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Chapter

Designing Well-Organized 
Donor-Bridge-Acceptor 
Conjugated Systems Based on 
Cyclopentadithiophene as Donors 
in Bulk Heterojunction Organic 
Solar Cells: DFT-Based Modeling 
and Calculations
Rania Zaier and Sahbi Ayachi

Abstract

Two host materials based on CPDT as donors in bulk heterojunction organic 
solar cells were designed and investigated by means of DFT calculations. The first 
one (P-CPDTBT3) is a copolymer with D-A configuration and the second one 
(SM-CPDTDPP) is a D-π-A-π-D type small molecule. The investigated materials 
exhibited interesting structural properties with high planarity and rigidity origi-
nated from intra-molecular non-covalent interactions between the different build-
ing blocks. Thanks to their narrow band gaps, the optical absorption spectra have 
covered the main part of solar spectrum of interest. In addition, some general trans-
port properties have been established. The transition density matrix (TDM) was 
used to get insight into the interaction of hole–electron localization and the elec-
tronic excitation processes. The photovoltaic parameters (FF, Voc) were calculated. 
The obtained results have been attempted to provide novel structure–property 
relationships for the rational design strategies of high-performance photovoltaic 
materials with power conversion efficiency of nearly 10%.

Keywords: cyclopentadithiophene, benzothiadiazole, diketopyrrolopyrrole, DFT, 
bulk heterojunction organic solar cells, TDM

1. Introduction

The organic photovoltaic solar cells have gained most attention compared to the 
inorganic counterparts thanks to their exclusive characters such as the flexibility, 
the light weight, the transparency and the low-cost of fabrication [1–6]. Bulk 
heterojunction organic solar cells (BHJ-OSCs), have been largely emerged regard-
ing the several advantages especially their impressive photo-physical properties. 
Introducing a high performance material remains a challenge for researchers [7–11].
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Recently, polymers and small molecules organic semiconductors have received 
great attention to be used in BHJ-OSCs, because of their well-defined molecu-
lar structure, simple synthesis, high mobility and the structure could be easily 
 modified [12–14].

Particularly, π-conjugated systems incorporating donor-acceptor (D-A) and 
donor-π-acceptor-π-donor (D-π-A-π-A) configurations have been emerged as 
promising category of materials for photovoltaic applications. In fact, thanks to 
the high electron delocalization and the intra-molecular charge transfer (ICT) that 
takes place within the conjugated skeleton, D-A materials have shown interesting 
optoelectronic properties and high charge carrier mobility [15, 16]. These particular 
characteristics of these kinds of π-conjugated systems leaded to further improve the 
conjugated arrangement for more increasing the device performance of materials-
based BHJ-OSCs.

Polymers and small molecules based on cyclopentadithiophene (CPDT) 
were widely used in organic electronic applications thanks tothe high rigidity, 
planarity and charge transfer ability delivered by CPDT group [17–23]. Further, 
Benzothiadiazole (BT) [24–27] and Diketopyrrolopyrrole (DPP) [28–30] have been 
extensively utilized as electron deficient acceptor patterns in conjugated systems. 
These acceptor groups offer the advantages of the high electron withdrawing ability, 
the excellent electro-optical properties and the important carrier mobility within 
conjugated materials. Hence, a rational design incorporating donor and acceptor 
moieties may improves the optoelectronic properties to assure high performance 
BHJ-OSCs [31, 32].

This study aims to investigate two donor materials as illustrated in Figure 1, 
the first one is a copolymer based on CPDT and BT with donor-acceptor (D-A) 
configuration, namely P-CPDTBT3. The choice of the conjugated chain length of 
this copolymer with n = 3 is based on the simulated results in our previous work 
[33]. The second one is a small molecule based on CPDT and DPP with D-π-A-π-D 
configuration, namely SM-CPDTDPP, in which thiophene was used as a potential 
π-spacer building block regarding its high electron abilities [34–36]. These com-
pounds are desired to be blended with fullerene-based acceptor material to form 

Figure 1. 
Molecular structures of investigated compounds.
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active layer within BHJ-OSC architecture. A computational investigation  applying 
the DFT approach based on the effects of tuning the acceptor building block 
together with the molecular configuration on the optoelectronic properties has been 
reported.

2. Computational methods

All the calculations have been performed by means of GAUSSIAN 09 software 
package [37]. The ground state geometric optimizations were carried out using 
density functional theory (DFT) with the B3LYP hybrid functional method at 
6-311 g(d,p) basis set in gaseous phase. The frontier molecular orbitals (FMOs) 
properties (HOMO, LUMO and Eg) were determined based on the optimized 
ground state geometries. The electronic parameters including the ionization poten-
tial (IP) and electron affinity (EA) were calculated from neutral, cation and anion 
optimized structures. The optical absorption characteristics were investigated using 
time dependent DFT (TD-DFT) method at B3LYP/6-311 g(d,p) level of theory 
[38, 39]. Charge transfer properties were investigated based on the reorganization 
energies of hole and electron within the studied molecules. Transition density 
matrix (TDM) plots were carried out using Multiwfn [40] to understand the 
electron–hole coherence correlation and the exciton dissociation at the first excited 
state. Finally, photovoltaic parameters were computed and power  conversion 
efficiencies (PCE) were estimated using Scharber diagram.

3. Results and discussions

3.1 Ground-state geometry optimizations

The studied conjugated molecules are constructed based on CPDT units as 
donors with BT and DPP as acceptor units. Hence, these compounds are of ″push-
pull″ type conjugated molecules [41, 42]. Both P-CPDTBT3 and SM-CPDTDPP 
were optimized in the ground state using DFT//B3LYP/6-311 g(d,p) method. This 
study aims to examine the effect of the conjugated molecular design on the opto-
electronic and photovoltaic properties. Here, we have maintained the CPDT donor 
building block and we have tuned the acceptor moieties based on BT and DPP units. 
Besides, we are looking to reveal the difference of behavior between polymer and 
small molecule.

As it can be seen from Figure 2, both compounds exhibit a high planar opti-
mized geometry. The dihedral angles are almost 0°, as observed from the side 
view of these molecules. These planar configurations are arising from the intra-
molecular non-covalent interactions of S---H, N---H and S---N types that take place 
within the conjugated framework [43]. These non-covalent bonds are found smaller 
than the sum of Van der Waals radii of the considered atoms. The planar backbone 
structure is one of the key factors to enhance the conjugation degree and accord-
ingly increasing the π-staking for more charge transfer capability.

The bridge bonds are described as the bonds that link between the distinct 
building blocks such as electron donating units, electron acceptor units and 
π-spacer within the conjugated backbone. The interest of examining the bridge 
bond length is to get an idea about the interactions among the different building 
blocks. Where, the shorter bridge bond length leads to stronger intra-molecular 
interactions and higher charge transfer [44, 45]. For the studied compounds, 
the bridge bond defines the bond C-C between the CPDT donor and BT or DPP 
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acceptor units. The bridge bond lengths are found around 1.45 Å for P-CPDTBT3 
and 1.43 Å for SM-CPDTDPP. The obtained values are higher than the regular C=C 
bond length (1.34 Å) and smaller than the regular C-C bond length (1.54 Å) which 
indicates that these bonds are still found to have double-bond character.

Figure 3. 
Molecular electrostatic potential (MEP) of the considered compounds.

Figure 2. 
Ground state optimized structures of P-CPDTBT3 and SM-CPDTDPP at DFT/B3LYP/6-311 g(d,p) level of theory.
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Based on the optimized ground state geometries, we deduce that important 
π-electron delocalization, within the conjugated frameworks; can induce intra-
molecular charge transfer (ICT) characteristics in push-pull donor materials.

Further, Molecular Electrostatic Potential Surfaces (MEPs) were simulated to 
identify the electronic properties and molecular stability. The MEP is a helpful tool for 
specifying the reactive sites as it is related to the topology of molecular electron density 
[46]. The colors displayed in the MEP represent the different electrostatic potential 
values and charge distributions within the molecules. From Figure 3, the electron rich-
regions (red color), usually have negative potentials, are mainly located over the dicya-
nomethylene bridge groups whereas the blue color depicts regions of more positive 
electrostatic potentials (electron-deficient) color are concentrated over H and S atoms. 
The MEP plots have shown the dominance of the zero potential which is presents green 
color. This observation revel the high stability of the considered compounds.

3.2 Frontier molecular orbitals (FMOs) analysis

The analysis of Frontier molecular orbitals (FMOs) gives a description of 
the electron delocalization as well as the electron transport capacities within the 
conjugated skeleton. The highest occupied molecular orbital (HOMO) and the low-
est unoccupied molecular orbital (LUMO) strongly determine the optoelectronic 
properties of conjugated compounds, pointedly on the photovoltaic properties of 
donor materials. Largely, donor compound should tend to have a deep HOMO level 
to assure a high open circuit voltage VOC and a suitable LUMO energy level with 
respect to that of the acceptor unit [47–49].

The FMOs of the considered materials are carried out based on DFT/B3LYP method 
at 6-311 g(d,p) and listed in Table 1. The FMOs contour plots are illustrated in Figure 4.

Compound 1HE − (eV) HE  (eV) LE  (eV) 1LE +  (eV) gapE  (eV) IP (eV) EA (eV)

P-CPDTBT3 −5.90 −5.49 −3.87 −7.74 1.62 6.10 3.20

SM-CPDTDPP −5.83 −5.20 −3.78 −3.72 1.42 5.90 3.09

Table 1. 
Electronic properties for studied materials obtained at DFT/B3LYP 6-311 g(d,p) level of theory.

Figure 4. 
FMOs contour plots at the optimized ground state of the considered materials.
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The simultaneous interactions of donor and acceptor groups are the responsible 
of the electron delocalization and thus producing the electronic charge distribution 
within the HOMOs and LUMOs. As it can be seen from Figure 4, there is consider-
able discrepancy of molecular orbital distributions resulting from the particular 
molecular configurations of P-CPDTBT3 and SM-CPDTDPP.

The spatial distribution of the HOMO orbital of P-CPDTBT3 is dominantly 
localized over the main conjugated backbone. While, that of SM-CPDTDPP is 
mainly located on the central part of the conjugated framework. The LUMOof 
P-CPDTBT3 is dispersed over the central CPDT unit indicating a high steric 
hindrance rising from the strong electron withdrawing group effect of dicyano-
methylene group [50]. In the case of SM-CPDTDPP, the LUMO is centered over the 
DPP substituted group and the thiophene π-spacer units. These distributions may 
increase the π → π* electronic transitions and reinforce the ICT ability. Besides, 
these materials dispose narrow band gap energies (1.62 eV) for P-CPDTBT3 and 
1.42 eV for SM-CPDTDPP) that lead to improve the electron transition and light 
harvesting. The 2D molecular electrostatic maps of studied materials have been 
simulated to better understand the intra-molecular interactions (See Figure 5). 
As revealed from Figure 5, the central part is the most conjecturable zone into the 
conjugated framework of the studied molecules that is in good agreement with the 
FMOs analysis.

Ionization potential (IP) and Electron Affinity (EA) were calculated from 
the neutral, cation and anion optimized structures. IP and EA describe the bar-
rier injection energies of electron and hole, respectively. The application of the 
considered materials in OCSs requires relevant IP and EA in order to promote the 
electron injection and hole transport. Thus, it is revealed from the FMOs analysis 
the significant effect of building blocks on the electronic properties that are related 
to the charge delocalization.

Figure 5. 
2D molecular electrostatic maps of studied materials.
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3.3 Optical properties

The optical absorption spectrum in the solar spectral zone also its intensity are 
the main factors that influence the value of short-circuit current density (JSC) of 
OSCs [51]. Fundamentally, the JSC is a function of the external quantum efficiency 
(EQE) with the photon number ( )S λ  coveringall the frequencies providedfrom the 
solar spectrum, as above [52]:

 ( ).SCJ q EQE S dλ λ= ∫  (1)

Where, EQE presents the product of light harvesting efficiency (ηλ), exciton 
diffusion efficiency (ηED), charge separation efficiency (ηCS), and charge col-
lection efficiency (ηCC). As revealed from the following expression, the donor 
material absorption capability remains a crucial parameter for increasing the 
organic solar cell efficiency. The light harvesting efficiency (ηλ) is related to the 
oscillator strength (f) of the maximum optical absorption wavelength as expressed 
above [53]:

 1 10 f
λη

−= −  (2)

In order to explore the photo-physical properties of the considered compounds, 
the optical absorption spectra were simulated using TD-DFT approach as cost-
effective method [54, 55].

Figure 6. 
Optical absorption spectra of P-CPDTBT3 and SM-CPDTDPP simulated at TD-DFT//B3LYP/6-311 g(d,p) 
level of theory.
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TD-DFT simulations were performed at the optimized ground state (S0) geom-
etries in gaseous phase (See Figure 6) and the related optical parameters are listed 
in Table 2.

As we can see from Figure 6, these materials exhibit, as expected, abroad 
absorption bands in the wavelength range from 550 nm to 900 nm which covers a 
relevant part of the solar spectrum, where the maximum optical absorption within 
the solar spectrum is at about 700 nm [56]. The broad absorption in the visible and 
near infrared region, displayed by the considered materials, leads to reinforce BHJ-
OCSs performances. The maximum absorption peaks were found at 693 nm and 
737 nm for P-CPDTBT3 and SM-CPDTDPP, respectively.

In fact, these maximum wavelengths are generated mainly from HOMOs to 
LUMOs electronic transitions of ground to first excited state (S0 → S1) of electrons 
associated with high oscillator strength (f) values. Where, the pronounced absorp-
tion peaks are generated by π →  π* electronic transitions from the electron donat-
ing CPDT moieties to theelectron acceptor BT or DPP moieties [57]. The simulated 
absorption spectrum of P-CPDTBT3 is in convenient agreement with the experi-
mental results reported in ref. [58], that confirms the accuracy of TD-DFT approach 
in reproducing the experimental data.

SM-CPDTDPP absorption spectrum was found red shifted by 44 nm compared 
to that of P-CPDTBT3. The slight red shift detected can be explained by the present 
of the thiophene π-spacer that may enhance the electron delocalization within the 
main conjugated framework.

The large absorption band ranging from 900 nm to 1500 nm is attributed to the 
ICT generated from the sulfur rich electron to the electron withdrawing dicyano-
methylene group within the CPDT units [59]. A promising organic donor material 
should exhibit a large light harvesting efficiency (ηλ) in order to reach high photo-
current signal [60, 61]. From Table 2, we reveal that these materials exhibit high ηλ 
values close to one leading to an important light harvesting.

Overall, the molecules under investigation have shown interesting absorption 
properties by covering the amount of the visible and the near infrared regions 
which leads to potential photo-physical properties and JSC improvement.

3.4 Charge transfer properties

Efficient BHJ-OSCs dispose high charge carrier’s mobility. The free chargers 
generated from the exciton dissociation/separation will be diffused/transported 
within the compound. Thus, efficient donor material should exhibit high hole 
transport ability to improve the photo-generation of charge carriers, and then 
the JSC.

The charge hopping process is selected to arrange the hole mobility into the 
compound at room temperature. This process is commonly described as the 

Compound Eex λmax f Major configuration λη

P-CPDTBT3 1.7887 693 1.0184 H →  L + 3 (50%) 0.9041

1.2065 1027 0.5411 H →  L (82%)

SM-CPDTDPP 1.6803 737 1.1021 H →  L + 2 (60%) 0.9209

1.1318 1095 0.3962 H →  L (88%)

Table 2. 
Calculated electronic transition energy Eex (eV), maximum absorption wavelengths, λmax (nm), oscillator 
strength (f) and major configuration at TD-DT//B3LYP/6-311 g(d,p) level.
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self-exchange and charge transport between two adjacent molecules. The hole 
transport rate (khole) is approximated based on Marcus theory, as above [62]:

 

1
2 22

exp
h 4
hole hole

hole

hole B B

t
k

k T k Tλ
ππ λ   −

=    
  

 (3)

Where, h  is Planck’s constant, Bk  is Boltzmann’s constant and T  is the  
temperature (298 K).

From Eq. (3), hole transfer integral (thole) and reorganization energy for hole 
transport ( holeλ ) arecrucial parameters to precisely evaluate the charge transport 
abilities. The hole transfer integral is influenced by the intra-molecular staking of 
conjugated molecules, as expressed bellow [63]:

 ( )HOMO HOMO 1

1
E E

2
holet −= −  (4)

Where, EHOMO and EHOMO-1 define the energies of HOMO and HOMO-1 at 
neutral state, respectively. This expression defines the electron coupling strength of 
two adjacent segments of the molecule. The hole reorganization energy ( holeλ ) is 
determined fromenergy system’s variation between neutral and charge states. The 
charge transport properties ( holeλ , thole and khole) of the studied materials are listed 
in Table 3.

The holeλ  value of SM-CPDTDPP is lower than that of P-CPDTBT3 that could be 
explained by the electronegative discrepancy within the over conjugated frame-
work. As well, thole value found for P-CPDTBT3 is lower than that found for 
SM-CPDTDPP, which shows the higher energy levels overlap within the polymer 
than the small molecule. Mostly, the investigated materials possess interesting hole 
mobility capability that will improve the electrical properties of BHJ-OSC devices.

3.5 Transition density matrix (TDM) analysis

Transition density matrix (TDM) analysis provides an insight into the interac-
tions of donor and acceptor fragments at the first excited state (S1), the electron 
excitation process and the electron–hole coherence. TDM is a helpful tool to 
estimate the exciton escape possibility from the Coulomb attraction [64, 65]. The 
efficient separation of created exciton improves the charge transfer ability within 
the BHJ-OSC.

TDM plots simulated upon S0 →  S1 excitation configuration are shown in 
Figure 7. It is observed from the Figure 7 that the electron–hole coherences are 
primarily concentrated upon the diagonal box (D-D, A-A) and the off-diagonal 
(D-A) for photo-excitation. The wide distribution in the diagonal box (D-D, A-A) 
validates the high π → π* transitions within donor and acceptor regions.

Compound holeλ thole khole

P-CPDTBT3 0.255 0.205 1.66 1410+×

SM-CPDTDPP 0.224 0.315 4.99 1410+×

Table 3. 
Reorganization energies for hole transport ( holeλ ), hole integral transfer (thole) and hole transport rate (khole) 
of the considered molecules. All these parameters are given in eV.
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The weaker coupling of electron and holes makes easier the dissociation of 
exciton. The contour plots of TDM show also the exciton dissociation in the 
studied molecules may be easy regarding the weak electron–hole correlation that 
involves the charge transfer from main CPDT units to the dicyanomethylene bridge 
group [66]. The coefficients correlation of D-A within P-CPDTBT3 are slightly 
higher than those of SM-CPDTNDPP. Hence, the exciton dissociation is expected 
to be comparatively easier in the case of SM-CPDTNDPP than that in the case of 
P-CPDTBT3. The TDM analysis demonstrates the efficiency of charge separation 
within these molecules which leads to a considerable improvement of the Jsc.

3.6 Photovoltaic properties

The advanced performance photovoltaic devices exhibit fundamentally signifi-
cant power conversion efficiency (PCE). For high PCE, the photovoltaic devices 
should possess high fill factor (FF) and large open-voltage circuit (VOC). In fact, 
these conditions dispose a challenge for narrow band gap materials to cover as much 
of the solar spectrum as possible.

BHJ-OSCs contain principally an electron donor material blinded with an 
electron acceptor fullerene derivative named (6,6)-Phenyl-C71 Butyric Acid Methyl 
Ester ([70] PCBM). Accordingly, we have proposed a schematic energy diagram of 
BHJ-OSCs (P-CPDTBT3/SM-CPDTDPP: [70] PCBM), as shown in Figure 8. The 
experimental [70] PCBM energy level values of were recorded in ref. [67].

FF is one of the crucial factors that influence the PCE and can be estimated 
using the expression above [68]:

 
( )ln 0.72

1

oc oc

oc

v v
FF

v

− +
=

+
 (5)

Where, ocv  is the dimensionless voltage:

 oc
oc

B

eV
v

k T
=  (6)

Figure 7. 
TDM plots at the first excited state (S1) of the investigated materials.
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Here, ,e ,Bk T  and VOC are the elementary charge, Boltzmann’s constant, 
temperature and open circuit voltage, respectively.

The VOC can be approximated as [69]:

 ( )1
0.3D A

ocV H L
e

= − −  (7)

Where, e, HD and LA are the elementary charge, HOMO of donor and LUMO of 
acceptor, respectively.

The calculated photovoltaic parameters are listed in Table 4. As we can see 
from the table, there is a growth tendency of the photovoltaic parameters from 
SM-CPDTDPP to P-CPDTBT3. The P-CPDTBT3 copolymer exhibits larger Voc 
which is expected as this latter dispose a deeper HOMO energy level value.

Further, Scharber diagram was used to estimate the power conversion effi-
ciency (PCE) of BHJ-OSCs [70]. From Figure 9, the predicted PCE of P-CPDTBT3 
and SM-CPDTBT materials are found to be 9.5% and 8.2%, respectively. Thus, 
we can reveal from these results the fruitful molecular design of the investigated 
compounds to ensure a promising PCE for developing efficient materials for 
BHJ-OSCs.

Figure 8. 
Schematic energy diagram of the proposed (P-CPDTBT3/SM-CPDTDPP: [67] PCBM) BHJ OSCs.

Compound ocV ocv FF

P-CPDTBT3 1.11 43.22 0.89

SM-CPDTDPP 0.86 33.48 0.86

Table 4. 
Photovoltaic properties calculated at DFT/B3LYP/6-311 g(d,p) level.



Solar Cells - Theory, Materials and Recent Advances

12

4. Conclusion

We have reported in this work a theoretical investigation on a D-A type copoly-
mer and a D-π-A-π-D type small molecule based on CPDT derivatives as electron 
donor with BT or DPP as electron acceptor moiety.

The studied materials exhibited narrow band-gap energies with high planar 
structures governed by intra-molecular non-covalent interactions. The particular 
conjugated arrangement added to the dicyanomethylene Bridge groups has leaded 
to considerable intra-molecular charge transfer (ICT) within these molecules. 
The optical absorption spectra covered an interesting part of the solar spectrum 
which indicated that the studied molecules exhibit high light harvesting efficiency. 
The deep HOMO energy levels of these molecule encourage their application as 
donor materials in a BHJ-OSCs with the [70] PCBM as acceptor. The TDM analysis 
showed the ease dissociation of excitons within the considered materials at the first 
exited state that leads to enhance the photovoltaic properties. The PCEs, estimated 
using Scharber diagram, close to 10% were reached.

This study revealed that the reliability of the designed donor materials for devel-
oping efficient materials for BHJ OSCs. A molecular tuning based on these designed 
conjugated materials may enhance the donor materials efficiency in photovoltaic 
applications.
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