tð Þ ¼
1

1þ tð Þ
1
3
y
1
3 tð Þ

yΔ tð Þ ¼ t
2t�1

� �1
5z

1
5 tð Þ

zΔ tð Þ ¼
1
qt3

x tð Þ:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(15)

We show that Na
∞,∞,B 6¼ ∅ by Theorem 3.5 for s ¼ qm, t ¼ qn, k1 ¼ 1 and t0 ¼ 1:

So we need to show P t0,∞ð Þ ¼ Q t0,∞ð Þ ¼ ∞ and Y1 <∞. Indeed,

ðT

1
p tð ÞΔt ¼

X

t∈ 1, ρ Tð Þ½ �
q0

1

1þ tð Þ
1
3
� q� 1ð Þt:

So as T ! ∞, we have

P 1,∞ð Þ ¼ q� 1ð Þ
X

∞

n¼0

qn

1þ qnð Þ
1
3
¼ ∞

by the ratio test. We can also easily show Q 1,∞ð Þ ¼ ∞: As the final step, let us
show Y1 <∞ holds. Indeed,

ðT

1
r tð Þh

ðt

1
p sð Þf

ðs

1
q τð ÞΔτ

� 	

Δs
� 	

Δt

¼

ðT

1
r tð Þh

ðt

1
p sð Þ

X

τ∈ 1, ρ sð Þ½ �
q0

t
2t� 1

� �
1
5

� q� 1ð Þt

0

B

@

1

C

A

1
3

Δs

0

B

B

@

1

C

C

A

Δt

≤

ðT

1
r tð Þh

ðt

1
p sð Þ � s

1
3

� 	

Δt ¼ q� 1ð Þ

ðT

1
r tð Þ

X

s∈ 1, ρ tð Þ½ �
q0

1

1þ sð Þ
1
3
� s

1
3 � s

0

B

@

1

C

A
Δt

≤ q� 1ð Þ
X

t∈ 1, ρ Tð Þ½ �
q0

1
t

:
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Hence, by the geometric series, and taking the limit of the latter inequality as
T ! ∞ yield us

X

∞

n¼0

1
qn

<∞:

Therefore, we have Y1 <∞. One can also show that t, 1þ t, 2� 1
t

� �

is a solution of
system (13) in Na

∞,∞,B:.
Exercise 4.4 Let  ¼ 20

: Show that 1þ t, 3tþ1
t , �1

t2
� �

is a solution of

xΔ tð Þ ¼ t
3tþ1

� �1
3
y
1
3 tð Þ

yΔ tð Þ ¼
1
2
z tð Þ

zΔ tð Þ ¼
3

4 1þ tð Þt3
x tð Þ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(16)

in Nc such that x tð Þ ! ∞, y tð Þ ! 3 and z tð Þ ! 0 as t ! ∞, i.e., Nc
∞,B,0 6¼ ∅ by

Theorem 3.8 (i).

5. Conclusion and open problems

In this chapter, we consider a 3D time scale system and show the asymptotic
properties of the nonoscillatory solutions along with the existence of such solutions.
We are able to show the existence of solutions in most subclasses. On the other
hand, it is still an open problem to show the existence in Na

∞,∞,∞ for system (3),
where λ ¼ 1. In addition to that, there is one more open problem that also can be
considered as a future work, which is to find the criteria for the existence of a
nonoscillatory solution in Nb

0,0,0 of system (3), where λ ¼ �1.
Another significance of our system that we consider in this chapter is the fol-

lowing system

xΔ tð Þ ¼ p tð Þ y tð Þj jα sgn y tð Þ

yΔ tð Þ ¼ q tð Þ z tð Þj jβ sgn z tð Þ

zΔ tð Þ ¼ �r tð Þ xσ tð Þj jγ sgn xσ tð Þ,

8

>

<

>

:

(17)

which is known as the third order Emden-Fowler system. Here, p, q and r have
the same properties as System (3) and α, β, γ are positive constants. Emden-Fowler
equation has a lot of applications in fluid mechanics, astrophysics and gas dynamics.
It would be very interesting to investigate the characteristics of solutions because of
its potential in applications.
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