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Chapter

Solving Second-Order Ditferential
Equations by Decomposition

Fritz Schwarz

Abstract

The subject of this article are linear and quasilinear differential equations of
second order that may be decomposed into a first-order component with
guaranteed solution procedure for obtaining closed-form solutions. These are
homogeneous or inhomogeneous linear components, special Riccati components,
Bernoulli, Clairaut or d’Alembert components. Procedures are described how they
may be determined and how solutions of the originally given second order equation
may be obtained from them. This makes it possible to solve new classes of differ-
ential equations and opens up a new area of research. Applying decomposition to
linear inhomogeneous equations a simple procedure for determining a special solu-
tion follows. It is not based on the method of variation of constants of Lagrange, and
consequently does not require the knowledge of a fundamental system. Algorithms
based on these results are implemented in the computer algebra system ALLTYPES
which is available on the website www.alltypes.de.

Keywords: ordinary differential equations, decomposition, exact solutions,
computer algebra

1. Introduction

The history of differential equations begins shortly after the establishment of the
analysis by Newton and Leibniz in the 17th century. A brief overview of its first
hundred years can be found in Appendix A of Ince’s book [1]. These early investi-
gations were mainly limited to first-order equations, associated with the names
Riccati, Bernoulli and Euler. Starting in the early 18th century special linear
equations of higher order were also investigated.

A more systematic search for solution methods was initiated by the results of
Galois for solving algebraic equations in the early 19th century. Inspired by these
results, Picard and Pessiot in Paris founded a solution theory for linear differential
equations, known as Picard-Vessiot theory or differential Galois theory. A good
introduction into their work and its extensions by Loewy may be found in the books
[2, 3]. Completely independent of these activities Sophus Lie in Leipzig founded the
so-called symmetry analysis for solving nonlinear differential Equations [4, 5]. Its
main weaknesses are that most differential equations have no symmetries and
therefore it cannot be applied. Furthermore, there are many differential equations
with fairly simple closed form solutions that have no symmetries. That was essen-
tially the status in the early twentieth century, which did not fundamentally change
until its end.

1 IntechOpen
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In this situation, a new solution method based on decompositions was proposed
[6]. Essentially a decomposition means to find a component of lower order such that
the original equation may be represented as a differential polynomial in terms of
this component. Its existence is based on the following observation. Let
F(x,y,y',9") = 0 be a second-order differential equation for a function y depending
on a variable x, and w(x,y, C1, C;) = 0 its general solution depending on two
undetermined constants. It describes a two-parameter family of curves in the
x — y-plane. If C; and C, are constrained by a relation ¢(Cy, C;) = 0 the resulting
expression for @ contains effectively a single parameter C. It describes a family of
curves that may obey a first-order differential equation called a component. Its
solutions are also solutions of the originally given second-order equation.

Every second-order equation has an infinite number of first-order components
corresponding to the choice of ¢(Cy, C;). Any such component has the form

F(x,9,9',y") =f(x,,2,2',C)(z = g(x,y,)', C)). (1)

Its meaning may be described as follows. If z = g(x,y,y’, C) is substituted into
f(x,9,2,2’, C) the second-order equation on the left-hand side is obtained. The constant
C does not necessarily occur inf and g, the same is true for y and its occurence inf".

Solving a second-order equation by decomposition involves two steps. First a
decomposition of a certain type has to be found. Then the first order equation has to
be solved in order to get the solutions of the original second-order equation. Of
particular interest are those components the solution of which can always be deter-
mined. These are linear homogeneous and inhomogeneous components, special
Riccati components, Bernoulli, Clairaut or d’Alembert components.

In this article equations of second order for an unknown function y depending
on x with leading term y” or y'y” are considered. They are assumed to be linear in y”,
polynomial in the derivatives y’, and rational in y and x. Equations of this kind are
fairly common in applications, therefore many special examples of them are given
in the collections by Kamke [7], Murphy [8], Polyanin [9], Sachdev [10] and
Zwillinger [11]. Many interesting applications of such differential equations can be
found in the textbooks by MacCluer et al. [12] and Swift and Wirkus [13].

In the following Section 2 equations with leading term y” are considered, and
possible linear or Bernoulli components are determined. For linear inhomogeneous
equations it is shown how decomposition leads to a new procedure for determining
a special solution without first having to know a fundamental system. Equations
with leading term y'y” and possible components of Clairaut or d’Alembert type are
the subject of Section 3. Most of the examples do not have Lie symmetries, so
decomposition is the only way to solve them. The last Section 4 discusses various
possible generalizations of the decomposition method, on the one hand more gen-
eral equations to be solved, on the other hand more general first-order components.

2. Equations with leading term y”

Equations that are linear in the highest derivative y”, but may contain powers of
y' with coefficients that are rational in y and x are considered in this section.
Moreover it is assumed that they are primitive, i.e. the leading coefficient is unity.
Their general form is

K
9"+ ch (x,y)y’k = Owitheg(x,y) €Q(x,y), KeN. (2)
k=0
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Equations of this form appear in numerous applications, as can be seen in the
collections of solved examples quoted above. The following proposition has been
proved in [6], it is the basis for generating quasilinear first-order components; as
usual y' = % and D = 4.

Proposition 1 Let a second-order quasilinear Eq. (2) be given. A first-order
component g =y’ + r(x,y) exists if 7(x, ) satisfies

K

Tx — 17y — Z (—1)]"’c;<,,(x,/'v)1fje =0. (3)

k=0

Then the original second-order equation can be decomposed as

K
(z' — 72+ ch(x,y) ((z e (—l)krk)) (z=y"+7r)=0. (4)

k=1

The proof may be found in Section 2 of [6]. As a first application linear first-
order components of the form z =y’ + a(x)y + b(x) are searched for, i.e. with the
above notation r(x,y) = a(x)y + b(x); its coefficients a and b are solutions of the so-
called determining system, they may be in any field extension of Q(x). The following
proposition describes how they may be obtained.

Proposition 2. Let a second-order quasilinear Eq. (2) be given. In order that it has
a linear first-order component 2 =y’ + a(x)y + b(x) the coefficients a(x) and b(x)
have to satisfy

K
(@' —a®)y+b' —ab -y (-1 fc(x,y)(ay +b)" = 0. (5)
k=0

Then (2) may be written as follows

K
(z' —az+ Y (%)) ((z —ay—b)* — (=1 *(ay +b)k>> (z=y +ay+b)=0.
k=1

(6)

The coefficients a and b are solutions of a first-order algebro-differential system.
Its general form is

a —a*+pa,b,x) =0, b' —ab+qla,b,x) =0, r;(a,b,x) =0 )

fori =1,2...;p(a,b,x),q(a,b,x) and r;(a, b, x) are polynomials in 2 and b, and
rational in x; their maximal degree in @ and b is K. The r;(a, b, x) generate an ideal
L, € Q(x)[a, b].

Proof. Substituting » = a(x)y + b(x) into (3) yields (5). At this point y is consid-
ered as an undetermined function. Therefore the left-hand side of (5) is represented
as a partial fraction in y. Equating its coefficients to zero yields sufficient conditions
in order that (5) vanishes and z is a component of (2). The first order ode’s for a and
b in the determining system (7) originate from the coefficients of first and zeroth
degree in y of (5). The polynomials in 2 and b, i.e. p(a,b,x), q(a,b,x) and ri(a, b, x)
in (7) originate from the powers of ay + b and the rational coefficients c;(x,y) in
(5), i.e. exclusively from the nonlinearities of (2). Substitution of y) =2 —ay — b
into (4) yields (6). As a result, the sums at the left-hand side of (6) are a polynomial
in 2 the coefficients of which may depend explicitly on y.
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It is important to represent the left side of (5) as a partial fraction in y, only in
this way the structure of the system (7) is assured.

2.1 Linear equations

IfK =1, ci(x,y) = c1(x) and co(x,y) = co(x)y + ¢,(x) the above proposition
contains the decomposition of linear equations as a special case as shown next.

Corollary 1 Let K =1, ¢1(x,y) = c1(x), co(x,¥) = co(x)y + ¢,(x) and the linear
inhomogeneous second-order equation

Y ex)y +eolx)y +er(x) =0 (8)

be given. A first-order component z =y’ + a(x)y + b(x) exists if 2 and b are
solutions of the determining system

a' —a* 4+ c1(x)a —co(x) =0 and b’ + (c1(x) — a)b — ¢, (x) = 0. 9)
If it is satisfied Eq. (8) may be written as
&+ (1—a)2)(z=y +ay+b)=0. (10)

Proof. The system (9) follows from (5) for the given special values of K and the
coefficients ¢;. Then reduction of (8) w.r.t. 2 yields (10). O

It is remarkable that in the case of linear equations the algebraic conditions
ri(a,b,x) are missing, i.e. they are the most significant contributions originating
from possible nonlinearities in (2).

For linear homogeneous ode’s, i.e. for ¢, = 0 and b = 0, Loewy decompositions
have been shown to be an effective method for determining a fundamental
system [3]. It is based on a factorization of the linear differential operator
corresponding to the given equation over its base field, i.e. restricting the coeffi-
cients of the factors to the field of the coefficients of the given second-order
equation. This restriction does not apply in the above corollary, the coefficients may
be in any field extension.

For linear inhomogeneous equations in addition to a fundamental system a
special solution has to be found. The above corollary avoids the usual method of
variation of constants that somehow appears like an ad hoc method. The method
described in the above corollary requires only a special solution of a Riccati
equation and subsequently solving a linear first-order equation in order to obtain
the general solution of the second-order Eq. (8). The following example applies this
procedure.

Example 1 The equation

1
y' =y -y = e (11)
is Equation 2.109 in Kamke’s collection [7]. Here ¢; = —1,¢g = —}C and
¢, = —(x + 1)¢*. The Riccati equation 4’ — a* — a + 1 = 0 has the special solution

a=-1-1Fromb' +1b=(x+1)e followsh = < +1(x* — x 4+ 1)¢* and leads to
the component

1 1
z=y) — <1+§)y+§(c+ (x® —x +1)e¥).
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Integration yields the general solution

dx

y = Cixe* + szexJ exp (—x); + (x* —xlog (x) — 1)e*.

This is also the general solution of Eq. (11).

It may occur that a fundamental system of a second-order equation is rather
complicated. Usually this is the case when the Riccati equation for 4 in (9) does not
have a special rational solution and the usual algorithms for solving it do not apply,
but one of the special cases of Section 4.9 (a), ... (e) in [7]. Then it may be
advantageous to assume that all integration constants in (9) are zero and only a

special solution is determined as shown next.
Example 2 Consider the equation

1
”—Zy’~|—xy+1:0. (12)

Here ¢y = — %, co = x and ¢, = 1. The Riccati equation a’ — a* —-a — x = 0 has

2%
the special solution @ = \/x tan (-5 x+/x), it yields

/1 2 B
S ESVE 5 P
Its special solution leads to the component

dx

2=y + xtan <_§x\/§>y + LJ cos (%mz) 2

cos (—$xv/x)

One more integration yields a special solution of (12).

Yo = — cos (—ixﬁ) J - (éfc\/o?)zj cos (—ixﬁ) %dx. ]

The application of Corollary 1 is particularly convenient if the coefficients ¢; and
co are constant and the solutions of the algebraic equation a4 — c1a + ¢ = 0 are also
solutions of the Riccati equation for 4. The following example is of this type.

Example 3 The equation y” + 4y’ + 4y = cosh (x) has coefficients ¢c; = ¢y = 4 and

¢, = — cosh (x). The solution of (2 —2)> = 0 isa = 2. It leads to b’ + 2b = cosh (x)
and the component

z=y"+2)+ Cexp(—2x) + —; sinh (x) — —§ sinh (x).

Its general solution

y = Crexp (—2x) + Cyxexp (—2x) + —g cosh (x) — —; sinh (x)

is also the general solution of the given second-order equation. O

2.2 Quasilinear equations

The most interesting applications of Proposition 2 relate to nonlinear equations,
of course. They differ from the linear case mainly by the occurence of the ideal I,



Recent Developments in the Solution of Nonlinear Differential Equations

in (7), which defines algebraic conditions 7;(a, b, x) = 0 for the coefficients of a
possible component. Furthermore, the first-order ode’s for 2 and b are modified due
to the nonlinearity by additional terms. The structure of the determining system
(7) suggests the following solution procedure.

At first the algebraic system 7;(a,b,x) = 0 is established and a Grobner basis for
the ideal I, is generated. Usually it may be determined rather efficiently.

If it is inconsistent a linear component does not exist in any field extension. This
applies to a generic nonlinear equation of the form (2).

If the ideal I, is finite-dimensional each solution that satisfies the two first-
order ode’s yields a component that may be integrated and leads to a one-parameter
family of solutions of the given second-order equation.

Finally, the algebraic equations may generate a relation between 4 and b;
substitution into the first-order differential equations may lead to one of the above
cases, or to a solution depending on a parameter. In the latter case a one-parameter
family of linear components exists, integrating the corresponding equation yields
the general solution of the given second-order equation containing two
undetermined constants.

Subsequently this proceeding will be illustrated by several examples. They show
that all of the alternatives mentioned actually exist.

Example 4 Consider the equation

" 12 . P, xX 2_# _
YAy =y gy gy =0

Its coefficients ¢c; = x,¢1 = (x — 1)y + sgandco = — 2 3% result in the system
P ax , ) bx 1
a —a°—2abx+——+b(x—-1)=0, b'—ab —b"x + + =0,
x+1 x+1 x+1
-1 1
- .
X X
The single algebraic equation has the solutions @ = —1and 4 = 1 and the
decompositions
3 2 2
J 5 XY+ 2y +x° +xy +x+1 o, 1
= — — O,
(z +xz° + 2t x zZ|(z=y xy

/ 2 x2y+2xy+y+1 —

<z+xz w1 z)(z_y +9)=0

follow. Integration of the two components yields the two one-parameter families
y = Cexp (—x) and y = Cx of solution curves. It is not obvious how the general
solution of the second-order equation involving two constants is supported by them. []

The most interesting, of course, are equations that allow a one-parameter family
of linear components and whose integration gives the general solution. The next
example is of this type.

Example 5 Consider the equation

n__ .12 _2/_1 2
' =y + 3 =0 (13)

with K = 2 and the coefficients c; = — 1, ¢; = Z and ¢g = —Z; they generate the
y 3y x

determining system
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1 2 2
a’+;=0, b'+ab+—3a:0, b2+—3b:0

with solution a = —log (x) + C, b = ——% from which the decomposition

(z —ylz —)—)(log( )y—Cy+—§)z> (zEy’—(log(x)—C) ——§> ~0

is obtained. Integration of the first-order component leads to the general solution

Yy = —éxx exp (Cix) (J exp (—Cix) i—f + Cz)

of Eq. (13), it does not have a Lie symmetry.

Here the question arises how exceptional are the equations that have a one-
parameter family of linear components of the first order and thus have a general
solution in closed form. The following example is a generalization of the previous
one. A family of second order equations is constructed whose general solution can
be given explicitly.

Example 6 The equation

W' =y +pa)y +q@p* =0 (14)

with undetermined coefficients p(x) and q(x) generalizes the preceding

example. Here ¢c; = ; g =2 5 Jand ¢ = g(x)y. A first-order linear component

gz =9y +ay + b exists if a and b are solutions of the system
a —q(x)=0, b'+ab+p(x)a=0, b(b+p(x)) =0.

The result may be described as follows. If p(x) = k is a constant, and g(x) is an
undetermined function then a = [¢q(x)dx + C, b = —k and the decomposition

" 1 /2 k /
Y ==y + -y +qx)y
Yy Y

< (z’ —)—1’22 + (Jq(x)dx + C)z —f—)z) (z =y + (Jq(x)dx + C)y — k) =

exists. Defining Q (x, C1) = [ q(x)dx + C; integration of the first-order
component yields

y= exp (— JQ(x, Cl)dx) (kJ exp (J Qx, Cy)dx) + c2>.

This is the general solution of Eq. (14). O

It turns out that a behavior similar to that in the previous example often applies,
i.e. first-order linear components often exist not only for isolated equations, but for
entire families, which are parameterized by indefinite functions. This explains the
existence of families of solvable equations as those given in the collections
mentioned above.

Bernoulli equations are another class of first-order ode’s with guaranteed closed
form general solutions. In addition to a term linear in y they contain a nonlinearity y”
where 7 is an integer; # = 1 or n = 0 correspond to linear homogeneous or linear
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inhomogeneous equations, respectively. Similar as for linear components, a special
Bernoulli component guarantees a one-parameter set of solution curves of a given
second-order equation, and a one-parameter family of such components guarantees the
general solution of the latter. The main result of this section is the following proposition.

Proposition 3 Let a second-order quasilinear Eq. (2) be given. In order that it has
a first-order Bernoulli component z =y’ + a(x)y” + b(x)y, n €N, the coefficients a
and b have to satisfy

K

(@' — (n+1ab)y" + (' —b*)y —na*y™ =" (=1 cu(x,p)(@y" +by)* = 0.
k=0

(15)

Then (2) may be written as follows

K
(Z/ — (ray" +b)s+ > (e —ay —by)* + (—1)* @y + by) )) (16)

=1
=y +ay" +by) =0.

The coefficients 2 and b may be obtained from a first-order algebro-differential
system; its general form is

a' — (n+1)ab +p(a,b,x) =0, b —b? +q(a,b,x) =0, 7ri(a,b,x)=0; (17)

pla,b,x), q(a,b,x) and ri(a,b,x) are polynomials in 4 and b, and rational in x;
the maximal degree in 2 and b is K, they generate an ideal I in the ring Q(x)|a, b].

Proof. Substituting » = a(x)y" 4+ b(x)y into (3) yields condition (15).
Representing its left-hand side as partial fraction in the variable y, the coefficients of
the various terms yield sufficient conditions for its vanishing. They form the
algebro-differential system (17). The first order ode’s for 2 and b originate from the
coefficients of nth and first degree in y, respectively; p(a,b,x), q(a,b,x) and
ri(a, b, x) originate from the coefficients ¢, (x, y) and the powers of ay” + by.

Substitution of y' =z — ay” — by into (4) yields (16). As a result, the sums at the
left-hand side of (16) are a polynomial in 2z and 2’ the coefficients of which may
depend explicitly on y. O

The structure of the system (17) is similar as for linear components considered
above, and consequently also the proceeding for its solution. The following
examples applies the above proposition.

Example 7 The equation

W =y + 2% +x?2 =0 (18)

1

with K = 2 has coefficients ¢c; = —pl1= 2y2 and ¢ = xy. For generic # the

condition
(@ = (n—Vaby" + (' —x)y — (1~ Day" " +2ay"? +2by> =0 (19)

follows. The two equations b’ — x = 0 and b = 0 originating from the coeffi-
cients of y and y3, respectively, are inconsistent. In order for a Bernoulli component
to exist, this inconsistency must be compensated by other coefficients for a suitable
choice of n. To this end either n = 1 or n = 3 is required. The former leads to the
inconsistency x = 0, whereas the latter yields
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a —2ab+2b=0, b —x=0, a*—a=0.

This system has the solutiona = 1, b = —x? + C from which the decomposition

1 1 1
(z’ —;zz + (y2 +—2x2 +C>z) <z =y +y>+ (—2x2 —I—C)y) =0

follows. Integrating the right component yields the general solution

1
y =
v/ (2) exp (Cix +—%x3) ([ exp (—2Cix — 2 x3)dx + —%Cz)l/z
of Eq. (18). It does not have a Lie symmetry. O

The next example deals with a problem in hydrodynamics. The boundary layer
at a circular cylinder immersed in the uniform flow of liquid is considered [14], see
also Eq. 6.210 of [7].

Example 8 The equation

Py " =3 4y =0 (20)

has the only nonvanishing coefficient ¢, = Substitution into (15) yields

y(y2+1

(' — (n+1)ab)y" + (b' — b2)y naty? 1

(21)
_ G _y 4—3’/_ 1) ( 2y2n + 2&zby”+1 —l—b2y2) —0.

It turns out that for » = 3 this condition specializes to

(@' — 4a® +2ab)y> + (b' + 4a* — 8ab + 2b°)y — 4(a — b)zyzj_}‘_ 1= 0.

After some simplifications the resulting system for a and b is a’ — 24% = 0 and

b = a; Its solutiona = b = — —1 leads to the Bernoulli equation y’ — — - jc —29° —
x:1C = 0 with general solution
Voo
YTTVGET G
This is also the general solution of Eq. (20) O]

In general it is a priori not known whether there exists a Bernoulli component of
any order. If a component for small values of # cannot be found it is desirable to
determine bounds for its possible existence. The next example shows that this is
possible in special cases.

Example 9 Consider the equation

"

v+ y—f Y =0 (22)

with K = 2 and non-vanishing coefficients ¢; = y%l, c1 =1and co = xy.
Substitution into (15) yields
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(@ — (m+1)ab)y" + (b' —b*)y —na*y*™ ' —xy +ay" + by 5 i 1(ay” +by)*.

Expanding the last term into unique partial fractions by using the general
formula

k
=2 " (23)

leads to

(@ — (n+Dab)y" + (' = b*)y — na’y* ' —xy +ay" + by

2n—1 n 2
—a’x Zy” - Zabey” _lath)x =0.
v=0 v=0 y - 1

The coefficients of the various terms yield a system for the unknowns a, b and ».
There is always the subsystem a’ + 4% +a +x = 0,a + b = 0 independent of 7, it
originates from the coefficient of y and the term independent of y. Furthermore, the
leading term of the first sum in the above equation requires a = 0 for for any n >2.
These equations combined are inconsistent, i.e. the above Eq. (22) does not allow a
Bernoulli component for any nonnegative natural number 7. A similar reasoning
exists for negative values of 7. O

At the moment an algorithm for determining bounds for # is not known, it is not
even clear whether the existence of bounds is decidable in general.

3. Equations with leading term y'y”

Another important class of differential equations are those with leading term y'y”,
they are considered in this section. Their general form is

K

Yy +clx,y)y" + ch(x,y)y'k = 0 withc(x,y),ce(x,y) €Q(x)y], KeN. (24)

k=0

Components of Clairaut or d’Alembert type z =y — xf()') — g(y’') may lead to
partial or even general solutions in closed form, mostly in a parameter representa-
tion. The main result of this section is given in the following proposition.

Proposition 4 Let a second-order differential Eq. (24) be given. A first-order

componentz =y —xf (y') —g(y') exists if f(y') and g(y’) satisfy
(p —f(p)(elx, xf (p) +g(10)) p)

+(xf ) +£@) chx f(p) +£())p* =

where p =y’ has been defined. Representing the left hand side of (25) as a partial
fraction w.r.t. x and equating the coefficients of the various terms to zero, a system
of first-order quasilinear ode’s for f (p) and g(p) is obtained; its degree in f (p) and
£(p) is not higher than the degree in y of the coefficients c¢(x, y) and ¢ (x, ).

Proof. Reduction of (24) w.r.t.z =y —xf(y') —g(y’) leads to Eq. (25). Their
properties follow directly from the assumptions about the coefficients c(x,y) and
cr(x,y) in (24), and representing the left hand side of (25) as a partial fraction in x.

10



Solving Second-Order Differential Equations by Decomposition
DOI: http://dx.doi.org/10.5772/intechopen.94993

The determining system for the two functionsf (p) and g(p) may be obtained
explicitly from (25) if the coefficients ¢(x, y) and ¢, (x, y) are known. Without restric-
tions on the coefficients ¢, (x, y) the derivatives f' (p) and g’ (p) may occur linearly in any
equation obtained after separation w.r.t. x, and an algebraic system inp, f (p),2(p),
f'(p) and g’(p) follows. It turns out that an algebraic Grébner basis algorithm including
factorization is a suitable tool for solving them in many cases. If a solution has been
obtained the corresponding component may be applied for generating the decomposi-
tion of the given equation explicitly. The following example uses this proceeding.

Example 10 Consider the equation

11 1 no, X 1 2 1 / 1
L L — =0. 26
YV E W Sy T o (26)
Here ] = 1and K = 2, its nonvanishing coefficients are c(x,y) = — Ly, 0= le,
1= — % and cg = % A linear or Bernoulli component does not exist. Proposition 4

leads to the system
dap+gp’—¢ =0, ffo—fr+f —fr=0,
fap+fp*—f +fep+fg+2p—gp*—gp—2° =0.

Transforming the left-hand sides into algebraic Grobner bases in the term order

f'(p)>g'(p)>f(p)>g(p)>p, the following two systems and their solutions are
obtained.

1
f-p=0,gp+p*"-1=0, -f =p,g —p P

1 1
fp+f=0,gp+p*—1=0, ->f = C;?’g :;_Z_p-

They lead to the decompositions

/2 2 2 2
1 — -1 1
<zz’ +Y +y),} + g + Y xj}}, z) <z =y—xy' +y —)7> =0,

2 12 12
1 1 1
(ZZ,+y tCx+1, x4yt Z)(gzy_§x+y,_)7>:0’

Y xy’

respectively. The former decomposition generates a Clairaut component. It yields
the solutiony = Cx + % — C of (26), C is an undetermined constant. Its parameter
solution x = 1% +1,y= 1% does not solve it, it annihilates a lower-order factor of the
expression in the left-hand bracket of this decomposition and has to be discarded.

Integration of the d’Alembert component z = y'> 4 yy’ — Cx — 1 leads to the
general solution of (26) in a parameter representation

<\/C1—i—p — Ciplog ¥—F+F— 1-1-}9 +p (CCz—i—l)p)

WY 1+p +p
y=— \/C1+p?—Cilog ————+CiC, +1
\/Cl+ (

Eq. (26) does not have a Lie symmetry. O

X

:ciw/cﬁp
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This example shows that solutions of a component must be tested to see if they
meet the second order equation, otherwise they have to be discarded; this phenom-
enon seems to be quite common.

4, Conclusions

The structure of the determining systems for linear or Bernoulli components of a
nonlinear Eq. (2) given in Propositions 2 or 3, respectively, show clearly its relation
to the corresponding system for the decomposition of a linear equation. For a
generic equation of the second order this appears to be the best possible result. The
same applies to the verious solution steps given on page 6. The corresponding result
for determining Clairaut and d’Alembert components given in Proposition 4 is less
specific. However, it should be possible, to obtain more detailed results if special
classes of second-order equations are considered. In general, this area is only at an
early stage and a better understanding of the underlying mechanisms generating the
solutions and also its limitations would be highly desirable.

There are numerous possible generalizations fairly obvious. On the one hand,
this concerns the equations to be solved. More general function fields for its coeffi-
cients like e.g. algebraic or elementary functions may be allowed. Equations of order
three or four would be interesting in many applications. The greatest challenge
however is certainly to develop similar procedures for partial differential equations
as it has been indicated in Section 5 of [6].

On the other hand, the component type offers space for extensions too. In
principle all equations of first order, as described for example in Kamke’s book [7],
Part A, Section 4, are possible components. Components that guarantee at least a
partial solution are of course particularly useful, the most important of them have
been discussed in this article.

In order to apply decompositions to concrete problems the implementation of the
procedures described in this article are available on the website www.alltypes.de [15].

Beyond that there are a number of general problems related to decompositions.
For instance the question how rare are equations that allow a particular decompo-
sition, Example 6 provides a partial answer. If two or more one-parameter families
of solution curves are known as in Example 4, does it faciliate generating the
general solution? The exact relation between Lie’s symmetry analysis and solution
by decompositions is another subject of interest.
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